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Figure 6.3.4 Failure Probability Curves Obtained Using Monte Carlo Simulation 

Modified with Importance Sampling Techniques for the Isotropic Version of the Failure 
Criterion. The Failure Data from Burchell et al. (2007) is Also Shown. 

In the figures just presented the contours are symmetric with a line that bisects the 

first and third quadrant.  This is due to isotropy.  No such symmetry exists with respect 

to a line that bisects the second and third quadrant since the material strength behavior is 

different in tension and compression.  Material anisotropy, in particular transverse 

isotropy, is explored in the next section.  With each figure the number of simulations 

was increased from n = 2,000 in Figure 6.3.1 to n = 15,000 in Figure 6.3.4.  The “noise” 
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or irregularities around the level surfaces of probability of failure decreases with each 

increase in the number of simulations.  

 
Figure 6.3.5 Failure Probability Curves Obtained Using only Monte Carlo Simulation 
for the Isotropic Version of the Failure Criterion. The Failure Data from Burchell et al. 

(2007) is Also Shown. 

 In Figure 6.3.5 the same level surfaces of probability of failure are established 

without the use of importance sampling, i.e., the curves were found using only Monte 

Carlo simulation.  In this figure and Figure 6.3.4 note that 15,000 simulations were 

utilized to establish each point on the failure probability curves.  The irregularities were 

smoothed out by increasing the number of simulations.  Earlier it was indicated that 
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importance sampling is sensitive to the importance sampling function, i.e., 
Yk .  It is 

suspected that the irregularities in the probability of failure surfaces can also be smoothed 

out with a more optimal choice in the standard deviation used for 
Yk .  Time did not 

permit conducting an optimization study for this parameter, and this effort is left for 

others to conduct.  Methods suggested in Xue et al. (2013) would be an appropriate 

starting point.  Once an optimization procedure has been established to compute a 

standard deviation for the importance sampling function representing each random 

strength variable it is anticipated that smooth curves can be obtained with fewer 

simulations.  It is clearly evident that increasing the number of simulations improves the 

results obtained using importance sampling techniques.  This is true for common Monte 

Carlo simulation techniques as well – up to a point.  At very low probability failures it 

was clear (see Figure 6.2.3) that improving Monte Carlo simulation results was 

impractical by simply increasing the number of simulations.  This indicates that 

importance sampling is the preferred method of computing equation (6.1.1) for typical 

designs where the probability of failure is quite low for economic and/or safety reasons. 

6.4 Anisotropic Limit State Functions – Importance Sampling 

 Next the concept of importance sampling is applied to the anisotropic form of the 

limit state function.  The tensile strength design variable in the preferred material 

direction (YYT), the compressive strength design variable in the preferred material 
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direction (YYC), the equal biaxial compressive strength design variable in the plane of 

isotropy (YBC), the tensile strength design variable in plane of isotropy (YTT), the 

compressive strength design variable in plane of isotropy (YTC), as well as the equal 

biaxial compressive strength design random variable with one stress component in the 

plane of isotropy (YMBC) are characterized by the two-parameter Weibull distributions.  

 To begin the method the approximate location of the MPP must be determined.  

The location of the MPP is determined through the realizations TTz , TCz , BCz , YTz , 

YCz  and MBCz .  By equation (6.2.1) all six are realizations of standard normal 

variables.  With these realizations serving as the components of a vector in the design 

variable space, the MPP is located by this vector.  The information regarding the MPP 

establishes the means for the importance sampling density functions.  Again, the 

importance sampling density functions facilitate obtaining samples in the near vicinity of 

the MPP during simulation.  Once the means 
TTYk , 

TCYk , 
BCYk , 

YTYk , 
YCYk and 

MBCYk are computed using equation (6.2.11) then the values 
TTYk , 

TCYk , 
BCYk , 

YTYk , 

YCYk and 
MBCYk  are established using equation (6.2.12).  These last six parameters are 

the variances of the importance sampling density function.  Use of equations (6.2.11) 

and (6.2.12) requires the knowledge of the means from the parent Weibull strength 

distributions, i.e., 
TTYf

 , 
TCYf

 , 
BCYf

 , 
YTYf

 , 
YCYf

 and 
MBXCYf

 as well as the standard 

deviations of the parent Weibull strength distributions, i.e., 
TTYf

 , 
TCYf

 , 
BCYf

 , 
YTYf

 , 

YCYf
 and 

MBCYf
 .   
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 Once the means and standard deviations are obtained for each importance 

sampling density function the next step requires six separate and distinct random numbers 

between zero and one.  These will serve as values for 
TTYK in the expression 
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for 
TCYK in the expression 
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for 
BCYK in the expression 
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for 
YTYK in the expression 

 





















 


2
1

2

1

YT

YT

YT

Y

YYT
Y

y
erfK




  (6.4.5)  

for 
YCYK in the expression 
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and for 
MBCYK  in the expression 
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The only unknowns in these expressions are the realizations of the random strength 

variables YTT, YTC, YBC, YYT, YYC and YMBC.  These realizations are obtained by inverting 

the last six expressions for these quantities.   
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 Having realizations TTy , TCy , BCy , YTy , YCy and MBCy along with means 

