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Calculation of the radiation trapping force for
laser tweezers by use of generalized Lorenz–Mie
theory. II. On-axis trapping force

James A. Lock

The efficiency of trapping an on-axis spherical particle by use of laser tweezers for a particle size from the
Rayleigh limit to the ray optics limit is calculated from generalized Lorenz–Mie light-scattering theory
and the localized version of a Gaussian beam that has been truncated and focused by a high-numerical-
aperture lens and that possesses spherical aberration as a result of its transmission through the wall of
the sample cell. The results are compared with both the experimental trapping efficiency and the
theoretical efficiency obtained from use of the localized version of a freely propagating focused Gaussian
beam. The predicted trapping efficiency is found to decrease as a function of the depth of the spherical
particle in the sample cell owing to an increasing amount of spherical aberration. The decrease in
efficiency is also compared with experiment. © 2004 Optical Society of America

OCIS codes: 140.7010, 290.4020.

1. Introduction

This paper is the second in a series whose purpose is
to demonstrate that generalized Lorenz–Mie theory
�GLMT� that uses the localized model of an incident
beam provides an accurate and computationally prac-
tical way to calculate the radiation trapping force of a
tightly focused beam of arbitrary profile incident
upon a spherical particle of arbitrary size. In the
first paper,1 a description was given of localized
beams of GLMT generalized to arbitrary profile and
polarization state for incidence upon a spherical par-
ticle whose center lies on the beam axis. This is
called the on-axis beam particle geometry. If the
coordinate system is oriented such that the beam
propagates along the positive z axis, the trapping
force possesses only a z component, by symmetry.
In this paper the radiation trapping force produced
by such a beam is calculated for two different beam
profiles and compared with experimental data. One
of the beam profiles is theoretically simple but exper-
imentally unrealistic. The other is theoretically

more complicated but is a more realistic model of the
experimental beam. Previously, wave theory calcu-
lations of the trapping force were used if the particle
radius was less than �0.5 �m and ray theory meth-
ods were used for particle radii greater than �5.0
�m. The GLMT wave theory calculation reported
here bridges this gap.

The body of this paper is organized as follows: In
Section 2, the GLMT formula for the on-axis trapping
force is expressed as an infinite series of partial wave
contributions. The force depends on both the parti-
cle’s transverse electric �TE� and transverse magnetic
�TM� partial wave scattering amplitudes and the TE
and TM partial wave shape coefficients of the incident
beam. In Section 3, the formula for the trapping ef-
ficiency is obtained for the highly idealized case of a
freely propagating Gaussian beam incident upon the
particle. The Rayleigh and geometrical optics limits
of the scattering efficiency for this beam are obtained
and compared with the results derived by previous
authors. The on-axis trapping efficiency predicted for
this highly idealized beam is also compared with ex-
perimental data.2,3 In Section 4, the formula for the
trapping efficiency is obtained for the more experimen-
tally realistic case of a Gaussian beam truncated and
focused by a high-numerical-aperture �NA� oil-
immersion microscope objective lens. The beam also
possesses spherical aberration owing to its being
transmitted through the glass wall of the water-filled
sample cell. The trapping efficiency of this beam is
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compared both with the experimental data of Refs. 2
and 3 and with the prediction of the idealized focused
Gaussian beam of Section 3. Finally, in Section 5 the
results are summarized and the final conclusions are
presented. The extension of the GLMT formalism to
the x, y, and z components of the radiation trapping
force for off-axis incidence of a tightly focused beam on
a spherical particle, and to the optical torque on such a
particle, will be treated separately.

2. On-Axis Radiation Trapping Force on a Spherical
Particle

Consider an electromagnetic beam of frequency �,
free-space wavelength �, free-space wave number k �
2���, field strength E0, and time dependence
exp�	i�t�, as in Ref. 1, propagating in a medium of
refractive index n and incident upon a sphere of ra-
dius a and relative refractive index m with respect to
the medium. The center of the particle coincides
with the origin of an xyz rectangular coordinate sys-
tem oriented such that the beam propagates in the
positive z direction.

The symmetry axis of the beam is assumed to co-
incide with the z axis, making the beam’s incidence
on axis with respect to the particle. The on-axis
beam is characterized by the partial wave TM and TE
shape coefficients gl and hl, respectively, for 1 � l 

�. The radiation trapping force of such a beam on
the particle has been calculated from Maxwell stress
tensor4 and the radiative momentum balance be-
tween the particle and the incoming and outgoing
fields.5,6 Both calculations give the same result,
though a comparison of the final formulas of different
authors is complicated by the fact that those authors
use different systems of units7 and different conven-
tions for associated Legendre polynomials and spher-
ical harmonics8 and they absorb different
multiplicative factors into gl and hl. With the inten-
sity vector in SI units taken as

I � �E* � B���0, (1)

where �0 is the permeability of free space, and with
associated Legendre polynomials as defined in Ref. 8,
the z component of the radiation trapping force of the
on-axis beam on the spherical particle is4–6

Fz � �n�c��nE0
2��0 c����n2k2��, (2)

where

� � 
l�1

�

�l�l � 2���l � 1��� gl gl�1*Ul � gl*gl�1Ul*

� hl hl�1*Vl � hl*hl�1Vl*� � ��2l � 1��l�l � 1��

� � gl hl*Wl � gl*hl Wl*�, (3)

with

Ul � al � al�1* � 2al al�1*, (4a)

Vl � bl � bl�1* � 2bl bl�1*, (4b)

Wl � al � bl* � 2al bl*. (4c)

