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We consider external reflection rainbow caustics due to the reflection of light from a pendant droplet
where the light rays are at an arbitrary angle with respect to the horizontal. We compare this theory
to observation of glare spots from pendant drops on grass; we also consider the potential application of
this theory to the determination of liquid surface tension. © 2008 Optical Society of America

OCIS codes: 010.7340, 290.0290.

1. Introduction

In a companion paper in this issue we considered the
fold, or rainbow, caustic due to the reflection of light
from a pendant droplet [1]. The caustic comes about
because of the existence of an inflection circle near
the neck of the droplet where the Gaussian curvature
of the droplet vanishes [2]. In that paper we consid-
ered the case in which horizontal light rays were in-
cident on a droplet that was radially symmetric in
the horizontal plane, and we showed good agreement
between theory and observations of pendant drops
created in the laboratory. In particular, the shape
of the caustic depended sensitively on the opening
angle of the tangent cone at the inflection circle; if
the tangent cone angle was greater than π=4 (45°),
the rainbow caustic started at forward scattering
and did not extend to scattering angles of π (180°),
but instead curved back; if the tangent cone was
smaller, it did extend to those angles [1]. However,
this theory is not applicable to naked-eye observa-
tions of natural pendant droplets on grass that are
created by dew or guttation, since they are not illu-
minated by light that is horizontally incident; in-
deed, the observations of these naturally occurring
rainbows in the grass occurs in late morning, where

the solar angle is typically ∼40° at scattering an-
gles φ∼ 90°.

Here we develop a theory of external reflection
rainbows in which the incident light is at an arbi-
trary diagonal incidence angle. There is still one sig-
nificant restriction of our theory in that we assume
that the attachment of the droplet to the blade of
grass is perfectly flat; that is, we assume that the
plane to which the droplet is attached is perfectly flat
and horizontal. We do not think that this is too severe
a restriction of our theory in that the generic shape of
the caustic will be preserved under small distortions
of the droplet shape [3]. We also consider the appli-
cation of the ideas developed in this paper for liquid
diagnostics, namely, the determination of droplet
surface tension and macroscopic contact angle.

2. Theory

Figure 1 shows the glare spot due to a pendant dro-
plet in the garden of one of the authors, while Fig. 2
shows an out-of-focus image of the glare spot with the
Airy fringes of the reflection caustic. Note that the
glare spot occurs near the circle of inflection on the
droplet where the droplet shape goes from convex to
concave. By way of contrast, Fig. 3 shows the specu-
lar reflection of the Sun from the droplet at a point
distant from the inflection circle, while Fig. 4 shows
the out-of-focus image of it; no fringes are seen, show-
ing clearly that the reflection is not a caustic. Figure 5
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shows the geometry of the droplet in the region of the
inflection circle and the incident light beam; in par-
ticular, ψ is the angle that the incident light rays
make with the horizontal, and θ and ϕ are the azi-
muthal and polar angles of the reflected light ray, re-
spectively. We refer the reader to Subsections 2.A
and 2.B and Figs. 3, 4, and 5 of [1] for the mathema-
tical development of the geometry of the problem. We
develop the theory in this paper in two subsections:
we consider, first, the caustic due to diagonally inci-
dent light grazing the droplet near the inflection cir-
cle and, second, the caustic due to light at an
arbitrary diagonal incidence.

A. Grazing Diagonal Incidence

The ray theory derivation of the argument of the Airy
caustic of [1] may be repeated when the incoming
plane wave is diagonally incident on the droplet as
in Eq. (4) of [1] with ψ ≠ 0. A number of new consid-
erations occur for diagonal incidence that did not oc-
cur for horizontal incidence. First, the portion of the
droplet illuminated by the beam now begins at the
angle ϵ in the horizontal plane with

sinðϵminÞ ¼ − tanðξÞ tanðψÞ ð1Þ

rather than at ϵ ¼ 0 as was the case for horizontal
incidence, where ξ is the opening half-angle of the
tangent cone. Thus more than half of the droplet cir-
cumference is illuminated when ψ > 0 and less than
half is illuminated when ψ < 0. Near-grazing inci-
dent rays are now conveniently parameterized by
Δ, where

sinðϵÞ ¼ − tanðξÞ tanðψÞ þΔ= cosðψÞ ð2Þ

Fig. 1. (Color online) Droplet with reflected glare spot.