TTYk , 
TCYk , 

BCYk , 
YTYk , 

YCYk and 
MBXCYk as well as variances 

TTYk , 
TCYk , 

BCYk , 
YTYk

, 
YCYk and 

MBCYk then values of the sampling probability density functions  
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as well as  
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can be computed. The value of the joint probability sampling function for the jth 

simulation is then ascertained using   

 
 

                 
jMBCYjYCYjYTYjBCYjTCYjTTY

MBCYCYTBCTCTTj

ykykykykykyk

YYYYYYk

MBCYCYTBCTCTT


,,,,,
 (6.4.14)  

This joint probability sampling function is centered over the MPP 



188 

 Realizations for the random strength variables YTT, YTC, YBC, YYT, YYC and YMBC 

along with Weibull parameter (m, ) for each random strength variable are then used to 

evaluate the probability of density function  
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and 
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respectively.  A numerical value for the joint probability density  
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is computed. 
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Finally, a value for the limit state function is computed using equations (5.2.1), 

(5.2.13), (5.2.30) as well as (5.2.43) with the state of stress at the point in a component 

being evaluated and the realizations of the random strength variables.  This allows the 

computation of the indicator function using equation (6.1.3).  The quantities kj(yTT, yTC , 

yBC, yYT, yYC, yMBC ), fj(yTT, yTC , yBC, yYT, yYC, yMBC ) and I are inserted into equation 

(6.2.13) and the summation in equation (6.2.14) is performed for a sufficient number of 

iterations (i.e., large enough n) such that the method converges appropriately to Pf. 

 Figure 6.4.1 depicts the reliability surfaces for the anisotropic version of the 

limit state function.  Monte Carlo simulations with importance sampling were conducted 

in order to generate the surfaces in this figure.  For anisotropy the Weibull distribution 

parameters for each random strength variable are listed in Table 6.4.1.  Again three 

reliability surfaces are depicted in the figure that correspond to probabilities of failure of 

Pf = 5% , Pf = 50% , and Pf = 95%.  The preferred direction of the material coincides 

with the 11 axis.  Thus there is a strengthening of the material along the 11 – axis 

which is exhibited in the data from Burchell et al. (2007).  The three curves bracket the 

data from Burchell et al. (2007) along both the tensile and compressive 11 axes.  This 

reliability model captures this strengthening in compression as it did with the isotropic 

model.  The positions of the curve can be adjusted by information from the failure data 

along both the 11 and 22 axes – tensile information as well as compression information.  



190 

This gives an indication of the flexibility inherent in the model by the ability to 

accommodate for failure behavior in different material orientations.   

There is “noise” present once again.  It is quite evident in the third quadrant 

along the 95% failure probability curve.  Again, it is anticipated that the irregularities 

can be smoothed out with a “better” importance sampling density function – that is, with 

optimized variances for the sampling functions identified above.     

 

Table 6.4.1 Anisotropic Weibull Parameters 

Tensile strength, preferred direction mYT = 6.58 YT = 17.05 MPa 

Compression strength, preferred direction  mYC = 12.19 YC = 54.39 MPa 

Tensile strength, plane of isotropy mTT = 10.12 TT = 11.01 MPa 

Compression strength, plane of isotropy mTC = 10.33 TC = 35.90 MPa 

Equal biaxial compression both stress 
components in the plane of isotropy mBC = 11.85 BC = 45.95 MPa 

Equal biaxial compression, one stress 
component in the plane of isotropy  

mMBC = 13.99 MBC = 63.29 MPa 
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Figure 6.4.1 The Failure Data from Burchell et al. (2007) with Probability of Failure 
Curves Obtained Using Monte Carlo Simulation Modified with Importance Sampling 

Techniques for the Anisotropic Version of the Failure Criterion. 
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CHAPTER VII  

SUMMARY AND CONCLUSIONS 

This dissertation presents a multiaxial reliability model that captures the complex 

failure behavior of components fabricated from graphite.  Of specific interest are 

graphite components that are deployed throughout the core of nuclear reactors.  The 

failure behavior of graphite presents several unique challenges for the design engineer.  

First, bulk strength is different under tensile stress states in comparison to compressive 

stress states.  In addition, depending on the how the material is produced, graphite can 

exhibit isotropic or anisotropic failure behavior.  The reliability models derived under 

this effort can account for either and the isotropic reliability model discussed earlier is a 

special case of the anisotropic model.  At the present time anisotropic behavior is 

limited to stochastic failure that can be characterized as transversely isotropic.  Other 

types of material symmetry, e.g., orthotropic failure behavior, can be accommodated 

using the stress invariant/integrity basis techniques utilized herein.   
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7.1 Comparison With the ASME Simplified Assessment Method  

 As part of the summary a brief comparison of the reliability models developed 

here is made with the stochastic methods advocated for in the ASME Boiler and Pressure 

Vessel Code.  The design, integrity and functionality of graphite core components found 

in a nuclear reactor operating at elevated temperatures are controlled by a number of 

subsections of the “ASME Boiler and Pressure Vessel Code Section III - Rules for 

Construction of Nuclear Facility Components - Division 5 - High Temperature Reactors” 

(2010).  Hereafter this document is simply referred to as the ASME Code, or the code.  