The Mie partial wave scattering amplitudes for the
spherical particle of relative refractive index m with
respect to the exterior medium of index n are9

al � ��l�X��l��Y� � m�l��X��l�Y�����l�X��l��Y�

� m�l��X��l�Y��, (5a)

bl � �m�l�X��l��Y� � �l��X��l�Y����m�l�X��l��Y�

� �l��X��l�Y��, (5b)

where particle size parameter X is

X � nka, (6a)

Y � mX, (6b)

the Riccati–Bessel functions �l�z� and �l�z� are

�l� z� � zjl� z�, (7a)

�l� z� � zhl
�1�� z�, (7b)

and jl�z� and hl
�1��z� are spherical Bessel and Hankel

functions, respectively. From the radiative momen-
tum balance point of view, the first two terms on the
right-hand sides of Eqs. �4� are due to the momentum
contained in the interference between the scattered
fields and the outgoing portion of the beam fields, and
the last term is due to the momentum of the scattered
fields alone. For on-axis incidence of the beam on a
spherical particle, the x and y components of the ra-
diation force are zero, from symmetry. Radiation
trapping efficiency Q is defined by

Fz � �nP�c�Q, (8)

where P is the beam power in the plane containing
the center of the particle. For the freely propagating
focused Gaussian beam of Section 3 below, this dis-
tinction is not important because conservation of en-
ergy requires that the power in all planes
perpendicular to the z axis be identical. But, for the
beam of Section 4 that is truncated and focused by a
lens and then transmitted through a plane interface
before arriving at the particle, P is the power trans-
mitted through the interface and incident upon the
particle, rather than the beam power incident upon
the focusing lens.

3. Radiation Trapping by a Freely Propagating
Focused Gaussian Beam

A. General Considerations

In this section the incident beam is taken to be the
modified localized version of a freely propagating fo-
cused on-axis Gaussian beam propagating in the z
direction and polarized in the x direction, as dis-
cussed in Ref. 1. It is tacitly assumed that this beam
is produced by a Gaussian beam incident upon a fo-
cusing lens whose aperture is much larger than the
beam width. None of the incident beam is cut off by
the lens, no diffractive ringing is produced by the
edge of the lens aperture, and no account is taken of
the focused beam refracting at the surface of the sam-
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ple cell. The Gaussian beam merely propagates un-
distorted in a single medium, converging to a focal
waist and then reexpanding. The shape coefficients
of the modified localized version of this beam are1,10

gl � hl

� exp�	inkz0�exp�	si
2�l � 2��l � 1�

��1 � 2isiz0�wi����1 � 2isiz0�wi�, (9)

where z0 is the coordinate of the center of the beam’s
focal waist, with the center of the particle assumed to
be at the origin. A negative value of z0 means that
the center of the particle is located past the center of
the focal waist in the diverging portion of the beam.
The field strength of the beam at the center of the
beam’s focal waist is E0, the intended transverse 1�e
electric field half-width at the center of the focal waist
is wi, and the intended beam confinement parameter
is

si � 1��nkwi�. (10)

Numerical computations reported in Ref. 1 show
that the localized beam generated by this set of coef-
ficients has a nearly Gaussian transverse profile at
the center of the focal waist, even for tight confine-
ment, but has an actual 1�e electric field half-width
wa, where wa � wi. The actual beam confinement
parameter is

sa � 1��nkwa�, (11)

and the beam power is approximately

P � �nE0
2��0 c���wa

2�2�. (12)

Substituting Eq. �12� into Eqs. �2� and �8� yields the
trapping efficiency for this beam:

Q � 2sa
2�. (13)

For an incident beam directed vertically downward,
as is usually the case, the particle is pushed in the
direction of beam propagation when Q is positive and
is not trapped. The particle is pulled upward by the
beam and is trapped when Q is negative and when
the radiation force balances gravity and bouyancy
forces.

B. Rayleigh Scattering Limit

In the Rayleigh scattering limit the particle is suffi-
ciently small that the beam’s amplitude and phase
are virtually constant over the particle volume. In
this case, the particle acts as if it were in an instan-
taneously uniform field, and the resultant radiation
force has two sources.11–13 First, the particle ac-
quires an induced electric dipole moment by its pres-
ence in the beam’s electric field. The beam’s electric
field then exerts a force, called the gradient force, on
the dipole moment that it has just induced. Second,
the particle’s induced electric dipole moment oscil-
lates as a function of time at frequency � and emits
electric dipole radiation. Because the radiation car-
ries away different amounts of momentum in differ-

ent directions, the particle recoils in response, to
conserve momentum. The effective force that pro-
duces the recoil is called the scattering force. The
gradient-plus-scattering force on a particle in the
Rayleigh limit is straightforwardly derived by elec-
trodynamic methods to be11–13

F � �n�c��nE0
2��0 c��2�a3���m2 � 1���m2

� 2����e* � e�particle � �n�c��nE0
2��0 c�

� �8�n4k4a6�3���m2 � 1���m2 � 2��2�e*

� b�particle, (14)

where the beam fields have been factored as

E � E0e, (15a)

B � �nE0�c�b. (15b)

The first term in Eq. �14� is the gradient force, the
second term is the scattering force, and the fields and
their gradient are evaluated at the position of the
particle.

