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AN ASSESSMENT OF THE ACCURACY OF MAGENTIC RESONANCE PHASE 

VELOCITY MAPPING IN TURBULENT FLOW THROUGH ORIFICES 

SAHITYA PIDAPARTHI 

ABSTRACT 

 

Magnetic resonance phase velocity mapping (MRPVM) is an established clinical 

technique to measure blood flow. The acquired information can be used to diagnose a 

variety of cardiovascular disease. One of the main limitations of MRPVM is that it 

cannot quantify the flow under turbulent flow conditions. Such conditions develop in 

certain cases such as in heart valve stenosis and arterial stenosis. Specifically, heart valve 

stenosis is a serious disease in which the valve does not open as much as necessary for 

blood to pass through. As a result, the heart has to overwork to overcome the increased 

resistance. If untreated, the disease can lead to death. One of the diagnostic problems 

related to stenosis is that the flow through the stenotic orifice becomes turbulent, 

associated with velocity fluctuations, flow separation and recirculation downstream of the 

stenosis. Clinically, it is difficult to quantify turbulent flow. Especially in the case of 

MRPVM, turbulent flow leads to signal loss in the images, resulting in loss of valuable 

diagnostic information.   

This study aimed at investigating the effects of imaging parameters on the ability of 

MRPVM for turbulent flow quantification.  Two orifice models were used, one with a 
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      (a)                       (b)                  (c)                    (d)                    (e) 

Figure 5.14: Magnitude and phase images of the 75% orifice model at 10.5 L/min; in-

plane resolution: 0.9 x 0.9 mm
2
; at TE = 2.65 msec. (a) 6.0 cm upstream from the orifice, 

(b) at the orifice, (c) 1.0 cm downstream from the orifice, (d) 3.0 cm downstream from 

the orifice and (e) 5.0 cm downstream from the orifice. 

 

Figures 5.15-5.17 show the % error as a function of TE at each in-plane resolution 

and slice position. The measured flow rates were almost unaffected by TE at 6.0 cm 

upstream from the orifice with errors smaller than 2.0 % as seen in Figure 5.15. At the 

orifice, the flow rates were underestimated with the underestimation increasing with an 

increasing TE, except for a TE = 3.5 msec. At 1.0 cm, 3.0 cm, and 5.0 cm downstream 

from the orifice, there was again an underestimation which increased with TE.  
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Figure 5.15: Percent error in flow rate measurement as a function of TE for 75% orifice 

model, at each slice position for a true flow rate of 10.5 L/min; In-plane resolution: 0.9 x 

0.9 mm
2
. 

 

Figure 5.16 shows that the measured flow rates were well in agreement with the 

true flow rates for all TEs (TE≤5.0 msec) with errors smaller than 5.0 % at 6.0 cm 

upstream from the orifice. At the orifice, the flow rates were underestimated and the 

underestimation increased with TE exhibiting errors up to 19%. At 1.0 cm downstream 

from the orifice, there was an underestimation in the measured flow rates which increased 

with TE, except for TE=3.5msec. At 3.0 cm and 5.0 cm downstream from the orifice, the 

observed underestimation also increased with TE exhibiting errors up to 23%. 
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Figure 5.16: Percent error in flow rate measurement as a function of TE for 75% orifice 

model, at each slice position for a true flow rate of 10.5 L/min; In-plane resolution: 1.5 x 

1.5 mm
2
. 

 

Figure 5.17 indicates that at 6.0 cm upstream from the orifice, the measured flow 

rates were well in agreement with the true flow rates at all TEs with errors smaller than 

5.7%. At the orifice, the measured flow rates were underestimated and the 

underestimation increased with TE. At 1.0 cm downstream from the orifice, there was an 

underestimation in the measured flow rates which increased with TE, except for TE = 3.5 

msec. At 3.0 cm and 5.0 cm downstream from the orifice, there was also an 

underestimation which increased with TE with errors lying between 19.0 % - 29.0 % and 

5.0 % - 20.0 % respectively. 
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Figure 5.17: Percent error in flow rate measurement as a function of TE for 75% orifice 

model, at each slice position for a true flow rate of 10.5 L/min; In-plane resolution: 2.0 x 

2.0 mm
2
. 

