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Rainbow scattering by a cylinder
with a nearly elliptical cross section

Charles L. Adler, James A. Lock, and Bradley R. Stone

We both theoretically and experimentally examine the behavior of the first- and the second-order
rainbows produced by a normally illuminated glass rod, which has a nearly elliptical cross section, as it
is rotated about its major axis. We decompose the measured rainbow angle, taken as a function of the
rod’s rotation angle, into a Fourier series and find that the rod’s refractive index, average ellipticity, and
deviation from ellipticity are encoded primarily in the m = 0, 2, 3 Fourier coefficients, respectively. We
determine these parameters for our glass rod and, where possible, compare them with independent
measurements. We find that the average ellipticity of the rod agrees well with direct measurements, but
that the rod’s diameter inferred from the spacing of the supernumeraries of the first-order rainbow is
significantly larger than that obtained by direct measurement. We also determine the conditions under
which the deviation of falling water droplets from an oblate spheroidal shape permits the first few
supernumeraries of the second-order rainbow to be observed in a rain shower. © 1998 Optical Society

of America
OCIS codes:

1. Introduction

Historically the study of rainbows produced by the
interaction of light with a long dielectric rod or fiber
has received less attention than has the study of
rainbows produced by a sphere or spheroid. In the
1860’s, Billet observed glare spots corresponding to
the first 19 rainbows in a thin column of falling wa-
ter,! and in the first decade of this century, Mdbius
examined the first-order rainbow of a number of glass
rods that had a circular or elliptical cross section.23
More recently, the angular positions of the first-order
rainbow and its supernumeraries have been used to
determine both the refractive index and the diameter
of unclad optical fibers.# Each of these experiments
used normally incident light. For diagonal inci-
dence, the first-order rainbow of a circular-cross-
section rod and the rainbow’s extinction transition
have also been studied.>” In addition, electromag-
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netic scattering theory has recently been extended
from the cases of cylinders that have a circular8-10 or
elliptical’:12 cross section to a cylinder whose cross
section contains small deviations from an elliptical
shape.13 In this extension of the theory, the cylinder
cross section is expressed in polar coordinates as a
Fourier series and a plane wave or Gaussian laser
beam is normally incident.

When a glass rod or fiber is manufactured, its cross
section is rarely perfectly circular, or even perfectly
elliptical. In this case the cylinder is said to have a
nonelliptical cross section (the term is not to be con-
fused with zero ellipticity, i.e., a circular cylinder).
We show here that the sensitive dependence of the
rainbow angle on both the shape of the cylinder cross
section and the rotation angle of the cylinder allows
the rainbow angle to be used to obtain an estimate of
the cross-sectional shape.

Certain symmetries of a rod’s cross section may
easily be determined by rotation of the rod about its
major axis and examination of the scattering angle of
the first- or the second-order rainbow for normally
incident light. If the rainbow angle remains con-
stant as the rod is rotated, the rod’s cross section is
circular. Ifit varies in a periodic fashion as the rod
is rotated through multiples of 180°, the cross section
has twofold symmetry (i.e., it has two symmetry axes
at 90° with respect to each other). An ellipse is one
of the simplest figures possessing this symmetry. If,
however, the rainbow angle varies in a periodic fash-



ion as the rod is rotated through only multiples of
360°, the cross section has a more complicated shape
that lacks twofold symmetry.

In this paper we examine rainbow formation for a
special class of nonelliptical-cross-section cylinders in
the short-wavelength limit by using geometric ray
methods rather than rigorous electromagnetic the-
ory, and we describe a procedure for estimating the
shape of a cylinder’s cross section from observations
of the rainbow angle taken as a function of the cyl-
inder’s rotation angle ¢ for normal plane-wave inci-
dence. In Section 2 the cylinder’s cross section is
modeled as two half-ellipses with different aspect ra-
tios joined smoothly along their common major axis.
This is one of the simplest shapes possessing only a
single symmetry axis, and the expressions describing
ray propagation inside such a cylinder are relatively
straightforward. For this model system, we numer-
ically compute the far-zone scattering angle of the
first- and the second-order rainbows as a function of
¢ and find that the results are readily interpretable
when expressed as a Fourier series in &, We find the
second-order rainbow angle to be much more sensi-
tive to deviations from ellipticity for the refractive
index of glass than is the first-order rainbow angle.
In Section 3 we experimentally measure the first- and
the second-order rainbow angles produced by a plane
wave normally incident upon a glass rod whose cross
section contains small deviations from ellipticity.
We then fit the two-half-ellipse cross-section model to
the experimental data by matching the largest Fou-
rier coefficients of the experimental data with the
theoretical coefficients obtained in Section 2. We
also infer the rod’s average diameter from the spacing
of the supernumeraries of the first-order rainbow.
In Section 4 we determine the conditions under which
deviations from ellipticity in the vertical cross section
of falling water droplets in a rain shower4 permit the
observation of the first few supernumeraries at the
topmost portion of the second-order rainbow.15-17
Last, in Section 5 we discuss our results.

2. Scattering by a Two-Half-Ellipse Cross-Section
Cylinder in Ray Theory

We consider a long homogeneous dielectric cylinder of

refractive index n and whose cross section is modeled
by

12 12
X Y
—+ =1 fory' =0,
a® b Y
x/2 y/2
— + =1 for y' <0, 1
a2 b22 Y ( )

where the x'y'z’ coordinate system is attached to the
cylinder. The cylinder’s main axis coincides with
the z' axis. The two half-ellipses have a common
semimajor axis a, differing semiminor axes b, and b,
and are smoothly joined together at x’ = *a,y’ = 0,
as is shown in Fig. 1(a). The first derivative of the
cross section is continuous at the join points R and L,
but the second derivative is discontinuous there.