The fields of a weakly confined on-axis freely prop-
agating focused Gaussian beam with s 

 1 are given
analytically by1

e � ux D exp�ink� z � z0��exp�	D� x2 � y2��w2�,
(16a)

b � uy D exp�ink� z � z0��exp�	D� x2 � y2��w2�,
(16b)

where

D � 1��1 � 2is� z � z0��w�. (17)

The confinement of the beam is assumed to be suffi-
ciently weak that there is no difference between the
intended and the actual beam widths. Substituting
Eqs. �16� and �17� into Eq. �14� and evaluating the
fields and their gradient at the position of the particle
yield for the radiation trapping efficiency of Eq. �8�

Q � 32X3s5��m2 � 1���m2 � 2��� z0�w���1

� 4s2z0
2�w2�2 � �16�3� X6s2��m2 � 1�

��m2 � 2��2��1 � 4s2z0
2�w2�, (18)

where again the first term is due to the gradient force
and the second term is due to the scattering force.
The gradient force is always directed toward the cen-
ter of the beam’s focal waist. It is positive when z0 �
0 and negative when z0 
 0. The scattering force is
always positive �i.e., in the direction of beam propa-
gation� and is largest when the particle is in the
strongest part of the beam, thus producing the stron-
gest scattered electric dipole radiation and the stron-
gest recoil. For strong focusing, the calculation of Q
by use of Eq. �14� with the Davis–Barton fifth-order
fields is complicated by the fact that the relation be-
tween nE0

2��0c and P is more involved than for weak
focusing �see Eq. �54� of Ref. 1� and that for s � 0.2
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additional terms beyond the fifth order are required
for convergence.

In the Rayleigh scattering limit of the trapping
force with the GLMT formalism, only the l � 1 partial
wave contributes to Eq. �3�. This can be seen from a
comparison of the first few partial wave scattering
amplitudes14:

a1 � �	2i�3���m2 � 1���m2 � 2��X3 � �2i�5�

� ��m2 � 1��m2 � 2���m2 � 2�2�X5 � �4�9�

� ��m2 � 1���m2 � 2��2X6 � O�iX7�, (19a)

b1 � �	i�45��m2 � 1� X5 � O�iX7�, (19b)

a2 � �	i�15���m2 � 1���2m2 � 3��X5 � O�iX7�,
(19c)

b2 � O�iX7�. (19d)

Amplitudes b1 and a2 provide O�X5� corrections to the
imaginary part of a1 and are thus ignored. The real
part of a1, which is O�X6�, must be retained because
of energy conservation among the incoming beam
field, the outgoing beam field, and the O�X3� scattered
field as expressed through the optical theorem.15

Equation �3� then becomes

� � �3�2�� g1 g2*a1 � g1*g2 a1*

� g1 h1*a1 � g1*h1 a1*�. (20)

Substitution of a1 from Eq. �19a� and g1, h1, and g2 for
the localized version of the freely propagating Gauss-
ian beam from Eq. �9� into Eq. �20� gives

� � X3��m2 � 1���m2 � 2���2K sin ���

� �4�3� X3��m2 � 1���m2 � 2���1

� K cos�������1 � 4s2z0
2�w2�, (21)

where

K � exp�	4s2��1 � 4s2z0
2�w2��, (22)

� � 8s3� z0�w���1 � 4s2z0
2�w2�. (23)

In the s 3 0 weak-beam confinement limit, one has
K � 1, cos��� � 1, and sin��� � �. As a result, Eq.
�21� becomes

� � 16s3X3��m2 � 1���m2 � 2��� z0�w���1

� 4s2z0
2�w2�2 � �8�3� X6��m2 � 1���m2 � 2��2

��1 � 4s2z0
2�w2�. (24)

Equation �24� for the gradient-plus-scattering force
derived from GLMT with the localized version of a
Gaussian beam and substituted into Eq. �13� then
agrees with Eq. �18� derived from standard electro-
dynamic methods and the analytical formula for a
mildly focused Gaussian beam. The gradient force
arises from the imaginary part of a1 in Eq. �20�, and
the scattering force arises from the real part. This
agreement between the two methods of calculation
demonstrates the validity of the GLMT formula with

the localized version of the incident beam in the Ray-
leigh scattering and weak-beam confinement limits.

C. Geometrical Ray Scattering Limit

The calculation of the momentum transfer imparted
to the particle from the incoming beam in the ray
theory treatments of Refs. 16–18 differs from that of
GLMT in the following ways: First, ray theory as-
sumes that the incident beam is completely removed
by the scattering process and is replaced by the ex-
ternally reflected light, the transmitted light, and the
light transmitted following all numbers of internal
reflections. Second, the intensity of these scattering
processes is added incoherently, rather than coher-
ently, when one is obtaining the momentum transfer
to the particle. In GLMT, however, the outgoing
portion of the beam in the absence of the particle is
retained, the scattering processes also include dif-
fraction, they are added coherently, and interference
of the different scattering processes with one another
and with the outgoing portion of the beam are taken
into account. Obtaining an exact comparison with
wave theory in the small-wavelength limit requires
coherent addition.19,20 But under a number of cir-
cumstances unrelated to laser tweezers, such as in-
tegration over a polydispersion of particle sizes for
scattering by cloud particles, fog particles, or a spray
from a nozzle, incoherent addition can provide a rea-
sonable approximation to the coherent sum.21

To compare GLMT with the ray theory results of
Ref. 17 for a tightly focused Gaussian beam incident
upon a large spherical particle, the trapping effi-
ciency of Eqs. �3� and �13� was numerically computed
for the modified localized version of a freely propa-
gating focused Gaussian beam with � � 0.488 �m,
n � 1.33, m � 1.2, a � 5.0 �m, and wa � 0.20 �m.
From the beam reconstruction procedure described in
Ref. 1 it was found that an intended width of the
modified localized beam of wi � 0.172 �m produced
an actual 1�e2 intensity half-width at the center of
the focal waist of wa � 0.20 �m. The length of the
focal waist of this beam is �0.68 �m, which is only
�7% of the particle diameter. I calculated the min-
imum trapping efficiency from Eq. �13� for the inci-
dent Gaussian beam by keeping the particle position
fixed at the origin and by varying z0 moved the beam
past the particle. For the ray theory calculation
summarized in Fig. 2 of Ref. 17 the trapping effi-
ciency is negative for 	10.5 �m � z0 � 	5.6 �m and
reaches a minimum value �corresponding to the
strongest trapping� of Qmin � 	0.023 when the center
of the beam’s focal waist is located at z0

max � 	7.2
�m, approximately half a radius outside the particle
surface. In comparison, the GLMT calculation from
Eqs. �3� and �13� gives a negative trapping efficiency
for 	8.5 �m � z0 � 	2.3 �m, and it reaches a min-
imum value of Qmin � 	0.02626 at z0 � 	5.21 �m,
just outside the particle surface.