The ASME Code Article HHA 3200 entitled “Design by Analysis – Graphite Core 

Components” delineates a number of engineering issues.  This particular section 

contains articles entitled “Requirements for Acceptability” (HHA 211), “Detailed 

Requirements for Derivation of the Material Data Sheet – As-Manufactured Properties” 

(HHA-II-3000), “Basis for Determining Stresses” (HHA 3213), “Stress Analysis” (HHA 

3215), “Calculation of Probability of Failure” (HHA 3217), and “Stress Limits for 

Graphite Core Component – Simplified Assessment” (HHA 3220).  All have specific 

relevance to this comparison made to work presented in this dissertation.  

 The acceptability of design under the ASME Code can be established by meeting 

the requirements of a simplified assessment.  The simplified assessment is conservative 

and is outlined in HHA-3220 which points to the other sections of the code just 

mentioned.  This particular code article outlines the fundamental elements of a static 
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load analysis.  Designs that focus on fatigue and deformation are addressed elsewhere in 

the ASME Code.  The static strength of graphite has been the research topic addressed 

throughout this dissertation and comparisons will be made based on this design issue.  

The simple assessment is a conservative design approach and as the code points out, not 

meeting this assessment does not disqualify a component design.  Other more in-depth 

methods of analysis can be brought to bear.  In addition, the comparison made here to 

the simplified assessment is with full knowledge that the ASME Code assumes isotropic 

material behavior.  The code does not address anisotropic behavior and that it does not 

is briefly discussed at the end of this comparison,  

 The simplified assessment begins by requiring a detailed three dimensional stress 

analysis preferably conducted using finite element analysis.  Regions of elevated 

stresses are identified, and an equivalent stress is computed in terms of the principal 

stresses in elevated stress regions.  The equivalent stress is based on maximum 

distortional energy principles and the code adopts the following expression 

                  2
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1 2  v (7.1.1)  

for the equivalent stress where 

 ii f    (7.1.2)  

and 

 1f   (7.1.3)  
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if the principal stress is tensile.  If the principal stress is compressive then 

 
tcR

f
1

   (7.1.4)  

Here Rtc is the ratio of the mean compressive strength to the mean tensile strength.  In 

addition,  is Poisson’s ratio and for graphite this material constant is taken equal to 0.15.  

The expression for the equivalent stress can be incorporated into a limit state function 

easily.  That limit state function would be expressed as  

 
T

g

 1   (7.1.5)  

where T represents the tensile strength of the material.  The tensile strength parameter 

is then treated as a random variable and reliability calculation proceed in a manner 

identical to the methods outlined in Chapter 6. 

 The code requires information regarding the mean strength of the compressive 

random variable in order to compute Rtc and subsequently the equivalent stress at any 

point.  In statistics the mean value of a random variable is considered a location 

parameter for any density function whether the density function is a normal (Gaussian) 

density function or not.  However, the code does not require, nor does it utilize any 

stochastic information relative to the scatter in compressive strength.  The code 

considers the stochastic properties of the tensile random strength variable by using the 

Weibull characteristic strength (a location parameter) and the Weibull modulus (a 
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measure of scatter or variance).  The ASME Code embraces the tensile strength as a 

random variable in a comprehensive manner but does not do the same with the 

compressive strength random variable.  The ASME Code effectively ignores stochastic 

information relative to the compressive strength of the material by discarding the scatter 

quantified by the associated Weibull modulus.  This is done with the thought that this 

simplifies design procedures. 

The ASME limit state function in equation (7.1.5) is an isotropic failure criterion.  

It has been noted throughout that data from Burchell et al. (2007) represents anisotropic 

failure behavior.  As will be seen momentarily, the data from Burchell et al. (2007) is 

convenient in facilitating a comparison between the reliability models derived here and 

the ASME based reliability models.  As a work around the tensile and compressive 

mean strengths from the data found in Burchell et al. (2007) in the preferred direction can 

be used to compute a value for Rtc..  With a value of the ratio of mean strengths and the 

Weibull parameters from tensile strength stress data one can map the probability of 

failure curve depicted in Figure 7.1.1 using equation (7.1.5).  In this figure the 50% 

probability of failure curve is projected into the 11 –22 stress space.  The curve bisects 

the data from Burchell et al. (2007) along the 11–axis as it should.  This stress axis 

coincides with the preferred (strong) direction of the material.  The 50% probability of 

failure curve should be in close proximity with the mean values of the tensile and 

compressive strength data, and from the figure it is evident this happens. 
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Figure 7.1.1 ASME Maximum Distortional Energy Probability of Failure Curve (50%) 

with the Failure Data from Burchell et al. (2007). 