=2

1S Juaprouf

Fig. 1. (a) Cylinder has a cross section consisting of two half-
ellipses denoted by the index j = 1, 2 joined smoothly at the points
R and L. The length of the common semimajor axis of the two
half-ellipses is @, and the length of their differing semiminor axes
are b; and b,. The x'y'z' coordinate system is attached to the
cylinder. (b) The cylinder is rotated by an angle & about the 2z’
axis. Incident light rays propagate in the —y direction of a fixed
laboratory coordinate system.

The cylinder is rotated about the z’' axis, as is
shown in Fig. 1(b), so that the x’ axis makes an angle
¢ with the x axis of a fixed xyz laboratory coordinate
system whose z axis coincides with the z' axis. The
surface of the rotated cylinder is given in the labora-
tory coordinate system by

Y= B+ oA — ) (2)
where

A = (b*/a’)sin’ £ + cos” &, ®

o = (bj/a)/A}7, @

B = (b/a’ — DsinEcos /A7, (5)

where the index j = 1, 2 denotes the two half-ellipses
in Eq. (1). We consider a family of parallel light rays
traveling in the —y direction and incident upon the
cylinder. For this geometry the upper sign in Eq. (2)
corresponds to the illuminated side of the cylinder

20 March 1998 / Vol. 37, No. 9 / APPLIED OPTICS 1541



Fig. 2. Angles v, of the normal to the surface and the angles §, of
the interior rays for the 0 < p < 2 interactions of a light ray with
the surface.

and the lower sign corresponds to the shadowed side.
When describing the scattered rays, we employ the
usual notation in which the initial interaction of a ray
with the illuminated side of the cylinder is numbered
by p = 0 and successive internal reflections at the
surface are numbered by p = 1. The p interaction
occurs at the coordinates (x,, y,). The rays that
form the first-order rainbow and its supernumeraries
exit the cylinder at the p = 2 interaction, and the rays
that form the second-order rainbow and its supernu-
meraries exit at the p = 3 interaction.

With this convention, the normal to the cylinder
surface at (x,, y,) makes an angle vy, with respect to
the positive x axis, where

2 2
Aj Xp

XpYp + BjAj2 .

The angle that a ray inside the cylinder between the
p and the p + 1 interactions makes with the positive
x axis is 3,, where

(6)

tan vy, =

Sy = Yo + arcsin[(cos vy,)/n], (7
01 = 2y, — d, (8)
Oy = 2y, — 8y — m. 9

The angles vy, and §, for 0 < p = 2 are shown in Fig.
2 for a representative ray. Given (x,,y,) and §,, we
obtain the coordinates (x,.;, y,+1) by substituting
Eq. (2) for y,., into

tan 8p = (yp+1 - yp)/(xp+1 - xp) (10)

and solving the resulting quadratic equation in x,, ;.
The roots of the quadratic give x,, the location on the
surface that the ray has just lef{:?, and x, 1, the loca-
tion on the surface that the ray is going to. Because
we assume that the cylinder cross section deviates

1542 APPLIED OPTICS / Vol. 37, No. 9 / 20 March 1998

from circularity by only a few percent, the root of the
quadratic that produced x, ; in the circular-cross-
section limit is chosen. The resulting value ofx,, . ; is
then substituted back into Eq. (10) to obtain y,_ ;.
We begin tracing a ray from one interaction with the
cylinder surface to the next by specifying (x,, y,),
calculating v, by using Eq. (6), calculating 8, by using
Eqgs. (7)—(9), and then calculating (x, 1, ¥,1) by us-
ing Eq. (10) and the quadratic procedure. This pro-
cess is repeated until the desired number of internal
reflections has been achieved.

The deviation angle of rays exiting the cylinder at
the p = 2 interaction is

(11)

and the deviation angle of rays exiting at the p = 3
interaction is

0, = 3mw/2 + arcsin[n sin(ys — 81)] — Vs,

0; = 3w/2 + arcsin[n sin(y; — 8,)] —v;.  (12)

Equivalent expressions for the deviation angle were
derived in Ref. 18. The first- and the second-order
rainbow angles, 0,2%(£) and 93R(§), respectively, are
the relative minima of Eqs. (11) and (12) taken as a
function of x, for a given cylinder rotation angle &.
The Descartes deviation angle GpD of the p — 1-order
rainbow for a circular-cross-section cylinder is given

by
n?—1\"?
cos &, = (pz ) , (13)
-1
sin ¢ = (1/n)sin ¢;”, (14)
0,” = (p — D + 2¢,° — 2pd,”. (15)

Of special concern in ray-tracing calculations with
the two-half-ellipse cross-section model is the fact
that at each interaction of a ray with the cylinder
surface, a determination must be made as to whether
the interaction occurs on the j = 1 half-ellipse or on
the j = 2 half-ellipse. This determination was made
in the following way. In the laboratory coordinate
system, the two join points of the half-ellipses R and
L are located at

Xp = a cos &, x;, = —a cos &,

yr = a sin &, yr = —a sin & (16)

The p = 0 interaction occurs on the j = 1 half-ellipse
ifxy =< xp when 0° =< £ = 180° and ifx, > x; when 180°
= ¢ =360°. Itoccursonthej = 2 half-ellipse if x, >
xr when 0° = £ = 180° and if xy = x; when 180° < &
= 360°. For p = 1, the value of j changes from one
interaction with the surface to the next when the ray
traveling inside the cylinder between the two inter-
action points crosses the join line of the half-ellipses
between R and L.