The difference between the results of GLMT and of
the ray treatments decreases when the beam that is
incident upon the particle is less tightly focused.
For example, when wa � 0.30 �m the ray calculation
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of Fig. 2 of Ref. 17 shows that the beam just barely
fails to trap the particle, and the efficiency reaches a
minimum value of Qmin � �0.001 at z0

max � 	8.8
�m. The GLMT calculation that uses a modified
localized beam with wi � 0.284 �m corresponding to
wa � 0.30 �m gives qualitatively similar results but
with a slightly less positive trapping efficiency for all
z0. This causes a small region of very weak trap-
ping, with the efficiency reaching a minimum value of
Qmin � 	0.00045 at z0

max � 	7.47 �m. Comparison
of ray theory and GLMT yields a result that is closer
still when wa � 0.40 �m. The ray calculation of Fig.
2 of Ref. 17 gives Qmin � �0.012 at z0

max � 	10.0 �m,
whereas the GLMT calculation that uses a modified
localized beam with wi � 0.388 �m that corresponds
to wa � 0.40 �m gives Qmin � �0.01170 at z0

max �
	9.26 �m.

The values of Qmin for ray theory and GLMT for
each of the three beam cases examined above are
surprisingly similar in light of the fact that ray theory
�i� uses Eqs. �16�, which are appropriate to a moder-
ately focused beam but not to a tightly focused beam;
�ii� adds the various scattered intensities incoher-
ently and omits the momentum transfer that is due to
the interference between the scattering processes;
and �iii� is applied to a sphere of size parameter X �
85.6, which is below the region of quantitative valid-
ity of geometrical optics.19,20 The difference between
the ray theory and GLMT predictions for z0

max is
larger than for Qmin, indicating that z0

max is much
more sensitive to the scattering model used than is
Qmin. The same result will be found in Subsection
4�b� below for the more experimentally realistic beam
as well.

To determine the relative importance to trapping of
external reflection plus diffraction, transmission, and
transmission following p 	 1 internal reflections, a
Debye series expansion22 of al and bl in Eqs. �5� was
undertaken, and the trapping efficiency was com-
puted for the modified localized version of a freely
propagating focused Gaussian beam with the same
parameters as used above, � � 0.488 �m, n � 1.33,
m � 1.2, a � 5.0 �m, wi � 0.172 �m, and wa � 0.2
�m for a number of combinations of scattering pro-
cesses. The results are listed in Table 1. The first
column lists the scattering process and the second

column gives the trapping efficiency at z0
max � 	5.21

�m if this process alone were occurring. The third
column gives the trapping efficiency at z0 � 	5.21
�m that is due to the coherent sum of all the scatter-
ing processes from the top of the table to the term
under consideration. The number in column 3 cor-
responding to IR �super infinity� is the total GLMT
result reported above. As expected, external reflec-
tion and diffraction strongly push the particle away
from the center of the focal waist, whereas transmis-
sion strongly pulls the particle back toward the cen-
ter of the focal waist. These two large opposing
effects cancel to within 4% in this case, producing the
trapping. For the beam and particle parameters
used here, the portion of the scattered light that com-
prises all the numbers of internal reflections before
the light exits the particle contributes only �10% to
the trapping force. This is because of the small mag-
nitude of the individual contributions and because
the interference of these processes with the dominant
external reflection-plus-transmission contribution is
sometimes constructive and sometimes destructive.

D. Comparison with Experiment

The minimum value of trapping efficiency Qmin was
calculated from Eqs. �3� and �13� for a modified local-
ized freely propagating focused Gaussian beam for
� � 1.06 �m, n � 1.33, and m � 1.57�1.33 � 1.18,
corresponding to polystyrene latex �PSL� spheres in
water illuminated by a Nd:YAG laser. The sphere
radius was taken to be in the range 0.25 �m � a �
10.25 �m, spanning the region from just above the
Rayleigh scattering limit to just below the geometri-
cal optics limit. The actual 1�e beam waist was
taken to be wa � 0.390 �m for comparison with the
experimental results of Table 2 of Ref. 2, where the
particle was trapped against the top surface of the
sample cell such that aberration of the beam on
transmission into the sample cell was minimal. It
was found by numerical computation that an in-
tended width at the center of the focal waist of wi �
0.319 �m produced an actual 1�e2 intensity half-
width of wa � 0.390 �m. The computed minimum
trapping efficiency, the position of the center of the
beam’s focal waist for which it occurs, and the exper-
imental value of Qmin from Ref. 2 are shown in Table
2. As suggested in Ref. 2, the GLMT results verify
that the trapping force becomes independent of par-
ticle radius as the particle size approaches the geo-
metric optics regime. But the approach is not
monotonic. The greatest magnitude of the trapping
efficiency occurs when the center of the beam’s focal
waist lies approximately on the particle surface.
The exact physical mechanism that is responsible for
this is not clear, but the behavior of Qmin is found to
be nearly identical for the more experimentally real-
istic beam of Section 4 below. Table 2 illustrates
that, over the entire particle size region examined,
the calculated Gaussian beam GLMT trapping effi-
ciency for this set of beam and particle parameters is
approximately a factor of 2–3 below the experimental
efficiency. Similar theoretical results were found for