Fig. 2. (Color online) Out-of-focus image of the glare spot from
Fig. 1, showing Airy fringes.

Fig. 3. (Color online) Specular reflection of sunlight from the
body of a droplet.

Fig. 4. (Color online) Out-of-focus image of the reflection in Fig. 3.
Note the absence of interference fringes.
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and Δ ≪ 1. The laboratory xyz coordinate system
has the z axis coinciding with the symmetry axis
of the droplet, and the x axis is positioned so that the
propagation direction of the incident light rays is in
the xz plane. Next, another coordinate system x0, y0, z0
is formed by rotating the original x, y, z coordinate
system through the angle ψ in the xz plane so that
the x0 direction coincides with the direction of the in-
coming light. The spherical coordinate angles Θ0 and
Φ0 in this new coordinate system are defined with re-
spect to the x0 direction so that

tanðΦ0Þ ¼ ðkref Þz0=ðkref Þy0 ; ð3Þ

where kref is the direction of the reflected light and

Θ0 ≈ tanðΘ0Þ ¼ ½ðkref Þy02 þ ðkref Þy02 �1=2=ðkref Þx0 : ð4Þ

The angular position ðΘ0;Φ0Þ of a point on the rain-
bow on a far-zone viewing screen normal to the x0 axis
a distance R from the droplet, corresponding to the
input parameters ϵ ≥ ϵmin on the inflection circle
and δ ¼ 0, is

Φ0 ¼ Φ0
0 −Θ0 sinðψÞ=2D2; ð5Þ

Θ0 ¼ 2Δ × cosðξÞ; ð6Þ

where

D2 ¼ cos2ðξÞcos2ðψÞ − sin2ðψÞsin2ðψÞ; ð7Þ

tanðΦ0
0Þ ¼ sinðξÞ=D: ð8Þ

For diagonal incidence with the angle ψ, the rainbow
due to near-grazing incidence rays on the far-zone
viewing screen normal to the x0 axis is curved, rather
than being straight as was the case in [1] for ψ ¼ 0.
The rainbow curves downward from theΦ ¼ Φ0

0 line
if ψ > 0, and it curves upward from the Φ ¼ Φ0

0 line
if ψ < 0. The curvature of the rainbow caustic will be
treated in more detail in Subsection 2.B.
Consider a point ðΘR

0;ΦR
0Þ on the rainbow as seen

on the viewing screen corresponding to the input
parameters ΔR on the inflection circle and δ ¼ 0.
Construct the normal to the rainbow curve at that
point, and traverse a distance σ0 along the normal on
the viewing screen away from the rainbow, where

σ0 ¼ RΘ0Γ0: ð9Þ

The end of the traverse will be called point S. The
spherical coordinates of S are found to be

tanðΦS
0Þ ¼ tanðΦR

0Þ − Γ0=cos2ðΦR
0Þ; ð10Þ

ΘS
0 ¼ ΘR

0½1 − Γ0Δ
× cosðξÞ sinðψÞcos2ðψÞcos2ðΦR

0Þ=D3�: ð11Þ

The two rays that reflect from the droplet surface
and interfere at point S on the normal line corre-
spond to the input ray parametersΔS and �δS above
or below the inflection circle, where

δS2 ¼ Γ0D=½3α × cos3½ξ��; ð12Þ

ΔS ¼ ΔR þ Γ0 sinðψÞD=cos3ðψÞ: ð13Þ

Contrary to the case of normal incidence, we now
have ΔS > ΔR:. The path length difference of the
ðΔS;�δÞ rays is then calculated after much algebra
to be

ΔStotal
¼ 8αδ3ΔS cosðξÞ: ð14Þ

Equation (14) is then written in terms of the radial
distance ρ0 on the viewing screen, where

ρ0 ¼ RΘ0 ð15Þ

and the distance σ0 is normal to the rainbow. The
path length difference of the two interfering rays
is then identified with the asymptotic form of the
Airy integral. One finally obtains

Etotalðρ; σÞ ≈ Aif−k2=3σ0D=½31=3α1=3R1=3ρ01=3cos7=3ðξÞ�g
ð16Þ

as the form of the reflection rainbow for diagonally
incident near-grazing rays. As expected, Eq. (16) re-
duces to Eq. (21) of [1] in the ψ → 0 limit.