 

Figures 5.18, 5.19, 5.20 and (A.6 and A.7 in Appendix A) display the % error in the 

flow rate as a function of the in-plane resolution for each of the TEs and each slice 

position. Figure 5.18 shows that the measured flow rates were almost unaffected by the 

resolution at all TEs at 6.0 cm upstream from the orifice. At the orifice, as seen in Figure 

5.19, the effect of the in-plane resolution on the flow rate measurements was negligible, 

except for TE = 3.5 msec, where the measured flow rate was highly underestimated at the 

highest resolution (0.9 x 0.9 mm
2
) with an error of 23.6%. The error decreased with as 

the resolution decreased. As seen in the Figures 5.20, A.6 and A.7 the flow rate 

measurements were almost unaffected by resolution at all TEs.  
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Figure 5.18: Percentage error in flow rate measurement as a function of in-plane 

resolution for the 75% orifice model; Slice position: 6.0 cm upstream; for a true flow rate 

of 10.5 L/min 

 

Figure 5.19: Percentage error in flow rate measurement as a function of in-plane 

resolution for the 75% orifice model; Slice position: at the orifice; for a true flow rate of 

10.5 L/min 
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Figure 5.20: Percentage error in flow rate measurement as a function of in-plane 

resolution for the 75% orifice model; Slice position: 1.0 cm downstream; for a true flow 

rate of 10.5 L/min 
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94 % Area Reduction Orifice Model – True Flow Rate = 5.5 L/min 

Tables 5.16-5.20 show the MRPVM measured flow rates at the five locations 

shown in Figure 4.3 for all TEs and in-plane spatial resolutions. 

 

Table 5.16: Measured flow rates (L/min) at five TEs and three in-plane spatial 

resolutions; Slice location: 6.0 cm upstream from the orifice; True Flow Rate = 5.5 Lpm; 

94% orifice model 

 

Spatial Resolution 

(mm
2
) 

TE (ms) Measured Flow 

rate (Lpm) 

 

 

0.9 x 0.9 

2.65 5.48 

3.5 5.48 

5.0 5.46 

7.5 5.50 

10.0 5.48 

 

 

1.5 x 1.5 

2.65 5.47 

3.5 5.45 

5.0 5.44 

7.5 5.45 

10.0 5.44 

 

 

2.0 x 2.0 

2.65 5.46 

3.5 5.43 

5.0 5.41 

7.5 5.43 

10.0 5.48 
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                        (a)                       (b)                    (c)                    (d)                    (e) 

Figure 5.21: Magnitude and phase images of the 94 % orifice model at 5.5 L/min; in-

plane resolution: 0.9 x 0.9 mm
2
; TE = 2.65 msec. (a) 6.0 cm upstream from the orifice, 

(b) at the orifice, (c) 1.0 cm downstream from the orifice, (d) 3.0 cm downstream from 

the orifice and (e) 5.0 cm downstream from the orifice. 

 

Figures 5.22 (A.8 and A.9 in Appendix A) shows the % error (% difference 

between the measured flow rates and true flow rates) as a function of TE for each in-

plane resolution and slice position.  

In Figures 5.22, A.8 and A.9, at 6.0 cm upstream from the orifice, the measured 

flow rates are well in agreement with true flow rates at all TEs. At the orifice and at 1.0 

cm downstream from the orifice, the underestimation increased with TE. The 

underestimation of flow rates decreased as we move away from the orifice with an 

exception of 3.0 cm and 5.0 cm downstream from the orifice. The underestimation was 
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lesser at 3.0 cm downstream from the orifice when compared to 5.0 cm downstream from 

the orifice. 

 

 

Figure 5.22: Percentage error in the flow rate measurement as a function of TE for 94% 

orifice model at each slice position for a true flow rate of 5.5 L/min; In-plane resolution: 

0.9 x 0.9 mm
2 

 

Figures 5.23, 5.24 (and Figures A.10, A.11 and A.12 in Appendix-A) shows the % 

error (% difference between the measured flow rates and true flow rates) as a function of 

in-plane resolution for each TE and slice position. In Figures A.10, A.11 and A.12 it 

seems that the measured flow rates were unaffected by resolution at all TEs and slice 

positions. In Figure 5.23, the error in the measured flow rates increased with a decrease in 

the resolution. In Figure 5.24, the measured flow rates were almost unaffected by 

resolution at TE = 2.65 msec and TE = 5.0 msec. The error in the measured flow rates 

decreased as the resolution decreased at TE = 3.5 msec and the error increased as the 
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resolution decreased at TE = 10.0 msec. At TE = 7.5 msec, the underestimation of flow 

rates is less at 1.5 x 1.5 mm
2
 resolution when compared to other resolutions. 