Table 1. Contribution to Minimum Radiation Trapping Efficiency Qmin

of External Reflection �ER�, Transmission �T�, and Transmission
Followed by p � 1 Internal Reflections �IRp�1� for the Localized Version

of a Focused Gaussian Beam with � � 0.488 �m, n � 1.33, m � 1.2,
a � 5.0 �m, wi � 0.172 �m, wa � 0.200 �m, and z0

max � �5.21 �m

Process Contribution to Qmin Coherent Sum

ER �0.6589 �0.6589
T 	0.6863 	0.02888
IR1 �0.00211 	0.02657
IR2 �0.00010 	0.02607
IR3 �0.00024 	0.02603
IR4 �0.00033 	0.02605
IR5 	0.00010 	0.02621
IR� 	0.02626
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the more-realistic beam and are reported in more
detail in Section 4.

The radiation trapping force was also computed for
the freely propagating modified localized beam and a
different refractive-index particle, i.e., � � 1.06 �m,
n � 1.33, m � 1.45�1.33 � 1.09, a � 0.50 �m, and
wa � 0.390 �m as in Table 1 of Ref. 2 For this case the
authors of Ref. 2 had determined that GLMT that
used a Davis–Barton fifth-order beam23 rather than
the modified localized beam of Eq. �9� gave Qmin �
	0.034. Equations �3� and �13� with the modified
localized beam gave Qmin � 	0.0331, in good agree-
ment with the Davis–Barton calculation of Ref. 2.
This agreement provides another check of the valid-
ity of the GLMT formalism that used localized beams.
But, although the two wave theory calculations
agree, the experimental minimum efficiency in Table
1 of Ref. 2, with the particle again trapped against the
top surface of the sample cell, is Qmin � 	0.006 �
0.001. The calculated result for this case is more
than a factor of 5.5 larger than the experimental
result, whereas it was a factor of 2–3 below the ex-
perimental result cited in the previous paragraph for
the larger particles with m � 1.18. As an aside, by
using the more realistic beam of Section 4 with the
current set of particle and beam parameters, one ob-
tains Qmin � 	0.0277, which is a factor of 4.6 larger
than the experimental result. A comparison of the
theoretical and experimental values of Qmin with the
Rayleigh scattering prediction of Eq. �18� for this set
of parameters is not appropriate because the beam
under consideration is tightly focused whereas Eq.
�18� assumes weak confinement, and the particle size
parameter is X � 3.9, which is above the Rayleigh
regime.

4. Radiation Trapping by a Gaussian Beam Truncated
and Focused by a Lens and Transmitted through a
Plane Interface

A. General Considerations

A freely propagating focused Gaussian beam is a rel-
atively poor approximation to the actual experimen-
tal beam incident upon the particle. A better

candidate beam24–27 is both truncated and focused by
a high-NA oil-immersion microscope objective lens of
refractive index n1. It also possesses spherical ab-
erration owing to its transmission through the wall of
the sample cell, e.g., a microscope coverslip also of
index n1, into the cell itself, which has index n2. The
localized version of a plane wave truncated and fo-
cused by a lens and transmitted through the interface
was described and tested in the research reported in
Ref. 1. Here, we consider a Gaussian beam of field
strength E0, electric field half-width W, and flat
phase fronts polarized in the x direction and incident
onto a lens of aperture radius A and focal length F.
The beam overfills the focusing lens such that W � A.
The center of the particle is still located at the origin
of coordinates, the coordinate of the focal point of the
lens in the absence of the interface is z0, and the
coordinate of the flat interface is d, where d 
 z0.
Using the method of Ref. 1 yields the following shape
coefficients of the beam transmitted through the flat
interface:

gl � 	in1 kF �
0

�

sin��1�d�1�cos��1��
1�2

� exp�i�n2 k cos��2�� z � d� � n1 k cos��1�

� �z0 � d����1�2�exp�	� A�W�2 tan2��1��tan2����

� ��tTE � tTM cos��2��J0��n1�n2�

� �l � 1�2�sin��1�� � �tTE � tTM cos��2��

� J2��n1�n2��l � 1�2�sin��1���, (25a)

hl � 	in1 kF �
0

�

sin��1�d�1�cos��1��
1�2

� exp�i�n2 k cos��2�� z � d� � n1 k cos��1�

� �z0 � d����1�2�exp�	� A�W�2 tan2��1��tan2����

� ��tTM � tTE cos��2��J0��n1�n2��l � 1�2�sin��1��

� �tTM � tTE cos��2��J2��n1�n2�

� �l � 1�2�sin��1���. (25b)

The NA of the lens is

NA � n1 sin���; (26)

angle �1 in the medium of refractive index n1 and
angle �2 in the medium of refractive index n2 are
related by Snell’s law:

n1 sin��1� � n2 sin��2�; (27)

J0 and J2 are Bessel functions; and the Fresnel elec-
tric field transmission coefficients are

tTE � 2 cos��1���cos��1� � �n2�n1�cos��2��, (28a)

tTM � 2 cos��1����n2�n1�cos��1� � cos��2��. (28b)

The beam shape coefficients of the beam while it is
still in medium n1 are given by1,28,29 Eqs. �25�, with
d � 0, n2 � n1, and �2 � �1.