B. Arbitrary Diagonal Incidence

In this section we consider arbitrary diagonal inci-
dence with ψ ≠ 0 and ϵmin ≤ ϵ ≤ π=2. Since the inci-
dent wavefront is tilted with respect to the xz
plane, a ray on the incident wavefront is parameter-
ized by its horizontal distance b0 from the −x0 axis and
its height z0 above the x0y0 plane. The surface of the
cone is given (as in [1]) by

r0 ¼ a − z0 tanðξÞ; ð17Þ

where the subscript 0 denotes a position on the cone
surface. The ray with

b0 ¼ 0; z0 ¼ z0max ¼ aA cosðψÞ cosðξÞ= sinðξÞ
ð18Þ

with

A ¼ 1þ tanðψÞ tanðξÞ ð19Þ
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is incident at the apex of the cone. For z0 < z0max, the
grazing incident ray is parameterized by

b0 ¼ b0max ¼ aðA=BÞ1=2ð1 − z0=z0maxÞ ð20Þ

with

B ¼ 1 − tanðψÞ tanðξÞ: ð21Þ

We define the parameter Ω as

Ω ¼ sinðϵÞ cosðψÞ þ sinðξÞ sinðξÞ: ð22Þ

Here Ω corresponds to the progression from grazing
incidence to head-on incidence, the scattering angles
of the reflected rays shown in Fig. 5 are

sinðϕÞ ¼ 2Ω sinðξÞ − sinðψÞ; ð23Þ

cosðθÞ ¼ ½cos2ðψÞ þ 2Ω × sinðψ × sinðξÞ − 2Ω2�=
fcosðψÞ½cos2ðψÞ þ 4Ω × sinðψÞ sinðξÞ
− 4Ω2 sin2ðξÞ�1=2g: ð24Þ

The ψ → 0 limit of Eqs. (23) and (24) are Eqs. (27)
and (28) in [1]. The trajectory of the principal peak
of the Airy caustic on the cylindrical viewing
screen is

− ψ ≤ ϕ ≤ 2ξ − ψ
if ξ ≤ π=4þ ψ=2;−ψ ≤ ϕ ≤ π − 2ξ − ψ
if ξ > π=4þ ψ=2; ð25Þ

0 ≤ θ ≤ π if ξ < π=4þ ψ=2; 0 ≤ θ ≤ π=2
if ξ ¼ π=4þ ψ=2; 0 ≤ θ ≤ θmax if ξ > π=4þ ψ=2;

ð26Þ

where θmax is given by Eq. (24) with

Ω ¼ f3 sinðψÞ þ ½8 cos2ðψÞ þ sin2ðξÞ�1=2g=4 sinðξÞ:
ð27Þ

In analogy to the case of arbitrary horizontal inci-
dence, the angle θ of the principal peak of the Airy
caustic increases from zero to π or from zero to
θmax and then decreases back again to zero as ϕ
monotonically increases from −ψ to some value less
than or equal to π=2. Again, dθ=dϕ ¼ 0 at θmax, ensur-
ing that the trajectory of the Airy caustic is smooth at
the turnaround point in θ.

The flux tube approach of Subsection 2.D from [1]
is again used to determine the intensity along the
Airy caustic. After much algebra we obtain

Iref ¼ Iincðr0=RÞ½sinðϵÞ=ð∂z0=∂z0Þ�=
½M cosðφÞ cosðψÞ cosðξÞ cosðϵÞ�; ð28Þ

where

M ¼ jðdθ=dΩÞ½1þ tanðϕÞ sinðθ − ϵÞ tanðξÞ�
þ ðdϕ=dΩÞ cosðθ − ϵÞ tanðξÞ=cos2ðφÞj; ð29Þ

ðdθ=dΩÞ and ðdϕ=dΩÞ are obtained by taking the de-
rivatives of Eqs. (23) and (24), and