 

 

Figure 5.23: Percentage error in flow rate measurement as a function of in-plane 

resolution for the 94% orifice model; Slice position: 1.0 cm downstream; for a true flow 

rate of 5.5 L/min 
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Figure 5.24: Percentage error in flow rate measurement as a function of in-plane 

resolution for the 94% orifice model; Slice position: 5.0 cm downstream; for a true flow 

rate of 5.5 L/min 
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94% Area Reduction Orifice Model – True Flow Rate = 8.5 lpm 

Tables 5.21-5.25 show the MRPVM measured flow rates at the five locations 

shown in Figure 4.3 for all TEs and in-plane spatial resolutions.  

Table 5.21: Measured flow rates (L/min) at five TEs and three in-plane spatial 

resolutions; Slice location: 6.0 cm upstream from the orifice; True flow rate = 8.5 L/min; 

94% orifice model 

 

Spatial Resolution 

(mm
2
) 

TE (ms) Measured Flow 

rate (Lpm) 

 

 

0.9 x 0.9 

2.65 8.48 

3.5 8.47 

5.0 8.46 

7.5 8.46 

10.0 8.50 

 

 

1.5 x 1.5 

2.65 8.43 

3.5 8.45 

5.0 8.41 

7.5 8.42 

10.0 8.44 

 

 

2.0 x 2.0 

2.65 8.35 

3.5 8.43 

5.0 8.47 

7.5 8.47 

10.0 8.46 
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Table 5.22: Measured flow rates (L/min) at five TEs and three in-plane spatial 

resolutions; Slice location: At the orifice; True flow rate = 8.5 L/min; 94% orifice model 

 

Spatial Resolution 

(mm
2
) 

TE (ms) Measured Flow 

rate (Lpm) 

 

 

0.9 x 0.9 

2.65 5.32 

3.5 5.09 

5.0 4.36 

7.5 4.54 

10.0 4.20 

 

 

1.5 x 1.5 

2.65 5.15 

3.5 4.69 

5.0 3.51 

7.5 2.40 

10.0 2.69 

 

 

2.0 x 2.0 

2.65 3.89 

3.5 -1.06 

5.0 0.45 

7.5 3.23 

10.0 1.01 
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Table 5.23: Measured flow rates (L/min) at five TEs and three in-plane spatial 

resolutions; Slice location: 1.0 cm downstream from the orifice; True flow rate = 8.5 

L/min; 94% orifice model 

 

Spatial Resolution 

(mm
2
) 

TE (ms) Measured Flow 

rate (Lpm) 

 

 

0.9 x 0.9 

2.65 -4.11 

3.5 -2.19 

5.0 0.27 

7.5 -3.87 

10.0 -5.22 

 

 

1.5 x 1.5 

2.65 -0.89 

3.5 0.88 

5.0 -2.15 

7.5 -1.88 

10.0 -3.80 

 

 

2.0 x 2.0 

2.65 0.94 

3.5 -0.57 

5.0 -2.08 

7.5 -4.69 

10.0 -3.70 
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Table 5.24: Measured flow rates (L/min) at five TEs and three in-plane spatial 

resolutions; Slice location: 3.0 cm downstream from the orifice; True flow rate = 8.5 

L/min; 94% orifice model 

 

Spatial Resolution 

(mm
2
) 

TE (ms) Measured Flow 

rate (Lpm) 

 

 

0.9 x 0.9 

2.65 -4.30 

3.5 -6.34 

5.0 -3.39 

7.5 -3.74 

10.0 -1.88 

 

 

1.5 x 1.5 

2.65 5.32 

3.5 3.45 

5.0 1.37 

7.5 -1.67 

10.0 -2.57 

 

 