Table 2. Minimum Value of Radiation Trapping Efficiency Qmin As a
Function of Particle Radius a for the Localized Version of a Focused

Gaussian Beam with � � 1.06 �m, n � 1.33, m � 1.18, and wa � 0.390
�m Incident upon the Particlea

a ��m� Qexp
min b Qmin c z0

max ��m� �z0
max�a�

0.25 	0.0154 	0.38 1.52
0.50 	0.0364 	0.53 1.06
1.00 	0.0450 	1.05 1.05
2.504 	0.070 � 0.015 	0.0400 	2.42 0.97
4.935 	0.077 � 0.014 	0.0345 	4.60 0.93
7.500 	0.091 � 0.015 	0.0346 	7.06 0.94
10.245 	0.100 � 0.018 	0.0349 	9.51 0.93

aPosition z0
max is the location of the center of the focused Gauss-

ian beam waist that corresponds to minimum trapping efficiency.
bRef. 2.
cEq. �13�.
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An important distinction in notation between a
freely propagating focused Gaussian beam and a
beam truncated and focused by a lens is that in the
first case E0 is the electric field strength at the center
of the beam’s focal waist whereas in the second case
E0 is the maximum field strength of the beam inci-
dent upon the lens. As derived in Ref. 1, if a plane
wave were incident upon an oil-immersion lens of
refractive index n1, the power in the focal plane in
medium n1 would be

P � �n1 E0
2��0 c��F2 sin2���. (29)

If a Gaussian beam of half-width W is incident upon
the lens, the power in the focal plane in medium n1 is
obtained in a similar way by Taylor series expanding
the Gaussian function, integrating30 the fields over
�1, and then integrating31 the resultant intensity over
the xy plane. The result is relation �29�, multiplied
by the factor

G��� � 1 � � A�W�2 cos2���

� �2�3�� A�W�2 sin2���cos2���

� �2�3�� A�W�4 cos4��� � . . . . (30)

Equation �30� is rapidly convergent as long as W �
A, which is always the case when the incident beam
overfills the microscope objective lens. Fraction T12
of this power transmitted from medium n1 to medium
n2 at the flat surface of the sample cell is modeled in
ray theory by

T12 � �n2�2n1� �
0

�

sin��1�d�1 cos��2��tTE
2 � tTM

2�

� exp�	2� A�W�2tan2��1��tan2����

��
0

�

sin��1�d�1 cos��1�

� exp�	2� A�W�2tan2��1��tan2����. (31)

The trapping efficiency of Eqs. �2� and �8� is then
given by

Q � ���n1 n2 k2F2 sin2���G���T12�. (32)

This result is independent of focal length F because �
in Eq. �3� is proportional to the product of two beam
shape coefficients, and each coefficient in Eqs. �25� is
proportional to F. The only lens parameters re-
quired for the calculation of Q are � and the ratio
W�A. If lens aperture size A is known, the focal
length is

F � A tan���. (33)

B. Comparison with Experiment

First, as a consistency check of the localized model of
the truncated and focused beam, the transverse 1�e2

half-width wa of the beam intensity in medium n1 at
the center of the focal waist was computed for n1 �
1.5, � � 1.06 �m, and W�A � 1.5 and was compared

with the experimentally measured 1�e2 beam inten-
sity half-width in Table 1 of Ref. 2. The sum over
partial waves in the reconstructed localized beam
was numerically evaluated as described in Ref. 1.
The experimental results reported in Ref. 2 are wa �
0.39, 0.54, 0.53, 0.61 �m �all �0.03 �m� for � � 60.0°,
56.4°, 41.8°, 32.2°. The GLMT calculated widths are
wa � 0.395, 0.403, 0.49, 0.60 �m for the same angles
�. Except for � � 56.4°, the beam width computed
from the localized approximation is in good agree-
ment with the measured width. In addition, the
GLMT localized beam width was found to depend
only weakly on W as long as W � A; again, inasmuch
as the incident Gaussian beam overfills the micro-
scope objective in experiments, this is always the
case.

Next, the trapping efficiency of Eq. �32� was com-
puted for a Gaussian beam with � � 1.06 �m incident
upon and focused by a lens with W�A � 1.5, � � 60°,
and n1 � 1.5, transmitted through a flat interface
with medium n2 � 1.33 on the other side, and finally
incident upon a homogeneous spherical particle in
medium n2 with m � 1.18 and radius in the range
0.25 �m � a � 10.245 �m. The particle is assumed
to be resting against the interface �i.e., the top surface
of the sample cell� such that d � 	a. Again, I found
the minimum trapping efficiency by keeping the par-
ticle fixed at the origin and moving the beam past the
particle by varying z0. The upper limit of the sum
over partial waves in Eq. �3� was taken to be the same
as in a tradional Mie scattering program,1 Bessel
function J0 was computed as in Ref. 32, and Bessel
function J2 was computed either by a Taylor series
expansion or an asymptotic expansion, depending on
the value of the argument.33 The resultant value of
Qmin is given in Table 3, along with the position of the
spherical aberration’s principal diffraction maximum
on the z axis, z0

SA, for which Qmin occurs. This prin-
cipal diffraction maximum is the first and strongest
of a sequence of diffraction maxima on the z axis and
is the aberrated remnant of the center of the beam’s
focal waist. The sequence of maxima is accompa-

Table 3. Minimum Value of Radiation Trapping Efficiency Qmin As a
Function of Particle Radius a for a Gaussian Beam Truncated and

Focused by a Lens and Transmitted through a Flat Interface with � �

1.06 �m, wa � 0.390 �m, W�A � 1.5, � � 60°, n1 � 1.5, n2 � 1.33, and
m � 1.18 Incident upon the Particlea

a ��m� Qexp
min b Qmin c z0

SA ��m� �z0
SA�a�

0.25 	0.0099 	0.77 3.08
0.50 	0.0356 	0.59 1.18
1.00 	0.0406 	0.75 0.75
2.504 	0.070 � 0.015 	0.0333 	1.65 0.66
4.935 	0.077 � 0.014 	0.0246 	3.36 0.68
7.500 	0.091 � 0.015 	0.0283 	5.17 0.69
10.245 	0.100 � 0.018 	0.0287 	6.76 0.66

aPosition z0
SA is the location of the spherical aberration’s prin-

cipal diffraction maximum that corresponds to the minimum trap-
ping efficiency.