ð∂z0=∂z0Þ ¼ ½1 − tanðψÞ tanðξÞ=
ð1 − b02=b0max

2Þ1=2�=½AB × cosðψÞ�: ð30Þ

It should be noted that both sinðϵÞ and ð∂z0=∂z0Þ van-
ish as ϵ → 0, but that their quotient remains finite
and smoothly varying there. Equations (28)–(30) for
the reflected intensity are not yet in final form:
everything in them is a function only of ϵ, except
for ð∂z0=∂z0Þ, which is a function of b0=b0max, and im-
plicitly of z0, since b0max is a function of z0 via Eq. (20).
The relation between ϵ and b0=b0max is

b0=b0max ¼ cosðϵÞ½1 − tan2ðψÞtan2ðξÞ�1=2=½1
þ sinðϵÞ tanðψÞ tanðξÞ�: ð31Þ

No further simplification of the arbitrary diagonal
incidence intensity was uncovered, so we report
Eqs. (28)–(31) as our final form of the intensity.

The shape of the caustic is determined by Eqs. (22)
and (24); in Figs. 6(a)–6(c) we plot the scattering an-
gles of the Descartes ray as a function of polar angles
ðθ;ϕÞ for varying values of the solar angle ψ (30°, 36°
and 40°). We use a tangent cone angle of 63°, corre-
sponding to the case discussed in Section 3 below.

3. Observation of the Reflection Rainbow from
Dewdrops

It is mid-morning on a sunny day and there is still
dew on the grass. The solar angle of Eq. (4) is in the
range 30° < ψ < 50°, and the dew hangs as pendant

Fig. 5. (Color online) Scattering geometry. ψ , solar elevation an-
gle; θ, azimuthal scattering angle; ϕ, polar scattering angle.
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droplets of diameter 1mm < d < 2mm from the
blades of grass. A person observing the pendant dew-
drops occasionally sees a bright glare spot of sunlight
reflected from a drop as in Fig. 1 as he crouches and
looks down on them from a meter or so away. Very
rarely, at a scattering angle θ in the horizontal plane
in the range 80° < θ < 120°, the reflected glare spot
appears brightly colored. If one then photographs the
colored glare spot with a camera that is greatly mis-
focused, the glare spot image is a blur circle. Within
the blur circle is a rainbow consisting of a principal
peak and a number of supernumerary peaks flanking
it on one side. The principal peak is white, rather
than colored, and the supernumerary fringes are
only weakly colored, being blue on the side closer
to the principal peak and red on the side farther from
it. Alternatively, if one crouches a few centimeters
from the droplet and looks down at it with misfo-
cused vision, the same blur circle containing
the principal rainbow peak flanked by a series of
supernumeraries is again observed.

These observations are qualitatively consistent
with the results of Section 2. For the first-order atmo-
spheric rainbow, the scattered electric field is propor-
tional to

EscatteredðθÞ ≈ Ai½−k2=3a2=3ðθ − θDescartesÞ=h1=3�; ð32Þ

where θDecartes and h depend on the refractive index
of the water droplet, which in turn depends on the
wavelength λ of the incident light [4]. This wave-
length dependence is responsible for the bright colors
of the principal peak of the atmospheric rainbow. The
total absence of the color of the principal peak of the
dewdrop rainbow is evidence that it is due to reflec-
tion only. The sole wavelength dependence in the re-
flection rainbow expressions of Eq. (16) is the k2=3

factor. This causes the Aið0Þ point to occur at the
same angular location for each wavelength [the Aið0Þ
point is on the shadowed-side shoulder of the princi-
pal rainbow peak] and causes the Airy pattern to be
more angularly spread for red light than it is for blue
light, in qualitative agreement with observations.