2.0 x 2.0 

2.65 4.25 

3.5 3.26 

5.0 0.77 

7.5 -1.70 

10.0 -2.48 
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Table 5.25: Measured flow rates (L/min) at five TEs and three in-plane spatial 

resolutions; Slice location: 5.0 cm downstream from the orifice; True flow rate = 8.5 

L/min; 94% orifice model 

 

Spatial Resolution 

(mm
2
) 

TE (ms) Measured Flow 

rate (Lpm) 

 

 

0.9 x 0.9 

2.65 3.89 

3.5 3.20 

5.0 5.34 

7.5 2.89 

10.0 4.17 

 

 

1.5 x 1.5 

2.65 7.01 

3.5 6.11 

5.0 3.74 

7.5 5.24 

10.0 2.82 

 

 

2.0 x 2.0 

2.65 5.97 

3.5 4.62 

5.0 6.13 

7.5 4.32 

10.0 3.78 
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                        (a)                       (b)                    (c)                    (d)                    (e) 

Figure 5.25: Magnitude and phase images of the 94% orifice model at 8.5 L/min; in-plane 

resolution: 0.9 x 0.9 mm
2
; TE = 2.65 msec. (a) 6.0 cm upstream from the orifice, (b) at 

the orifice, (c) 1.0 cm downstream from the orifice, (d) 3.0 cm downstream from the 

orifice and (e) 5.0 cm downstream from the orifice. 

 

Figures 5.26 (and Figures A.13 and A.14 in Appendix A) show the % error in the 

measured flow rate (as % difference between measured and true flow rates) as a function 

of TE for each of the in-plane resolutions and slice positions in the case of the 94% 

orifice model.  

In Figures 5.26, A.13 and A.14, at 6 cm upstream from the orifice, the measured 

flow rates were well in agreement with true flow rates at all TEs. The behavior of the 

measured flow rates is highly inconsistent at the orifice, 1.0 cm downstream from the 

orifice, 3.0 cm downstream from the orifice and at 5.0 cm downstream from the orifice.   
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Figure 5.26: Percentage error in the flow rate measurement as a function of TE for 94% 

orifice model at each slice position for a true flow rate of 8.5 L/min; In-plane resolution: 

0.9 x 0.9 mm
2 

 

Figures 5.29-5.30 ( and Figure A.18 in Appendix-A) show the % error in the 

measured flow rate  (as % difference between measured and true flow rates) as a function 

of in-plane resolution for each TE and slice positions in the case of the 94% orifice 

model. In Figure A.18, at 6.0 cm upstream from the orifice, the measured flow rates were 

well in agreement with the true flow rates at all TEs and slice positions. In Figure 5.27, 

the error in measured flow rates increased as the resolution decreased at TE = 2.65, 5.0, 

10.0 msec and exhibited an inconsistent behavior at TE = 3.5 msec and TE = 7.5 msec 

with a lowest error of 14.71% and 38.82% respectively at 2.0 x 2.0 mm
2
. In Figure 5.28, 

there is an overestimation as well as underestimation of measured flow rates at different 

resolutions and TEs. In Figure 5.29, the measured flow rates were underestimated and the 
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underestimation was highest at lowest resolution at all TEs. In Figure 5.30, at TE = 2.65 

msec and TE = 10 msec, the underestimation of flow rates is highest at 1.5 x 1.5 mm
2
 

resolution when compared to other two resolutions and vice-versa at all other TEs. 

 

 

Figure 5.27: Percentage error in flow rate measurement as a function of in-plane 

resolution for the 94% orifice model; Slice position: at the orifice; for a true flow rate of 

8.5 L/min 
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Figure 5.28: Percentage error in flow rate measurement as a function of in-plane 

resolution for the 94% orifice model; Slice position: 1.0 cm downstream; for a true flow 

rate of 8.5 L/min 

 

Figure 5.29: Percentage error in flow rate measurement as a function of in-plane 

resolution for the 94% orifice model; Slice position: 3.0 cm downstream; for a true flow 

rate of 8.5 L/min 
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Figure 5.30: Percentage error in flow rate measurement as a function of in-plane 

resolution for the 94% orifice model; Slice position: 5.0 cm downstream; for a true flow 

rate of 8.5 L/min 
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To view the measurements from a different point of view, the following figures 

show selectively the measured flow rates plotted against the true flow rates.  