 As a comparison, the isotropic reliability model derived here is also projected into 

a 11 –22 stress space in Figure 7.1.2 along with the maximum distortional energy 

reliability model just presented.  Both reliability curves are characterized using the data 

from Burchell et al. (2007) in the strong direction of the material.  The 50% probability 

of failure curve generated by simulation was presented in the previous chapter.  It is 

evident in this figure that the ASME maximum distortional energy reliability curve is 

more conservative than the isotropic reliability curve.  This is starkly apparent in the 
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biaxial compression regions of the stress space.  The isotropic reliability model is 

controlled by the biaxial strength parameter, BC, along this stress path.  Adjustment in 

the isotropic reliability model can be made along this stress path through this parameter 

indicating a degree of flexibility has been built into the model.  No such flexibility exists 

in the ASME models along this stress path.  Since failure data is unavailable for an 

equal biaxial stress load path because of the difficulty of attaining this state of stress in a 

test specimen, future efforts should include an optimization algorithm to determine the 

Weibull parameters for the biaxial compression strength random variable, BC.   
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Figure 7.1.2 Probability of Failure Curves (50%) from the Maximum Distortional 

Energy Reliability Model and the Isotropic Reliability Model.  The Failure Data from 
Burchell et al. (2007) is shown. 

 The ASME Code recognizes that the practice of assuming a fixed design margin, 

which is done for components fabricated from metal alloys, does not produce a uniform 

design reliability throughout a graphite reactor core.  As mentioned, earlier the ASME 

Code treats the tensile strength of graphite as a random variable.  The code assumes the 

tensile strength random variable is characterized by a two parameter Weibull distribution.  

This same assumption was made throughout this work for all random strength variables.  

In order to introduce a degree of conservatism in the ASME analysis the Weibull 
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parameters extracted from the tensile strength data are “knocked down.”   The code 

calls for the use of Weibull parameters that correspond to the lower limit of the 95% 

confidence bound on the estimated parameters.  At the time this dissertation was written 

the expression in the ASME code for the “knocked down” value of the Weibull 

characteristic strength at the lower bound of 95% confidence bound was incorrect.  The 

correct relationship for the 95% lower bound on the Weibull characteristic strength is 

used here.  The effects of the “knocked down” Weibull parameters called for in the 

ASME code are in evidence in Figure 7.1.3.  As a result of using the “knocked down” 

Weibull parameters the ASME maximum distortional energy probability of failure curve 

shrinks isotropically  The stress states that correspond to the 50% failure probability 

using the “knocked down” Weibull parameters are smaller in magnitude relative to those 

in the previous figure.  This imposes an unknown degree of conservatism on the design 

of graphite reactor core components.  The 95% lower bound on Weibull parameter 

estimates does not correspond to a 95% lower bound on component reliability.    
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Figure 7.1.3 Probability of Failure Curves (50%) Using the ASME Method with the 
Reduced Weibull Parameters and the Isotropic Reliability Model.  The Failure Data 

from Burchell et al. (2007) is Included. 

In order to paint a comprehensive picture of the maximum distortional energy 

reliability model a nested set of reliability curves are presented in the next figure.  Keep 

in mind that data from Burchell et al. (2007) along the tensile and compressive 11-axis is 

used as proscribed in the ASME code, i.e., “knocked down” Weibull parameters are used 

in Figure 7.1.4.  The spacing between the curves is controlled by the Weibull modulus 

obtained from the tensile data.  This aspect of the ASME approach should be 

interrogated in future efforts.   
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Figure 7.1.4 Nested Reliability Surfaces Using ASME Code Methods to Determine 
Reliability. The Failure Data from Burchell et al. (2007) is Depicted. 

These curves correspond to failure probabilities of 5%, 50% and 95% and they 

should be compared to the reliability curves found in Figure 6.3.5.  Note that the 95% 

probability of failure curve in Figure 7.1.4 is beyond the last compressive failure data 

point along the 11-axis.  This seems to infer a bit of non-conservatism for compressive 

loads.  The 95% probability of failure curve for the isotropic reliability model developed 

here is in close proximity to the largest compressive failure stress in Figure 6.3.5.  This 

would indicate that the probability of failure curve in Figure 6.3.5 for the isotropic 



203 

reliability model developed here is more conservative, and this is born out in the next 

figure.  

 
Figure 7.1.5 Probability of Failure Curves (95%) Using the ASME Method with the 

Reduced Weibull Parameters and the Isotropic Reliability Model.  The Failure Data 
from Burchell et al. (2007) is Included. 

A similar comparison is made in the next figure at the 5% probability of failure.  

In Figure 7.1.6 the ASME reliability curve using the “knocked down” Weibull 

parameters is conservative at every stress state around the curve.  This level of failure 

probability is more in line with the levels engineers would more than likely design to. 
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Figure 7.1.6 Probability of Failure Curves (5%) Using the ASME Method with the 

Reduced Weibull Parameters and the Isotropic Reliability Model.  The Failure Data 
from Burchell et al. (2007) is Included. 

Finally in Figures 7.1.5 and 7.1.6 the ASME reliability models are compared to 

the predictions from the anisotropic reliability model derived in this work.  Again, all 

models are characterized using the data from Burchell et al. (2007).  The first 

comparison of the anisotropic curve developed here is made with the ASME maximum 

distortional energy curve.  Both curves appear in Figure 7.1.1 and both curves 

correspond to a failure probability of 50% 
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Figure 7.1.7 Probability of Failure Curves (50%) from the ASME Maximum Distortional 
Energy Reliability Model and the Anisotropic Reliability Model.  The Failure Data from 

Burchell et al. (2007) is Shown. 