For a cylinder whose cross section is exactly ellip-
tical, Egs. (2)—(12) may be Taylor-series expanded in
powers of the ellipticity defined by

e=(b/a) — 1, a7



and the relative minima of Eqgs. (11) and (12) may be
determined analytically. In order to test the correct-
ness of Eqs. (2)—(12), we performed such a Taylor-
series expansion and found that

057(£) = 6, — 8e sin ;" cos® /"

X cos(2¢ + 0,°) + O(e), (18)

05"(£) = 0,” + 32e sin ¢,” cos’® ¢,”
X cos 2¢,” cos(2& + 0,°) + O(e?), (19)

in agreement with the published first order in € ap-
proximation to the rainbow angles for an elliptical-
cross-section cylinder.2:3.16

In order to examine the sensitivity of the first- and
the second-order rainbow angles on both the average
ellipticity and the deviation from ellipticity of the
cylinder cross section, the rainbow angles 0,°(£) and
0,7 (£) are Fourier transformed by means of

0,°(8) = E, + i E,, cos(mé) + i F, sin(mé), (20)

m=1 m=1

0:°(8) = Gy + i G, cos(mé&) + i H,, sin(m§&). (21)
m=1 m=1

In the € — 0 limit, the E, and G, Fourier coefficients
should give the Descartes rainbow angle, and the
m = 2 coefficients should give the first order in e
approximation of Egs. (18) and (19). If the cylinder
cross section has twofold symmetry, as is the case for
an ellipse, only even Fourier coefficients contribute,
as BPR(E) possesses 180° rotational symmetry. For a
more general cross-sectional shape lacking twofold
symmetry, both even and odd Fourier coefficients are
nonzero because epR(g) possesses only 360° rotational
symmetry. Thus the Fourier-series expansion of
epR(g) should provide a sensitive determination of the
average ellipticity and the deviation from ellipticity
of the cylinder’s cross section.

The way in which the cross-sectional shape is en-
coded into the Fourier coefficients of 6,%(£) and 0,7 (¢)
was determined in the following two numerical ex-
periments. In the first experiment, we explored the
sensitivity of the rainbow angles on the ellipticity of
the cylinder cross section. At 1° intervals in &, the
p = 2 and the p = 3 deviation angles of a large
number of parallel light rays incident upon an
elliptical-cross-section cylinder were obtained nu-
merically with our ray-tracing procedure, and the
minimum deviation angle (i.e., the rainbow angle)
was identified. In Tables 1 and 2 we show the first
five even Fourier coefficients of the p = 2 and p = 3
rainbow angles obtained with this procedure for a
cylinder with an elliptical cross section, a refractive
index of n = 1.474 corresponding to the experimental
measurements of Section 3, and ellipticities of € =
—0.001, —0.01, and —0.1. Also shown are them = 2
Fourier coefficients corresponding to the first order in
€ approximation of Egs. (18) and (19). These tables
illustrate the following results. First, as a check of
our ray-tracing computer program, the e — 0 limit of

Table 1. First Five Even Fourier Coefficients in Degrees of the
First-Order Rainbow Deviation Angle ezﬂ(g) for an Elliptical
Cross-Sectional Cylinder with Refractive Index n = 1.474 and
Ellipticities ¢ = —0.001, —0.01, and —0.1 as Defined in Eq. (17)*

€

Coefficient —0.001 —-0.01 -0.1

E, 154.723 154.713 153.571
E, —0.134 —1.346 —13.421
F, —0.063 —0.636 —6.531
E, 2.3 x10°* 0.021 2.104
F, -4.1x10°° —0.005 —0.477
Eq <10°¢ -29x10°* —0.296
Fg <107 3.2x107* 0.332
Eg <10°¢ <10°¢ 0.015
Fyg <107 <10°¢ —-0.113
E,Mebius —0.134 —1.340 —13.396
F Moblus —0.063 —0.633 —6.325

@The coefficients E,M°P™ and F,M°™ are obtained from Eq.
(18). The Descartes rainbow deviation angle is 8,” = 154.723°.

the m = 0, 2 Fourier coefficients produced the Des-
cartes rainbow angle and the first order in e elliptical-
cross-section approximation of Eqs. (18) and (19),
respectively. The Fourier coefficients were found to
have the following dependence on €. They converge
rapidly as a function of m and are roughly propor-
tional to |/™2. As |e| increases, the m = 0 coefficient
shifts somewhat and the m = 2 coefficients begin to
deviate from linearity in €, reflecting the existence of
contributions to the coefficients of higher order in e
(the order € contribution was analytically calculated
in Ref. 16 forp = 3and n ~ 1.34). The higher orders
in € contributions are larger for the second-order rain-
bow than they are for the first-order rainbow for n =
1.474 and produce roughly similar sensitivities of the
two rainbow angles on the ellipticity e. The most
important conclusion of our first numerical experi-
ment, however, is that E, and G, are determined
primarily by the cylinder refractive index whereas

Table 2. First Five Even Fourier Coefficients in Degrees of the
Second-Order Rainbow Deviation Angle 0,7(£) for an Elliptical
Cross-Sectional Cylinder with Refractive Index n = 1.474 and
Ellipticities ¢ = —0.001, —0.01, and —0.1 as Defined in Eq. (17)*