bRef. 2.
cEq. �32�.
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nied by a series of spherical aberration diffraction
rings about the z axis inside the so-called caustic horn
in the short-wavelength limit. A cross section
through this spherical aberration diffraction struc-
ture is shown in Fig. 9.3 of Ref. 34, in Figs. 3�a�–3�e�
of Ref. 35, and in Ref. 36. I calculated position z0

SA

in Table 3 by using the beam reconstruction method
of Ref. 1 and varying z0 and d in concert. For a �
0.25 �m and a � 0.50 �m, z0

SA turns out to be the
position of the unaberrated center of the beam’s focal
waist because, for these two particle sizes, the beam
focuses in the n1 material before arriving at the sur-
face of the sample cell.

Perhaps the most significant feature of Tables 2
and 3 is the fact that, for this set of particle and beam
parameters, Qmin for the more experimentally real-
istic truncated, focused, and aberrated beam is only
�20% lower on average than that for the idealized
freely propagating focused Gaussian beam, whereas
both are approximately a factor of 2–3 below the ex-
perimental value of Qmin. As mentioned in Section
3, for m � 1.45�1.33 � 1.09 and a � 0.50 �m, Qmin for
the more-realistic beam is a factor of 4.6 above the
experimental value and again 20% below that of
the freely propagating focused Gaussian beam. All
the additional work that went in to modeling the
more-realistic beam appears to not make a dramatic
difference in Qmin. The position of the center of
the beam’s focal waist, or equivalently the position
of the spherical aberration’s principal diffraction
maximum on the z axis, however, strongly depends
on the beam model used. In Table 2, for a freely
propagating focused beam, z0

max varies from just out-
side the particle surface to just inside it. In Table 3,
for the truncated, focused, and aberrated beam and a
� 1 �m, z0

SA lies deeper inside the particle, at �70%
of the distance from the center to the particle surface.
The fact that z0

SA lies well inside the particle makes

the particle prone to rapid local heating if it contains
strongly absorbing impurities that by chance are lo-
cated at or near z0

SA. It must be noted, however,
that location z0

SA in Table 3 is the position of the
principal diffraction maximum of the aberrated beam
when its refraction from the medium of index n2 into
the particle is ignored. If one wanted to take this
effect into account, one would have to add up the Mie
interior partial wave scattering amplitudes cl and dl
modulated by the beam shape coefficients. One can
only qualitatively compare the experimental mini-
mum trapping efficiency for the a � 10.245 �m par-
ticle with the prediction of ray theory because
external reflection and transmission need to be added
coherently and because the particle size parameter
for this case is X � 80.8, which is again below the
geometrical optics limit.

For the experiments reported in Ref. 3 the particle
was held at d � 	9.0 �m rather than against the top
surface of the sample cell. The minimum trapping
efficiency was calculated with the truncated, focused,
and aberrated beam for � � 1.06 �m, W�A � 1.5, � �
60°, n1 � 1.5, and n2 � 1.33, for m � 1.57�1.33 � 1.18
and a � 0.51 �m corresponding to PSL spheres, and
for m � 1.51�1.33 � 1.135, a � 0.60, 0.69, 0.75, 1.35,
1.70, 2.13 �m, corresponding to glass spheres. The
results were compared with the experimental value
for Qmin of Table 1 of Ref. 3. The theoretical value of
Qmin was found to be 18% below that of the experi-
mental value for m � 1.18, it was 7% above to 12%
below the experimental result for m � 1.135 for the
smallest three particle sizes, and it was approxi-
mately a factor of 2–7 below the experimental value
for the largest three particle sizes. These results are
similar to those of Ref. 2 described in the previous
paragraph.

One aspect of the trapping that cannot be predicted
by use of the freely propagating focused Gaussian

Table 4. Minimum Value of Radiation Trapping Efficiency Qmin As a Function of Interface Position d for a Gaussian Beam Truncated and Focused by
a Lens and Transmitted through a Flat Interface with � � 1.06 �m, W�A � 1.5, � � 60°, n1 � 1.5, n2 � 1.33, m � 1.18, and a � 4.935 �ma

d ��m� Qexp
min b Ratio Qmin c Ratio z0

SA ��m� �z0
SA�a�

	4.935 	0.077 � 0.014 1.000 	0.0246 1.000 	3.36 0.68
	10.0 	0.059 � 0.011 0.766 	0.0196 0.797 	3.57 0.72
	15.0 	0.050 � 0.010 0.649 	0.0161 0.654 	3.72 0.75
	20.0 	0.047 � 0.009 0.610 	0.0133 0.541 	3.76 0.76
	25.0 	0.042 � 0.008 0.545 	0.0111 0.451 	3.77 0.76
	30.0 	0.0093 0.378 	3.85 0.78
	35.0 	0.034 � 0.007 0.441 	0.0078 0.317 	3.96 0.80
	40.0 	0.0065 0.264 	4.00 0.81
	50.0 	0.0044 0.179 	3.98 0.81
	60.0 	0.0027 0.110 	4.02 0.81
	70.0 	0.0014 0.057 	4.25 0.86
	80.0 	0.0003 0.012 	4.26 0.86
	90.0 �0.0007 	4.17 0.84
	100.0 �0.0014 	4.38 0.89

aPosition z0
SA is the location of the spherical aberration’s principal diffraction maximum that corresponds to the minimum trapping

efficiency. The two columns labeled Ratio are the ratio of the trapping efficiency of the previous column divided by the corresponding
trapping efficiency at d � 	4.935 �m.