In Figure 7.1.7 the anisotropic reliability model tracks the data from Burchell et 

al. (2007) better than the maximum distortional energy reliability model from the ASME 

code.  This is not a surprise since it is evident at first glance at the data from Burchell et 

al. (2007) that the failure behavior of the H-451 graphite tested is anisotropic.  In this 

figure the ASME code curve is no longer conservative for all stress states.  In equal 

biaxial compression regions of the stress space the ASME code curve remains 

aggressively more conservative.  However, stress states along the 22 – axis, i.e., stress 
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states that corresponds to tensile and compressive strengths in the plane of isotropy, the 

ASME curve is no longer conservative.  This reflects the fact that the anisotropic model 

allows for more information regarding the strengths of the material as well as by the fact 

that the ASME model is characterized with failure data oriented in the strong direction of 

the material, i.e., along the 11-axis.  The fact that the ASME model does not track the 

s22 failure stresses well should not surprise.  There is no provision in the ASME Code 

for anisotropic failure behavior.  A conservative approach would be the utilization of the 

weak axis failure data, i.e., failure data in the plane of isotropy.  At the present time that 

is not called for specifically in the ASME Code.  
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Figure 7.1.8 Probability of Failure Curves (50%) Using the ASME Method with the 

Reduced Weibull Parameters and the Anisotropic Reliability Model. The Failure Data 
from Burchell et al. (2007) is Included. 

When the anisotropic model is compared to the ASME model with “knocked 

down” Weibull parameters the conservatism of the anisotropic model in the plane of 

isotropy is greatly diminished.  When the comparison is made at the 5% probability of 

failure level the ASME model with the “knocked down” Weibull parameters is more 

conservative at any stress point on the reliability curve.  This can be seen in Figure 

7.1.9. 
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Figure 7.1.9 Probability of Failure Curves (5%) Using the ASME Method with the 

Reduced Weibull Parameters and the Anisotropic Reliability Model.  The Failure Data 
from Burchell et al. (2007) is Included. 

7.2  Theoretical Development - Summary  

As noted throughout this dissertation the data from Burchell et al. (2007) 

demonstrates that certain grades of nuclear graphite exhibit anisotropic failure behavior.  

In general, anisotropy can be accounted for by introducing the concept of a vector 

representing the preferred material direction(s) to the reliability analysis.  For the 

specific case of transverse anisotropy an integrity base was developed based on earlier 
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work of Green and Mkrtichian (1977).  They developed their integrity basis in order to 

derive an isotropic constitutive model for non-linear elastic behavior.  The non-linear 

stress-strain model accounted for different elastic deformation behavior in tension and 

compression by introducing a direction vector to the integrity basis that tracked the 

direction of the maximum principal stress.  Their integrity basis was modified to 

account for a preferred direction in a material – that is, to account for material anisotropy 

exhibited in the failure behavior of nuclear graphite.  This required a second vector in 

order to track material anisotropy.  The second vector coincides with the preferred 

direction of the material, i.e., the “strong” direction of the material.  Thus the integrity 

basis assembled here accounts for two directions – on associated with the stress state of 

the material and a second associated with material symmetry.   

This integrity basis was constructed following the framework advocated for in 

Rivlin and Smith (1969) as well as Spencer (1971, 1984).  This work focused on 

isotropic failure behavior first.  A linear combination of the invariants identified by 

Green and Mkrtichian (1977) were used to formulate for four separate isotropic failure 

functions for each region of the principal stress space defined by the relative magnitudes 

of the principal stresses.  The linear combination of invariants serves as the limit state 

function for materials with different failure behavior in tension and compression.  

Constants associated with the linear combination were identified for each stress region in 

terms of simple mechanical test data.  This identified the fundamental strength 
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parameters that were later treated as random variables in transitioning from deterministic 

models of limit state functions to reliability models.  When the isotropic integrity basis 

adopted from the work of Green and Mkrtichian (1977) was extended to account for 

material anisotropy additional material strength parameters were identified.  These 

additional strength parameters that were similarly treated as random strength variables for 

the anisotropic reliability model.  Developing an isotropic failure criterion for graphite, 

transforming that failure criterion into a reliability model, and extending both to 

transverse isotropy represent the primary contribution to the body of knowledge made 

during this research project.   

The transformation from a deterministic failure criterion to a reliability model was 

enabled numerically through the use of Monte Carlo simulations augmented with 

importance sampling.  This makes the reliability model amenable for use in engineering 

design.  States of stress in a graphite core component can be analyzed using finite 

element analysis and subsequently reliability evaluations can be conducted at each 

integration point of an element within the finite element mesh.  This approach is 

advocated for at select points in a reactor component in the ASME Code.  This is also 

the analytical structure utilized in the NASA CARES software algorithms (Gyekenyesi, 

1986), but in a more comprehensive fashion.   
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7.3 Conclusions and Future Efforts 

Research projects can raise more questions then are answered.  This project took 

on that quality near the end.  When the isotropic model was extended to capture 

transverse anisotropy failure behavior the model tracked failure behavior seen in the data 

from Burchell et al. (2007).  The transversely isotropic model was characterized using 

data from Burchell et al. (2007) so the model should mimic the data used in 

characterizing the model, or the model is seriously flawed.  Typically with analytical 

models one should characterize the model with data from one type of test specimen.  