Figures 5.31-5.35 show the relationship between the measured flow rates and true 

flow rates for an in-plane resolution of 0.9 x 0.9 mm
2
 for all TEs and slice positions in the 

case of the 75% orifice model. From Figure 5.31 (as well as Figures B.1 and B.2 in 

Appendix B), it can be seen that the measured flow rates remained almost unaffected by 

the resolution and TE at 6.0 cm upstream from the orifice. 

 

 

Figure 5.31: Relationship between the measured flow rate and the true flow rate for all 

TEs, at 6.0 cm upstream from the 75% orifice; In-plane resolution = 0.9 x 0.9 mm
2
.  

 

At the orifice, Figure 5.32 (and Figures B.3 and B.4 in Appendix B) shows that the 

percentage error in the underestimation of the measured flow rates was much higher for 
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the true flow rate of 1.2 L/min, when compared to that at higher flow rates, and increased 

with TE. 

 

 

Figure 5.32: Relationship between the measured flow rate and the true flow rate for all 

TEs, at the Orifice, from the 75% orifice; In-plane resolution = 0.9 x 0.9 mm
2
.  

 

Similarly, at 1.0 cm downstream from the orifice, Figure 5.33 (and Figures B.5 and 

B.6 in Appendix B) shows that the percentage error in the underestimation of the 

measured flow rates was much higher for the true flow rate of 1.2 L/min, when compared 

to that at higher flow rates, and it also increased with in TE. The measured flow rates 

were much closer to the true flow rate in the case of 5.5 L/min.  
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Figure 5.33: Relationship between the measured flow rate and the true flow rate for all 

TEs, at the 1 cm downstream from the 75% orifice; In-plane resolution = 0.9 x 0.9 mm
2
.  

 

In a similar way, Figure 5.34 (and Figures B.7 and B.8 in Appendix B) shows that 

the percentage error in the underestimation of the measured flow rates was much higher 

at 1.2 L/min when compared to that at higher flow rates. The percentage error in the 

underestimation was much lower at 5.5 L/min than at 10.5 L/min. The underestimation 

increased with an increase in TE. 
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Figure 5.34: Relationship between the measured flow rate and the true flow rate for all 

TEs, at the 3 cm downstream from the 75% orifice; In-plane resolution = 0.9 x 0.9 mm
2
.  

 

Figure 5.35 (and Figures B.9 and B.10  in Appendix B) shows that the percentage 

error in the underestimation of measured flow rates was much higher at 1.2 L/min when 

compared to that at higher flow rates and it decreased as the flow rate increased. Also, the 

underestimation increased with TE. 
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Figure 5.35: Relationship between the measured flow rate and the true flow rate for all 

TEs, at the 5 cm downstream from the 75% orifice; In-plane resolution = 0.9 x 0.9 mm
2
.  

 

Figures 5.36-5.40 show the relationship between the measured flow rates and true 

flow rates for an in-plane resolution of 0.9 x 0.9 mm
2
 for all TEs and slice positions in the 

case of the 94% orifice model. From Figure 5.36 (as well as Figures B.11 and B.12 in 

Appendix B), it can be seen that the measured flow rates remained almost unaffected by 

the resolution and TE at 6.0 cm upstream from the orifice. 
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Figure 5.36: Relationship between the measured flow rate and the true flow rate for all 

TEs, at 6.0 cm upstream from the 94% orifice; In-plane resolution = 0.9 x 0.9 mm
2
.  

 

At the orifice, Figure 5.37 (and Figures B.13 and B.14 in Appendix B) shows that 

the measured flow rates were underestimated and the underestimation increased with an 

increase in the flow rate and with an increase in TE. 
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Figure 5.37: Relationship between the measured flow rate and the true flow rate for all 

TEs, at the Orifice, from the 94% orifice; In-plane resolution = 0.9 x 0.9 mm
2
.  

 

Similarly, at 1.0 cm downstream from the orifice, Figure 5.38 (and Figures B.15 

and B.16 in Appendix B) shows that the measured flow rates were underestimated and 

the underestimation increased with an increase in the flow rate and with an increase in 

TE. At 8.5 L/min and at TE= 2.65 and 3.5 msec, flow rates were slightly overestimated. 
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Figure 5.38: Relationship between the measured flow rate and the true flow rate for all 

TEs, at the 1 cm downstream from the 94% orifice; In-plane resolution = 0.9 x 0.9 mm
2
.  