€

Coefficient —0.001 —-0.01 -0.1

G, 262.121 262.159 266.370
Gy 0.016 0.160 1.116
H, —0.115 —1.162 —13.481
Gy 24 x10°* 0.021 1.980
H, 1.9x10* 0.018 1.730
Ge <107° -42x107* —0.675
Hyg <10°¢ -9.4x10°* —0.931
Gy <10°° <107 0.009
Hyg <107° <107° 0.247
GyMebius 0.016 0.160 1.599
H,Mobius —0.115 —1.155 —11.546

2The coefficients G,™M°P"s and H,M°""* are obtained from Eq.
(19). The Descartes rainbow deviation angle is 6,7 = 262.121°.
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Table 3. First Six Fourier Coefficients in Degrees of the First-Order
Rainbow Deviation Angle 0,7(£) for a Two-Half-Ellipse Cross-Sectional
Cylinder with Refractive Index n = 1.474, Average Ellipticity €, =
—0.037, and Various Values of the Ellipticity Difference Ae as Defined in

Eq. (23)
Ae

Coefficient 0.00 0.01 0.02 0.03 0.04
E, 154.580 154.580 154.580 154.579 154.577
E, 0.000 0.039 0.078 0.116 0.154
F, 0.000 0.011 0.022 0.034 0.044
E, -5.019 -5.019 -5.021 —5.023 —5.025
F, -2378 -2378 -2378 —-2.378 —2.379
E, 0.000 0.045 0.090 0.136 0.183
F, 0.000 0.034 0.069 0.104 0.139
E, 0.293 0.294 0.299 0.307 0.319
F, -0.068 —0.066 —0.062 —0.055 —0.046
E; 0.000 —0.027 —0.054 —0.081 —0.108
Fy 0.000 —0.046 —0.092 —0.137 -—0.182

the m = 2 coefficients are determined primarily by
the cylinder ellipticity.

In the second numerical experiment, we explored
the sensitivity of the rainbow angles on the deviation
of the cylinder cross section from ellipticity. In Ta-
bles 3 and 4 we show the first six Fourier coefficients
for the p = 2 and the p = 3 rainbow angles of a
cylinder that has a two-half-ellipse cross section, a
refractive index of n = 1.474, an average ellipticity

_ (b1/a) + (by/a) 1= € T €

22
eave 2 2 ( )

of —0.037, corresponding to the experimental mea-
surements of Section 3, and an ellipticity difference

Ae = (by/a) — (by/a) =€, — & (23)
ranging from zero to 0.04, where

€1=bl/a— 1, €2=b2/a— 1 (24)

Table 4. First Six Fourier Coefficients in Degrees of the Second-Order
Rainbow Deviation Angle 0,7(£) for a Two-Half-Ellipse Cross-Sectional
Cylinder with Refractive Index n = 1.474, Average Ellipticity €, =
—0.037, and Various Values of the Ellipticity Difference Ae as Defined in

Eq. (23)
Ae

Coefficient 0.00 0.01 0.02 0.03 0.04
G, 262.657 262.638 262.619 262.565 262.489
G, 0.000 —0.011 —0.023 —0.034 —0.046
H, 0.000 0.034 0.068 0.102 0.134
G, 0.584 0.579 0.574 0.569 0.561
H, —4.420 —4.408 —4.397 —4.381 —4.358
Gy 0.000 0.575 1.150 1.724 2.294
H, 0.000 0.784 1.669 2.511 3.362
G, 0.301 0.310 0.320 0.353 0.395
H, 0.256 0.257 0.259 0.264 0.269
Gy 0.000 0.120 0.240 0.359 0.479
H, 0.000 —0.168 —0.337 —0.505 —0.670
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0 45 90 135 180 225 270 315 360
£ (deg)

Fig. 3. Deviation of the first-order rainbow angle 6,7(£) of a two-
half-ellipse cross-section cylinder from the Descartes first-order
rainbow angle 6,” as a function of the rotation angle £ for a refractive
index n = 1.474, average ellipticity e,,, = 0.060, and ellipticity
difference Ae = 0 (curve a), Ae = 0.06 (curve b), Ae = 0.12 (curve c),
and Ae = 0.18 (curve d). The range of Ae here is much larger than
in Table 3 because the dependence of the rainbow angle on Ae is
weak. The value of €, is also different than that in Table 3.

Tables 3 and 4 illustrate the following results. The
180° rotational symmetry of the second-order rain-
bow angle is quickly lost for n = 1.474 when Ae is
nonzero, and the symmetry loss is encoded primarily
in the m = 3 coefficients. The symmetry loss is
much less pronounced for the first-order rainbow be-
cause its m = 3 coefficients are more than an order of
magnitude smaller than those of the second-order
rainbow. Evidently the partially compensating
changes in the path of the second-order rainbow ray
inside an elliptical-cross-section cylinder described in
Ref. 16 are easily disturbed when the cylinder surface
assumes a less symmetric shape. The values of the
even Fourier coefficients remain nearly constant as
the ellipticity difference is varied and the average
ellipticity is held fixed, and the magnitudes of the odd
m coefficients increase roughly linearly in Ae. In
Figs. 3 and 4 we graph 0,7(¢) and 0,%(£), respectively.
If we had used the results of Table 3 in Fig. 3, the
various graphs would have been indistinguishable in

D
8.(6)-6, (deg)

[ 45 90 135 180 225 27¢ 315 360
£ (deg)