The model should then be interrogated by asking the model to predict the behavior from a 

test specimen with a completely different specimen geometry and load configuration.  

The anisotropic reliability model can and should be characterized by the data from 

Burchell et al. (2007), which was done here.  The model should then be used to predict 

failure probabilities say for an L-shaped bracket that is representative of reactor core 

components.  The predictions from the model for the second test specimen geometry 

should be compared to the failure data from the L-shaped bracket geometry and 

conclusions regarding model performance can be drawn.  This assumes the L-shaped 

brackets, or other type of test specimen with a complex stress distribution, is fabricated 

from the same material used to characterize the model.   

This approach has been advocated in Department of Energy (DoE) research 

programs and internationally collaborative industry program with a focus on nuclear 
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grade graphite.  To date this strategy has not been completely implemented for a 

particular material.  Even if testing had taken place for the two types of test specimen 

the finite element analysis required to make this comparison is beyond the work scope 

here.  This is another task for others to assess in the future.   

Reliability calculations made using the models developed here required numerical 

methods for evaluation.  The simplest approach, i.e., Monte Carlo simulation, was 

shown to be ineffective at low probabilities of failure.  Too much error is present even at 

extremely large numbers of simulations.  Yet low probabilities of failure is where an 

engineer wishes to operate a system of components.  Importance sampling mitigated 

issues at low probability of failures, but the sense here is that the sampling density 

functions can and should be optimized somehow.  Others following up on this research 

effort should look seriously into this issue. 

With regards to failure analysis for material with material symmetries other than 

transversely isotropic, the extension of a phenomenological failure criterion was made 

here for transversely isotropic failure behavior.  In the future other material symmetries, 

e.g., materials with orthotropic failure behavior, can be accommodated as well.  Duffy 

and Manderscheid (1990b) as well as others have suggested an appropriate integrity basis 

for the orthotropic material symmetry.  These should be studied in conjunction with the 

integrity basis outlined in the work of Green and Mkrtichian (1977). 
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Finally, the ASME design code is in need of a comprehensive software algorithm 

to aid design engineers in qualifying components.  This algorithm must enable the 

design engineer to calculate the reliability of graphite core components as a system where 

the stress state at every point in the component contributes to a reduction of component 

reliability, not just a select number of locations of high stress.  This admits the 

possibility of failure occurring at any point in a reactor component.  Unfortunately, the 

size effect of graphite is somewhat enigmatic.  As Nemeth and Bratton (2012) as well as 

others point out certain size effects in graphite materials is hard to characterize.  With 

regard to system reliability materials can act as a weakest link system where failure at a 

point is catastrophic.  Other materials can act as a series system where failure must take 

place at every point in the system for failure to occur.  The suspicion here is that 

graphite acts like an “r out of n” system where failure of the system occurs after a finite 

number of failures have occurred throughout the component.  This concept should be 

pursued in future efforts.  



214 

REFERENCES 

ASME Boiler and Pressure Vessel Code, ASME, Section III, Division 5, 2010.  
 
Balzer, M.A., “Mechanical Behavior of Metals under Triaxial Stress: Apparatus and 
Experiments,” Ph.D. Dissertation, University of Illinois at Urbana-Champaign, 1998. 
 
Batdorf, S.B. and Crose, J.G., “A Statistical Theory for the Fracture of Brittle Structure 
Subjected to Nonuniform Polyaxial Stress,” ASME Journal of Applied Mechanics, Vol. 
41, No. 2, pp. 459-464, 1974. 
 
Boehler, J.P. and Sawczuk, A., “On Yielding of Oriented Solids,” Acta Mechanica, Vol. 
27, pp. 185-204, 1977. 
 
Boehler, J.P., Kirillov, A.A. and Onat, E.T., “On the Polynomial Invariants of the 
Elasticity Tensor,” Journal of Elasticity, Vol 34, pp. 97-110, 1994. 
 
Boehler, J.P., “Yielding and Failure of Transversely Isotropic Solids, Applications of 
Tensor Functions in Solid Mechanics,” CISM Courses and Lectures No 292, 
Springer-Verlag, Berlin, pp. 3-140, 1987. 
 
Boresi, A.P. and Schmidt, R.J., Advanced Mechanics of Materials, 6th Edition, John 
Wiley and Sons, Inc., pp.117-129, 2003. 
 
Bridgman, P.W., “The Effect of Pressure on the Tensile Properties of Several Metals and 
Other Materials,” Journal of Applied Physics, Vol. 24, No. 5, pp.560-570, 1953. 
 
Burchell, T., Yahr, T. and Battiste, R., “Modeling the Multiaxial Strength of H-451 
Nuclear Grade Graphite,” Carbon, Vol. 45, No. 13, pp. 2570-2583, 2007. 
 
Burchell, T.D. (editor), Carbon Materials for Advanced Technologies, Elsevier, 1999. 
 