 

In a similar way, Figure 5.39, 5.40 (and Figures B.17, B.18, B.19 and B.20 in 

Appendix B) shows that the measured flow rates were underestimated and the 

underestimation increased with an increase in the flow rate and with an increase in TE. 

The flow rates were highly underestimated at 8.5 L/min. 
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Figure 5.39: Relationship between the measured flow rate and the true flow rate for all 

TEs, at the 3 cm downstream from the 94% orifice; In-plane resolution = 0.9 x 0.9 mm
2
.  

 

 

Figure 5.40: Relationship between the measured flow rate and the true flow rate for all 

TEs, at the 5 cm downstream from the 94% orifice; In-plane resolution = 0.9 x 0.9 mm
2
.  
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In summary, the shorter the TE the better the measured flow rates and the in plane spatial 

resolution has a minimal effect on measured flow rates. 
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CHAPTER VI 

 

DISCUSSION 

 

The main aim of this study was to determine the ability of MRPVM to measure 

flow under turbulent flow conditions. In order to achieve this goal, two hypotheses were 

tested:  

1. The lower the TE, the higher the accuracy of MRPVM under turbulent flow 

conditions 

2. The higher the spatial resolution, the higher the accuracy of MRPVM under 

turbulent flow conditions 

Axial MRPVM images were acquired for the two orifice models in a 1.5T Siemens 

MRI scanner under steady flow conditions.  Images were acquired under various flow 

rates, imaging slice locations and imaging parameters as discussed in previous chapters.  

Overall, the study indicated that lower TEs (2.65 msec and 3.5 msec) resulted in 

more accurate flow rates compared to higher TEs (5.0 msec, 7.5 msec, 10.0 msec). 
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Although the flow was turbulent (based on the Reynolds number), no signal loss was 

observed in the case of the 75% orifice model. Measurements showed an underestimation 

for a true flow rate of 1.2 L/min at 6.0 cm upstream from the orifice. In the case of 94% 

orifice model, slight signal loss was observed for a true flow rate of 5.5 L/min and 

significant signal loss was observed for 8.5 L/min. 

The in-plane spatial resolution had a significant effect only in the 94% orifice 

model and at 5.5 L/min and 8.5 L/min true flow rates. The higher resolution (0.9 x 0.9 

mm
2
) resulted in more accurate measurements of the flow rate when compared to lower 

resolutions in most of the cases. The effect of in-plane resolution is negligible in all other 

cases. 

Flow patterns in the arteries are governed by several important factors like blood 

viscosity, blood density, blood vessel diameter, elasticity of the muscular layer and 

smoothness of the vascular lumen. Laminar and turbulent are the basic types of blood 

flow patterns found in normal and diseased human arteries. Laminar flow is smooth flow 

in which all flow is in the same direction and is stable with streamline formations staying 

intact. It occurs at velocities up to a certain critical velocity and above this velocity, the 

flow is turbulent. In turbulence flow is characterized by multi-directional, multi-velocity 

streams. Vessel tortuosity and the collapse of high velocity jets to an arterial stenosis are 

the common reasons for turbulence.  In clinical practice, this phenomenon is commonly 

seen downstream from the stenosis. The turbulence effects create excessive wall 

vibrations as well as multi velocity profiles flowing through the vessel in many different 

directions. The occurrence of turbulence also depends on the diameter of the vessel and 
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the viscosity of the blood. This is expressed by the ratio of inertial to viscous forces 

which is nothing but Re. In humans, the critical velocity is sometimes exceeded in the 

ascending aorta at the peak of systolic ejection, but mainly when there is an occlusion in 

an artery. Turbulent effects can be seen frequently in anemic cases because the viscosity 

of the blood is lower [65].  

Presence of stenosis produces higher velocities. When the flow is in one direction, 

Doppler frequency spectrum shows elevated peak systolic velocities greater than 200 

cm/sec and velocities greater than 140 cm/sec at end diastolic components. But 

downstream from the stenosis, there may be flow reversals and turbulence which 

increases the velocities to even higher values. Peak systolic values continue to increase 

with an increase in the degree of stenosis. Downstream from the stenosis, the Doppler 

signals indicate decreased velocities and absence of diastolic flow [65]. 