Fig. 4. Deviation of the second-order rainbow angle 6,%(¢) for a
two-half-ellipse cross-section cylinder from the Descartes second-
order rainbow angle 0, as a function of the rotation angle ¢ for a
refractive index n = 1.474, average ellipticity €,,. = —0.037, and
ellipticity difference Ae = 0 (curve a), Ae = 0.01 (curve b), Ae = 0.02
(curve c¢), Ae = 0.03 (curve d), and Ae = 0.04 (curve e). These
parameters are identical to those of Table 4.



the figure because the first-order rainbow angle de-
pends only weakly on Ae. Thus we consider a much
larger range of Ae in Fig. 3. In Fig. 4, on the other
hand, we graph the results of Table 4. In Fig. 3, the
first-order rainbow angle appears to be independent
of Ae for eight cylinder rotation angles &, whereas in
Fig. 4 for the second-order rainbow, there appear to
be six such angles. The reason for this is at present
unknown, although we speculate that these invariant
points are a consequence of the reflection symmetry
of the two-half-ellipse cross section about the y’ axis.
Last, the behavior of the Fourier coefficients when
€.ve 18 either positive (as in Fig. 3) or negative (as in
Fig. 4) is qualitatively similar.

The tables and the figures derived from our two
numerical experiments demonstrate for n = 1.474
that (1) the first- and the second-order rainbow an-
gles have similar sensitivities to the average elliptic-
ity of the cylinder cross section, (2) because the
second-order rainbow is far more sensitive to the el-
lipticity difference than is the first-order rainbow,
observation of the second-order rainbow provides a
sensitive test for deviations of the cylinder cross sec-
tion from ellipticity, and (3) the refractive index, the
average ellipticity, and the ellipticity difference are
encoded primarily in the m = 0, 2, 3 Fourier coeffi-
cients, respectively.

3. Experiment

Light-scattering experiments were performed on a
glass rod of length 13.4 = 0.05 cm and with a nearly
circular cross section of nominal diameter 16 mm.
We had previously estimated the refractive index and
the average ellipticity of the rod to be n = 1.484 and
€.ve = 0.04, respectively.>1? In the present experi-
ment, the rod was mounted on a calibrated rotation
stage whose axis coincided with the rod’s major axis.
The A = 0.6328 pm unpolarized beam of a 15-mW
He—Ne laser was expanded to a 5.0-cm diameter by a
series of lenses and was normally incident upon the
rod. Coincidence of the rotation stage axis and the
rod’s major axis was ensured by requiring that the
shadow of the rod on a viewing screen 3 m away
remain stationary as the rod was rotated.

In order to obtain a more accurate estimate of the
rod’s refractive index and ellipticity than we had pre-
viously made, we measured the scattering angle of
the first- and the second-order rainbows to an accu-
racy of =0.05° (i.e., the width of the principal Airy
peak) as the rod was rotated in 5° increments. The
first-order rainbow was measured 89 cm away from
the rod axis and the second-order rainbow was mea-
sured 48 cm away. To ensure that local inhomoge-
neities or inclusions in the glass were not strongly
affecting our results, measurements of the p = 2 and
the p = 3 rainbow angles were made at two different
points, separated by 8 cm, along the rod’s major axis.
Our results for both sets of measurements were iden-
tical to within =0.1°. Additional qualitative evi-
dence for the lack of large inhomogeneities is
provided by the fact that the rainbows and their su-
pernumeraries, as seen on the viewing screen, were

165 r

160

155

92(5_,) (deg)

150

h
Experiment RS Theory

0 45 90 135 180 225 270 315 360
& (deg)

Fig. 5. Experimental first-order rainbow deviation angle as a
function of the rotation angle & and the theoretical fit of the two-
half-ellipse cross-section model with n = 1.474, €,,, = —0.037, and
Ae = 0.026.

straight lines parallel to the rod’s major axis, rather
than curving back and forth, as was the case for other
less carefully manufactured glass and plastic rods we
had previously examined. Because the rainbow an-
gles were measured less than 100 radii from the rod,
we corrected the data to the far zone by taking into
account the near-zone curvature of the rainbow caus-
tics by using the method outlined in the Appendix of
Ref. 20. The correction produced a systematic 0.40°
shift for the first-order rainbow angle and a system-
atic 0.89° shift for the second-order rainbow angle.
The corrected experimental data are shown in Figs. 5
and 6. A Fourier-series decomposition of the cor-
rected data was also performed and the first six Fou-
rier coefficients are given in Tables 5 and 6.

As is seen in Figs. 5 and 6, both the first- and the
second-order rainbow angles were not stationary as
the rod was rotated, indicating that the rod’s cross
section is not circular. Further, the second-order
rainbow data clearly do not possess 180° rotational
symmetry, indicating that the rod’s cross section does
not possess twofold symmetry. The first-order rain-
bow data also do not possess 180° rotational symme-
try, but the effect is smaller, as is expected from the

270 | <°“o— Experiment

8,(8) (deg)

0 45 90 135 180 225 270 315 360
& (deg)

Fig. 6. Experimental second-order rainbow deviation angle as a
function of the rotation angle & and the theoretical fit of the two-
half-ellipse cross-section model with n = 1.474, €., = —0.037, and
Ae = 0.026.
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Table 5. First Six Fourier Coefficients in Degrees of the Experimental
First-Order Rainbow Deviation Angle and of ezR(g) for a Cylinder with a
Two-Half-Ellipse Cross Section, Refractive Index n = 1.474, Average
Ellipticity €,,, = —0.037, and Ellipticity Difference Ae = 0.026