Cazacu, O., Cristescu, N.D., Shao, J.F. and Henry, J.P., “A New Anisotropic Failure 
Criterion for Transversely Isotropic Solids,” Mechanics Cohesive-Frictional Material, 
Vol. 3, pp. 89-103, 1998. 
 
Cazacu, O. and Cristescu, N.D., “A Paraboloid Failure Surface For Transversely 
Isotropic Materials,” Mechanics of Materials, Vol. 31, No. 6, pp. 381-393, 1999. 
 



215 

Cooper, N.R., Margetson, J., and Humble, S., “Probability of Failure Calculations And 
Confidence Brand Estimates For An Annular Brittle Disc Fracture Under Centrifugal 
Loading,” Journal of Strain Analysis for Engineering Design, Vol. 21, No. 3, 121-126, 
1986. 
 
Cooper, N.R., “Probabilistic Failure Prediction of Rocket Motor Components,” Ph.D. 
Dissertation, Royal Military College of Science, 1988. 
 
Coulomb, C.A., “Essai sur une Application des Regles des Maximis et Minimis a 
Quelquels Problemesde Statique Relatifs, a la Architecture,” Memoires de Mathematique 
et de Physique, presentes a l’Academie Royales Des Sciences, Vol. 7, pp. 343–387, 1776. 
 
Drucker, D.C. and Prager, W., “Soil Mechanics and Plastic Analysis For Limit Design,” 
Quarterly of Applied Mathematics, Vol. 10, No. 2, pp. 157–165, 1952. 
 
Duffy, S.F., “A Viscoplastic Constitutive Theory for Transversely Isotropic Metal 
Alloys,” Ph.D. Dissertation, University of Akron, 1987. 
 
Duffy, S.F. and Gyekenyesi, J.P., “Time Dependent Reliability Model Incorporating 
Continuum Damage Mechanics for High-Temperature Ceramics,” NASA Technical 
Memorandum 102046, 1989. 
 
Duffy, S.F. and Arnold, S.M., “Noninteractive Macroscopic Reliability Model for 
Whisker-Reinforced Ceramic Composites,” Journal of Composite Materials, Vol. 24, No. 
3, pp.235-344, 1990a. 
 
Duffy, S.F. and Manderscheid, J.M., "Noninteractive Macroscopic Reliability Model for 
Ceramic Matrix Composites with Orthotropic Material Symmetry," Journal of 
Engineering for Gas Turbines and Power, Vol. 112, No. 4, pp. 507 511, 1990b. 
 
Duffy, S.F., Chulya, A. and Gyekenyesi, J.P., “Structural Design Methodologies for 
Ceramic-Based Material Systems,” NASA Technical Memorandum 103097, 1991. 
 
Duffy, S.F., Wetherhold, R.C. and Jain, L.K., "Extension of a Noninteractive Reliability 
Model for Ceramic Matrix Composites," Journal of Engineering for Gas Turbines and 
Power, Vol. 115, No. 1, pp. 205 207, 1993. 
 



216 

Duffy, S.F., and Palko, J.L., “Analysis of Whisker Toughened CMC Structural 
Components Using an Interactive Reliability Model,” AIAA Journal, Vol. 32, No. 5, pp. 
1043-1048, 1994. 
 
Duffy, S.F., Baker, E.H., and James, C., "Standard Practice for Reporting Uniaxial 
Strength Data And Estimating Weibull Distribution Parameters For Graphite," ASTM 
Standard D 7846, 2013. 
 
Green, A.E. and Mkrtichian, J.Z., “Elastic Solids with Different Moduli in Tension and 
Compression,” Journal of Elasticity, Vol. 7, No. 4, pp. 369-386, 1977. 
 
Griffiths, A.A., “The Theory Of Rupture And Flow In Solids,” Philosophical 
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 
Vol. 221, pp. 163-198, 1921. 
 
Gyekenyesi, J.P., “SCARE - A Post-Processor Program to MSC/NASTRAN for the 
Reliability Analysis of Ceramic Components,” ASME Journal of Engineering for Gas 
Turbines and Power, Vol. 108, No. 3, 540-546, 1986. 
 
Harbitz, A., “An Efficient Sampling Method for Probability of Failure Calculations,” 
Structural Safety, Vol. 3, pp. 108-115, 1986. 
 
Haldar, A. and Mahadevan, S., Reliability Assessment Using Stochastic Finite Element 
Analysis, John Wiley & Sons, 2000. 
 
Hu, J., “Modeling Size Effects and Numerical Methods in Structural Reliability 
Analysis,” Masters Thesis, Cleveland State University, 1994. 
 
Kaufman, M. and Ferrante, J., “Statistical Model for Mechanical Failure,” NASA 
Technical Memorandum 107112, 1996 
 
Lamon, J., “Reliability Analysis of Ceramics Using the CERAM Computer Program,” 
ASME Paper No. 90-GT-98, IGTI, 1990. 
 
Li, Q.M., “Strain energy Density Failure Criterion,” International Journal of Solids and 
Structures, Vol. 38, No. 38, pp. 6997–7013, 2001. 
 