bRef. 2.
cEq. �32�.
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beam model is the decrease in trapping efficiency as
the particle lies deeper in the sample cell. This is a
result of increased spherical aberration of the beam
as �d� increases.35 To assess the ability of the trun-
cated, focused, and aberrated beam model to describe
this effect, I calculated the minimum trapping effi-
ciency for � � 1.06 �m, W�A � 1.5, � � 60°, n1 � 1.5,
n2 � 1.33, m � 1.18, a � 4.935 �m, and 	100.0 �m
� d � 	4.935 �m. The results are given in Table 4,
along with the experimental value for Qmin from Ta-
ble 3 of Ref. 2 for these conditions. Also shown in
Table 4 is the position z0

SA of the spherical aberra-
tion’s principal diffraction maximum corresponding
to Qmin. Trapping of the a � 4.935 �m particle is
predicted to cease when the particle’s center is 82.9
�m away from the interface. As the particle lies
farther from the flat interface, the position of the
spherical aberration’s principal diffraction maximum
slowly moves out from 68% of the distance between
the particle center and its surface to 86% when trap-
ping is lost at d � 	82.9 �m. Though the theoret-
ical value of Qmin remains a factor of �3 lower than
the experimental value, the calculated rate of de-
crease of Qmin as a function of d is only somewhat less
than that of experiment.

To compare with the experimental results of Fig. 4
of Ref. 3 I computed the minimum trapping efficiency
for the truncated, focused, and aberrated beam for
� � 1.06 �m, W�A � 1.5, � � 60°, n1 � 1.5, n2 � 1.33,
	53.0 �m � d � 	5.0 �m, and either m � 1.18 and
a � 0.51 �m or m � 1.135 and a � 0.60 �m. Though
there is good agreement between theory and experi-
ment for d � 	9.0 �m for both particles, the trun-
cated, focused, and aberrated beam predicts that the
m � 1.18, a � 0.51 �m particle will cease being
trapped at d � 	18 �m while experimentally the
particle remains trapped for d � 	44 �m; for the m �
1.135, a � 0.60 �m particle, trapping is predicted to
cease at d � 	50 �m, whereas experimentally it
remains trapped at d � 	79 �m. Thus GLMT with
the truncated, focused, and aberrated localized beam
model does predict the falloff in the trapping effi-
ciency that is due to increased spherical aberration as
the particle lies deeper into the sample cell but some-
what overestimates the amount of spherical aberra-
tion that is present in the experimental beam.

5. Discussion and Conclusions

Although the beam-plus-particle parameter space for
laser trapping calculations is large, the small sample
of calculations reported here indicates that GLMT
along with the localized model of the incident beam
provides a reasonably accurate and practical theory
with which to calculate the on-axis radiation trapping
efficiency for a spherical particle from the Rayleigh
scattering limit to the geometric optics limit. It was
found that the predicted value of Qmin is relatively
insensitive to the degree of realism of the beam model
used but that the predicted positioning of the beam
center with respect to the particle depends strongly
on the beam model. In addition, the localized ver-
sion of a truncated, focused, and aberrated beam

models the spherical aberration produced by its
transmission from medium n1 to medium n2 and the
decrease in trapping efficiency as a function of depth
in the sample cell produced by the increased spheri-
cal aberration. The principal mechanism that
causes trapping is a delicate near cancellation of dif-
fraction, external reflection, and transmission, with
transmission following all numbers of internal reflec-
tions contributing only a small fraction of the total
trapping efficiency.

Still, the fact that the theoretical minimum trap-
ping efficiency is a factor of �3 smaller to a factor of
�5 larger than the experimental efficiency requires
further investigation. Modeling beam nonuniformi-
ties, misalignment, additional aberrations, particle
inhomogeneities, deviations from sphericity, and
complex refractive index will likely not make up the
full difference, as the progression from the freely
propagating focused Gaussian beam to the truncated,
focused, and aberrated beam produced only a 20%
change in Qmin. The fact that the prediction of the
truncated, focused, and aberrated beam is systemat-
ically 20% below that of the focused Gaussian beam is
sensible and indicates that diffractive ringing of the
focused beam produced by the lens aperture some-
what spoils the smoothness of focus enjoyed by the
Gaussian beam model. Similarly, the fact that the
calculated efficiency decreases faster as a function of
d than is observed experimentally indicates that the
model for spherical aberration used here overesti-
mates the actual amount of aberration that is present
in the experimental beam. A possible source of the
difference between theory and experiment when the
particle is near the top surface of the sample cell is
the use of the Mie partial wave scattering amplitudes
al and bl of Eqs. �5�, which assume the spherical
particle is located in a homogeneous medium of infi-
nite extent. It would be of interest to use partial
wave scattering amplitudes that included multiple
scattering contributions of repeated reflections of the
beam between the particle and the flat interface, such
as is studied in Refs. 37–40. Although the inclusion
of repeated sphere–interface reflections may make a
difference when the particle is near the top of the
sample cell as in Tables 2 and 3, it is expected to not
make much of a difference when the particle is deep
in the sample cell as in Table 4. The fact that the
calculated trapping efficiency sometimes lies below
the experimental value, sometimes agrees with it,
and sometimes lies above it possibly indicates a non-
electrodynamic cause of the difference. Thermal,
convective, and residual electrostatic effects are wor-
thy of additional study.
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Glenn Research Center under grants NAG3-2774
and NCC3-909. The author thanks Arthur J.
Decker of NASA–Glenn for suggesting this line of
research and DeVon Griffin of NASA–Glenn and An-
drew Resnick of the National Center for Microgravity
Research at NASA–Glenn for providing me much
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valuable information concerning the experimental
operation of laser tweezers.
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