Fourier Coefficient Experiment Theory
E, 153.990 154.579
E, -0.071 0.101
F, 0.063 0.029
E, -5.217 —5.022
F, —1.909 —2.378
E, 0.131 0.118
Fy 0.129 0.090
E, -0.721 0.303
F, 0.514 —0.058
E; —0.061 -0.071
Fy 0.314 -0.119

analysis of Section 2. Assuming for the moment
that the rod’s cross section was elliptical (i.e., Ae = 0),
the numerical ray-tracing method of Section 2 was
used to preliminarily fit the m = 0, 2 Fourier coeffi-
cients of the experimental data. The orientation of
the widest part of the rod’s cross section could not be
visually determined to any better than =5° when the
rod was placed on the rotation stage, and, as a result,
some uncertainty in the £ = 0° orientation of the rod
was produced. Thus the quantities (E,2 + F,2)/2
and (Gy2 + H,?Y? were fitted rather than the indi-
vidual Fourier coefficients because translations of the
data along the ¢ axis, corresponding to different
choices for the £ = 0° orientation of the rod, affect only
the phase angle of the Fourier coefficients for a given
value of m while keeping the magnitude constant.
The magnitudes of the experimental first- and
second-order rainbow m = 0, 2 Fourier coefficients
were numerically fitted equally well by n = 1.474 =
0.002 and € = +0.038 = 0.001. The two ellipticities,
differing by only a minus sign, correspond to a rota-
tion of the & = 0° orientation of the ellipse by 90°.
Our previous refractive-index estimate!® is less pre-
cise than the present measurement because the
second-order rainbow angle depends sensitively on &
when 6,% ~ 0,°. Thus a possible slight misalign-

Table 6. First Six Fourier Coefficients in Degrees of the Experimental
Second-Order Rainbow Angle and of 0;7(£) for a Cylinder with a
Two-Half-Ellipse Cross Section, Refractive Index n = 1.474, Average
Ellipticity €., = —0.037, and Ellipticity Difference Ae = 0.026

Fourier Coefficient Experiment Theory
G, 262.673 262.587
G, —0.103 —0.030
H, —0.283 0.092
G, 0.500 0.570
H, —4.287 —4.389
G, 1.404 1.491
H, 2.093 2.177
Gy 0.645 0.342
H, —1.908 0.267
Gy —0.220 0.314
Hy 0.380 —0.439
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ment of the rod in our previous measurement, made
when 0,% ~ 0,°, would have had significant conse-
quences.

Once the m = 0, 2 Fourier coefficients were esti-
mated, the ellipticity difference Ae was varied in our
numerical ray-tracing method, and the refractive in-
dex and the average ellipticity were slightly adjusted
from their previously obtained values until the ex-
perimental Fourier coefficient magnitudes (E;* +
F32)Y? and (G52 + H;)Y?, along with E,, G, (E2 +
F22)1/ 2 and (G, + H22)1/ 2 were matched as well as
possible. Both the first- and the second-order rain-
bow Fourier coefficient magnitudes were numerically
fitted well by n = 1.474 = 0.002, €,,, = —0.037 =
0.001, and Ae = 0.026 *= 0.001. The theoretical fits
are shown in Figs. 5 and 6, and the first six theoret-
ical Fourier coefficients are given in Tables 5 and 6.
The correspondence in Figs. 5 and 6 is not perfect, as
the actual shape of the rod’s cross section is not ex-
actly that of two half-ellipses smoothly joined on the
x' axis. This is evidenced by our inability to match
exactly both the smaller m = 1 and m = 4 Fourier
coefficients (in a few cases even the signs are incor-
rect) and to match simultaneously all the phases of
the dominant m = 2, 3 coefficients. But allin all, the
two-half-ellipse model did a good job of reproducing
the major features of the experimental data, espe-
cially the double oscillation of the second-order rain-
bow angle in the range 250° = £ = 360°. A good fit
of the m = 0, 2, 3 Fourier coefficients for both rain-
bows with a single n, €,,., and Ae is also an encour-
aging sign. Finally, after the experimental data was
fitted, the largest and the smallest diameters of the
rod’s cross section were measured with a micrometer
and were found to be 16.414 + 0.01 mm and 15.794 =+
0.01 mm, respectively, giving €,,, = —0.0378 =
0.0006, in agreement with the value determined by
the Fourier coefficient matching method.

We then measured the angular positions of the
supernumeraries of the first-order rainbow for a rep-
resentative rod rotation angle by masking a photode-
tector with a 0.1-mm slit aperture and advancing its
position in 0.013-mm increments with a calibrated
stepper motor. An angular scan of the light inten-
sity in the vicinity of the first-order rainbow is shown
in Fig. 7. Because the aperture slit was wide com-

Intensity (Arb. Units)

ol ‘ ‘ ‘ . 1
-0.2 Q 0.2 0.4 0.6 0.8

AB (deg)

Fig. 7. Experimental light intensity I in the vicinity of the first-
order rainbow as a function of scattering angle Af. The peak of
the principal rainbow maximum corresponds to Af = 0°.



pared with the increment step, the scan somewhat
blurred the rainbow features, reduced the rainbow
signal with respect to the background scattered light,
and eliminated the high-spatial-frequency structure
caused by the interference of the p = 2 rays with the
p = 0 specularly reflected rays.2 But it did not shift
the positions of the supernumerary maxima and min-
ima. We obtained an estimate of the rod diameter
by fitting the angular positions of the relative max-
ima and minima of the data with the maxima and the
minima of the square of an Airy function.22 The
average diameter obtained from the first four max-
ima and the first four minima of the experimental
data is 23.6 = 0.5 mm, which is 47% higher than the
actual average diameter. Previous comparisons of
the supernumerary positions with Airy theory for a
pendant water droplet with a 2-mm horizontal diam-
eter did not show such a discrepancy.23