As to observing the reflection rainbow at θ in the
vicinity of 90° at a steep value of ϕ as one crouches
near the droplet and looks down on it, this corre-
sponds to the case of Eqs. (25) and (26) when
ξ ≈ π=4þ ψ=2. For ψ ≈ 36° (π=10 rad, a typical value),
one has ξ ≈ 63°. If the dewdrop hangs from the blade
of grass so that it is roughly circularly symmetric, its
size is just right so that the tangent cone at the in-
flection circle has ξ ≈ π=4þ ψ=2, then one can stand
somewhere near θ ¼ 90°, look down on the droplet
(ϕ ≈ 90°), and see the effect. But what size of droplets
is just right? Reference [5] gives the angle of the tan-
gent cone ξ as a function of the variable β [see Eq. (34)
below] for β ≥ 0:25, and the horizontal radius at the
bottom of the droplet rH in terms of β. The angle ξ as a
function of β is almost exactly a straight line for
0:25 ≤ β ≤ 0:40. If one extrapolates the graph to
ξ ¼ 45°, one gets β ¼ 0:19, and rH decreases to

Fig. 6. (Color online) Descartes ray scattering angles at different
solar elevations; the tangent cone angle is ψ ¼ 63°. Note that for
solar elevation angles greater than 36°, the scattering extends to
θ ¼ 180°: (a) ψ ¼ 30°, (b) ψ ¼ 36°, (c) ψ ¼ 40°.
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1:19mm. Although extrapolation of the data of [5] to
ξ ¼ 63° is unwarranted, the solution must corre-
spond to very small β and rH less than 1mm. This
is within the range of the estimated sizes of the dew-
drops that were observed to produce the effect. The
results of Section 1 thus provide a reasonable plau-
sibility argument that the dewdrop observations are
in fact an example of the reflection rainbow of a pen-
dant droplet and explain the rarity of the effect seen
in mid-morning sunlight.

4. External Reflection Rainbow as a Fluids Diagnostic

As a final comment, measurement of the specular re-
flection rainbow caustic provides a method for deter-
mining the location and radius of the inflection circle
of a pendant droplet. Let rH be the radius of curva-
ture at the bottom of the droplet, ρ and λ be the den-
sity and viscosity of water, and g be the acceleration
due to gravity. Then the shape of the pendant droplet
is given by[2]

−ðd2r=dz2Þ=½1þ ðdr=dzÞ2�3=2 þ 1=fr½1þ ðdr=dzÞ2�1=2g
¼ ð2=rHÞ − ðzβ=rH2Þ; ð33Þ

where

β ¼ ρgrH2=γ; ð34Þ
and where the origin of coordinates is taken to be at
the bottom of the droplet. Assume that the shape of
the droplet surface a small vertical distance δ above
or below the inflection circle is given by Eq. (1) of [1]
and that δ is small enough that ri ≫ δ, δ ≪ ri=αrH2,
and δ ≪ 1=riα. Then substitution of Eq. (1) of [1] into
Eq. (33) gives

cosðξÞ=ri ¼ ð2=rHÞ − ðz0β=rH2Þ; ð35Þ

β=rH2 − 6α × cos3ðξÞ þ sinðξÞ=r02 ¼ 0: ð36Þ
This suggests a simple means of measuring the fluid
parameters ri and zi: using an apparatus similar to
the one in [1], one can illuminate a pendant droplet
with horizontally incident light. Measurement of the
direction of the reflection caustic on the viewing

screen gives ξ via Eq. (8) of [1], and the measured
supernumerary spacing gives α via Eq. (21) of [1].
If, in addition, the radius of curvature of the bottom
of the droplet is measured so as to obtain β via
Eq. (34), substitution into Eq. (36) gives the radius
r0 of the inflection circle, and then substitution into
Eq. (35) gives the height z0 of the inflection circle
above the bottom of the droplet. However, these para-
meters are determined by the density and surface
tension of the droplet [2]. In principle, one can there-
fore use the information gathered from the external
reflection rainbow caustic to determine the surface
tension. Current techniques for determination of sur-
face tension involve measurement of the entire pro-
file of the droplet; the technique outlined above may
prove simpler and cheaper than the currently used
technique.

5. Conclusions

In this sequence of two papers we have developed a
mathematical theory for the shape of the external re-
flection rainbow caustic produced by a pendant dro-
plet; we have also qualitatively demonstrated that
this is what is seen in glare spots on dewdrops or gut-
tation drops on grass. It is also likely that one can use
the caustic to measure the value of the surface ten-
sion of the fluid, as the density, surface tension, and
volume of the droplet determine the pendant dro-
plet shape.

The work done in this paper by C. L. Adler was
supported by Research Corporation grant CC6308.
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