Melchers, R.E., “Importance Sampling in Structural Systems,“ Structural Safety, Vol. 6, 
pp. 3-10, 1989 



217 

 
Nova, R., and Zaninetti, A., “An Investigation Into the Tensile Behavior of a Schistose 
Rock,” International Journal of Rock Mechanics, Mining Sciences and Geomechanics, 
Vol. 27, No. 4, pp. 231-242, 1990. 
 
Palko, J.L., “An Interactive Reliability Model for Whisker- Toughened Ceramics,” 
Masters Thesis, Cleveland State University, June 1992. 
 
Paul, B., “Generalized Pyramidal Fracture and Yield Criteria,” International Journal of 
Solids and Structure, Vol. 4, pp.175-196, 1968. 
 
Romanoski, G.R. and Burchell, T.D., “Fracture in Graphite,” in Carbon Materials for 
Advanced Technologies, Burchell, T.D. (editor), Elsevier, pp. 485-534, 1999. 
 
Rivlin, R.S. and Smith, G.F., “Orthogonal Integrity Basis for N Symmetric Matrices,” in 
Contributions to Mechanics, ed. D. Abir, Pergamon Press, Oxford, pp. 121-141, 1969. 
 
Saito, S., “Role of Nuclear Energy to a Future Society of Shortage of Energy Resources 
and Global Warming,” Journal of Nuclear Materials, Vol. 398, pp. 1-9, 2010. 
 
Schleicher, F., “Der Spannungszustand an der Fließgrenze (Plastizitätsbedingung),” 
Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 6, pp. 199- 216, 1926. 
 
Spencer, A.J.M., “Theory of Invariants,” in Continuum Physics, 1, ed. A.C. Eringen, 
Academic Press, London, pp. 259-353, 1971. 
 
Spencer, A.J.M., “Continuum Theory of the Mechanics of Fibre-Reinforced 
Composites,” Spring-Verlag, pp.1-32, 1984. 
 
Sun, C.T., and S.E. Yamada. "Strength Distribution of a Unidirectional Fiber 
Composite," Journal of Composite Materials, Vol. 12.2, pp. 169-176, 1978. 
 
Tabeddor, F., “A Survey of Constitutive Educations of Bimodulus Elastic Materials,” in 
Mechanics of Bimodulus Materials, ed: C.W. Bert, Proceedings of the American Society 
of Mechanical Engineering Winter Annual meeting, AMD33, 2–5, 1979. 
 
Tresca, H., “Mémoire sur L'écoulement des Corps Solides Soumis à de Fortes Pressions,” 
Comptes Rendus, Academie de Science, Vol. 59, p. 754, 1864. 
 



218 

Tsai, S.W. and Wu, E.M., “A General Theory of Strength of Anisotropic Materials,” 
Journal of Composite Materials, Vol. 5, pp. 58-80, 1971. 
 
Theocaris, P.S., “The Elliptic Paraboloid Failure Criterion for Cellular Solids and Brittle 
Foams,” Acta Mechanica, Vol. 89, pp. 93-121, 1991. 
 
US DOE Nuclear Energy Research Advisory Committee and the Generation IV 
International Forum, “A Technology Roadmap for Generation IV Nuclear Energy 
Systems,” GIF-002-00, December 2002. 
 
Vijayakumar, K. and Ashoka, J.G., “A Bilinear Constitutive Model for Isotropic 
Bimodulus Materials,” ASME Journal of Engineering Materials and Technology, Vol. 
112, pp. 372-379, 1990. 
 
Vijayakumar, K., and Rao, K.P., “Stress-Strain Relations for Composites with Different 
Stiffness in Tension and Compression,” Computational Mechanics, Vol. 2, pp. 167-175, 
1987. 
 
von Mises, R., “Mechanik der Festen Korper im Plastisch Deformablen Zustand,” 
Göttinger Nachrichten, pp. 582–592, 1913. 
 
Weibull, W., “A Statistical Distribution Function of Wide Applicability,” Journal of 
Applied Mechanics, Vol. 18, No. 3, pp. 293-297, 1951. 
 
Weibull, W., Ingeniors Vetenshaps Akadamein, Handlingar, 151 (1939) 
 
Wetherhold, R.C., “Statistics of Fracture of Composite Materials Under Multiaxial 
Loading,” PhD Dissertation, University of Delaware, 1983. 
 
Wetherhold, R.C. and Ucci, A.M., “Probability Techniques for Reliability Analyses of 
Composite Materials,” NASA CR-195294, National Aeronautics and Space 
Administration, National Technical Information Service, 1994. 
 
Willam, K.J. and Warnke, E.P., “Constitutive Models for the Triaxial Behavior of 
Concrete,” in: Proceedings of the International Association for Bridge and Structural 
Engineer Seminar on Structures Subjected to Triaxial Stresses (Bergamo, Italy), Vol. 19, 
pp. 1-31, 1974. 
 



219 

Xue, G.F., Dai, H.Z., and Zhang, H., “An Adaptive Importance Sampling Scheme for 
Efficient Reliability Analysis,” in Safety, Reliability, Risk and Life-Cycle Performance 
of Structure & Infrastructures – Deodatis, Ellingwood & Frangopo (Eds), Taylor & 
Francis Group, London, pp. 707- 713, 2013. 