This large discrepancy was not unanticipated, how-
ever. As we rotated the rod through a complete rev-
olution, we noted that the supernumerary structure
of both the first- and the second-order rainbows al-
ternately expanded and contracted by a factor of ~2.
On the other hand, the largest and the smallest di-
ameters of the rod’s cross section differ by only 3.8%.
Thus one would expect that, as the argument of the
Airy function is proportional to a2 for a circular-cross-
section cylinder (where a is the cylinder radius), the
supernumerary pattern should expand and contract by
only 2.5%. But for a circular-cross-section cylinder in
Airy theory, the argument of the Airy function also
depends on 2~ 1/3, in which the parameter ~ depends
on p and the refractive index,22 and describes the an-
gular spreading of the outgoing flux tube of scattered
rays in the vicinity of the p — 1-order rainbow. The
angular spreading rate depends on the curvature of
the cylinder surface at the ray interaction points. As
a result, the observed variation of the width of the
supernumerary pattern as the rod was rotated may
well reflect a corresponding variation in the flux tube
angular spreading rate. This was not an issue for the
experiment of Ref. 23, in which the horizontal cross
section of the pendant droplet was circular. To test
this flux tube variation hypothesis, it would be of in-
terest to extend Airy theory to an elliptical-cross-
section cylinder. We also observed the fourth-order
rainbow in the vicinity of the second-order rainbow
and the fifth-order rainbow near backscattering. The
details of our higher-order rainbow observations are
presented separately.24

4. Visibility of the Supernumeraries of the
Second-Order Rainbow

In rain showers, the topmost portions of the first- and
the second-order rainbows are produced by light scat-
tered in the vertical plane of the approximately oblate
spheroidal falling water droplets. In the vertical
plane, the droplet cross section is nearly elliptical,
with |e,,.| increasing as the equal-volume-sphere ra-
dius @, increases. But as was seen in Section 2, the
deviation angles of the first- and the second-order
rainbows depend on both [e,,.| and on the orientation

of the incident light rays with respect to the ellipse.
This ellipticity-produced shift in the rainbow angle
with respect to the Descartes angle, along with the
Airy theory prediction that the shift in the rainbow
angle with respect to the Descartes angle decreases
as a, increases, influences the observability of the
supernumeraries at the topmost portion of the first
and second order rainbows. For the first-order rain-
bow, the ellipticity-produced shift increases as a in-
creases and balances the decreasing shift predicted
by Airy theory. The balancing produces a relative
minimum of the deviation angle when a, ~ 0.25 mm,
which is responsible for the observability of the first
few supernumeraries at the topmost portion of the
first-order rainbow.’® On the other hand, observa-
tions of the supernumeraries of the second-order
rainbow are exceedingly rare.2526 The much
smaller ellipticity-produced shift of the second-order
rainbow for n = 1.333 balances the Airy theory shift
when a, =~ 0.7 mm for a narrow range of solar eleva-
tion angles, rendering the first one or two supernu-
meraries at the topmost portion of the second order
rainbow potentially observable under only certain
special circumstances.6

Hydrodynamic forces produce an increased flatten-
ing of the lower surface of water droplets falling at
terminal velocity, causing the cross section in the
vertical plane to deviate from ellipticity. The two-
half-ellipse model of Section 2 should closely approx-
imate the major features of the actual shape of a
water droplet’s vertical cross section. We calculated
the values of b,/a and b,/a, and from them the ellip-
ticity €,.. and the ellipticity difference Ae for a num-
ber of equivalent-sphere-radius water droplets by
using the Fourier-series parameterization of Table 2
of Ref. 14. The results are shown in Fig. 8. Also
shown in Fig. 8 are an analytical approximation to
€,vo derived in Ref. 27 and a linearization of it used in
Ref. 16. It is interesting that for a, as small as 0.35
mm, the ellipticity difference is larger than 10% of the
average ellipticity, and for a;, = 0.62 mm, Ae is more
than 20% of e_,.

Our numerical ray-tracing method shows that the
deviation angle of the first-order rainbow again de-
pends strongly on €,,, and only weakly on Ae for n =
1.333. Thus no change is produced in the observabil-
ity of the supernumeraries of the first-order rainbow.
But the shift in the deviation angle of the second-order
rainbow for the refractive index of water depends only
weakly on €, as the first order in e approximation of
Eq. (19) vanishes for n = 1.342. As a result, almost
all the ellipticity-produced shift is due to terms of
higher order in €, which are small for n = 1.333 and
leavel = 0.1, corresponding to falling water droplets of
radiiay = 1.2 pm. The shift in the deviation angle of
the second-order rainbow, however, again depends lin-
early on Ae for n = 1.333, with the result that the
nonellipticity-produced shift can easily exceed the
ellipticity-produced shift for water droplets of the size
that are found in rain showers.26 Thus the increased
flattening of the lower surface of the falling droplets
should have a strong influence on the observability of
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Fig. 8. Negative of the average ellipticity —e,,, and the ellipticity
difference Ae as functions of the equal-volume-sphere radius a, of
raindrops falling at terminal velocity and derived from the param-
eterization of Ref. 14. The filled circles are the analytical approx-
imation to —e,,, of Ref. 27, and the open circles are the linearized
approximation of Ref. 16.

the topmost portion of the first few supernumeraries of
the second-order rainbow.

We then computed the second-order rainbow devi-
ation angle for n = 1.333 by using the numerical
ray-tracing approach of Section 2 for a number of
equal-volume-sphere radii in the range 0.17 mm = q,
= 1.5 mm for various solar angles between 0° and 40°
and by using the values of €, and Ae given in Fig. 8.
As mentioned above, the second-order rainbow angle
in general shifted by an equal or greater amount
between the two-half-ellipse cross-section condition
(€ave * 0, Ae # 0) and the elliptical-cross-section con-
dition (e,,, # 0, Ae = 0) than it did between the
elliptical-cross-section condition and the spherical-
cross-section condition (e,,, = 0, Ae = 0). When
added to the Airy theory shift, the resulting second-
order rainbow deflection angle as a function of q is
shown in Figs. 9(a), 9(b), and 9(c) for solar elevation
angles of 10° (i.e., low Sun), 20° (i.e., moderate eleva-
tion), and 40° (i.e., high Sun), respectively.

For a solar elevation of 10°, the nonellipticity-
produced shift in the second-order rainbow deflection
angle is sufficiently large to cause the angle to have a
rather narrow relative minimum at a, =~ 0.38 mm for
the principal peak, at a, =~ 0.65 mm for the first
supernumerary, and at a, ~ 0.70 mm for the second
supernumerary. In a typical rain shower2® there is
over an order of magnitude fewer raindrops with ra-
dii 0.65 mm = a, = 0.70 mm than with 0.23 mm = q,
= 0.28 mm, which correspond to the relative mini-
mum droplet radii for the first two supernumeraries
of the first-order rainbow.'> The combination of
fewer contributing droplets, the reduced brightness
of the second-order rainbow with respect to the first-
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Fig. 9. Deviation angle of the second-order rainbow 6;% with re-
spect to the Descartes second-order rainbow angle 6;” as a function
of the equal-volume-sphere radius a of raindrops falling at termi-
nal velocity for solar elevation angles of (a) 10°, (b) 20°, (c) 40°. In
each graph, the lowest curve is the principal Airy maximum, the
middle graph is the first supernumerary maximum, and the high-
est curve is the second supernumerary maximum.



order rainbow due to the extra internal reflection,
and the brightness of the background sky above the
second-order rainbow, provide major reasons for the
extreme rarity of observations of supernumeraries of
the second-order rainbow.2526 At solar elevation an-
gles of 20° and 40°, Figs. 9(b) and 9(c), respectively,
show that the nonellipticity-produced shift is suffi-
ciently large to cause the second-order rainbow devi-
ation angle not to possess a relative minimum,
suggesting great difficulty in second-order rainbow
supernumerary formation at moderate and high solar
elevation angles.

There are, however, three caveats to these predic-
tions. First, although we found that the deviation
angle of the second-order rainbow depends sensi-
tively on Ae for n = 1.333 in the two-half-ellipse
model, the vertical cross section of a water droplet is
only approximately modeled by two half-ellipses
smoothly joined together on the x’ axis. In particu-
lar, the radius of curvature of a water droplet is con-
tinuous everywhere, whereas it is discontinuous at
the join points in the two-half-ellipse model. As a
result, more refined modeling of the droplet surface
might produce additional nonellipticity-produced
shifting of the second-order rainbow deviation angle.
In order to examine this possibility, it would be of
interest to derive the formulas for the p — 1-order
rainbow angle when the shape of the vertical cross
section in polar coordinates is given by a Fourier
series, so that direct contact can be made with the
surface shape parameterization of Ref. 14. Second,
there is more to rainbow observability than merely
the existence or nonexistence of a relative minimum
of the rainbow deflection angle as in Fig. 9(a). In
particular, the raindrop size distribution, which is
different from one rain shower to the next and at
different heights above the ground in a given show-
er,2? must be integrated over because the rainbow
intensity is proportional to a,”/® in Airy theory.
Also, the rainbow colors become less saturated when
the intensity pattern is integrated over the angular
extent of the solar disk. These refinements were
included in Ref. 16 for oblate spheroidal water drop-
lets. Third, the supernumeraries of the second-
order rainbow can be observed in a rain shower or an
artificially made spray whose raindrop size distribu-
tion is quite narrow, even if the rainbow deviation
angle is a strictly decreasing function of a,, as is the
case in Figs. 9(b) and 9(c). This may well explain the
visibility of the first supernumerary of the second-
order rainbow in the photographs of artificially made
sprays, as described in Ref. 16.

5. Discussion

Our principal result is that the refractive index, av-
erage ellipticity, and ellipticity difference of a glass
fiber or rod can be accurately determined by fitting
the Fourier coefficients of its second-order rainbow
angle taken as a function of the rod’s rotation angle.
In our experiment, this optical method fit the average
ellipticity of the rod quite well when compared with
micrometer measurements. Theoretically the m = 3

Fourier coefficients were found to depend sensitively
on Ae for the second-order rainbow. Specifically, in
the region of parameter space corresponding to our
glass rod, the magnitude of the m = 3 coefficient
changes by 5% when Ae changes by 0.001. A change
in Ae of 0.001 corresponds to a 16-pm change in the
largest and the smallest diameters when the average
rod diameter is 16.1 mm. Resolution of distances of
the order of a number of micrometers usually re-
quires interferometric techniques. It can be argued
that observing the rainbow is an interferometric tech-
nique, as the rainbow occurs at the confluence of the
two ray paths that produce the supernumerary inter-
ference pattern. Because Mie calculations exhibit
both a well-defined second-order rainbow and super-
numeraries for a circular-cylinder size parameter of
the order of a few hundred,22 this technique should
remain feasible for fiber diameters to as low as ~40
pm.
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