The Reynolds numbers used in the study vary between 1271 and 11124 at the 

upstream (ID = 2.0 cm) for both the models. Under normal conditions, the heart supplies 

about 5.5 L/min of blood to the body. But under abnormal conditions the flow rates can 

go upto five times the normal conditions [64]. The ID of the ascending aorta is 

approximately an inch which is close to the ID of the models used (2.0 cm). Also the 

models were similar in geometry with the aorta. At a flow rate of 5.5 L/min and the 

density and viscosity of blood being 1050 kg/m
3
 and 0.0035 kg/m-sec, the Re number is 

approximately 1379 under healthy conditions. But as mentioned previously under 

abnormal conditions the flow rates can go upto five times resulting in Re = 6895. In our 

study a range of Re with the lowest being 1271 and highest being 11124 were studied.  
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Results indicate that at these Re values and lower, the lower TEs (2.65 msec and 3.5 

msec) measured accurately when compared to higher TEs (5.0, 7.5, 10.0 msec) with error 

percentages below 10.0% in case of 75% area reduction. Also higher resolution (0.9 x 0.9 

mm
2
) measured accurately with errors lying within 10.0 % when compared to lower 

resolution (2.0 x 2.0 mm
2
) where the errors were upto 40.0%. When compared to the 

physiological conditions, the flow rates can be accurately measured during early systole 

but at higher Re, the intensity of turbulence is very high that the imaging parameters do 

not play a role in determining the accuracy of MRPVM.   

As the area of reduction increased further, the MRPVM is accurate upto flow rates 

of 5.5L/min and at lower TEs (2.65 and 3.5 msec) with errors lying within 25.0% when 

compared to higher TEs (5.0, 7.5 and 10.0 msec) where the errors reached up to 58.0%. 

But as the flow rate increased further at higher order Re, the behavior of the flow rates is 

undefined and the intensity of turbulence is very high that the flow rates did not have any 

particular trend at such high Re values. 

In summary, the study indicates that MRPVM is accurate for an upstream Re values 

upto 5827 and area reduction of 94%, but at Re values higher than 5827, MRPVM can 

lead to errors in measurements due to signal loss. 

Results are discussed in detail as follows: 

The Effects of TE 

Starting with the 75% orifice model, the measured flow rates upstream of the orifice 

were in close agreement with the true flow rates for all TEs used. This was true in all 
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flow rate cases except for 1.2 L/min in which case they were slightly underestimated, 

probably due to an  experimental error, especially considering that it was more 

challenging to achieve a stabilized flow rate value in the lower flow rate cases (some 

vibration of the rotameter indicator was seen) than in the higher ones.  

Figures 6.1 and 6.2 show no signal loss in the central region of the model, because 

the Reynolds number at the orifice and 1.0 cm downstream from the orifice was 

relatively low (Upstream Re = 1271, Orifice Re = 2543).  However, some signal loss was 

observed between the central region and the wall of the model, especially at the “3 

o‟clock” and “9 o‟clock” regions as seen in Figure 6.1. This was due to some flow 

disturbance secondary to small flow detachment immediately downstream of the orifice 

(which the imaging slice was covering) and flow recirculation causing a small intravoxel 

de-phasing. As a result, the flow rates were underestimated and the underestimation 

increased with an increase in TE. This is because as the echo time increases, the protons 

have more time between slice excitation and signal readout to move randomly in all 

directions (as a result of the turbulent velocity fluctuations) and thus cause voxel 

dephasing and errors in the velocity measurements. In fact, as the measurement location 

moved further downstream from the orifice, the underestimation increased as the 

turbulent jet diffused in the flow field causing more intense multi-directional flow 

patterns. The largest underestimation was observed was at 5.0 cm downstream from the 

orifice and for TE = 10.0 msec.  
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(a)                (b)               (c)               (d)             (e) 

Figure 6.1:  Set of magnitude images (top) and phase images (bottom) from the 75% 

orifice model; Slice location: at the orifice; Flow Rate = 1.2 L/min, Orifice Re = 2543; 

Spatial Resolution: 0.9x0.9 mm
2
; TE: (a) 2.65, (b) 3.5, (c) 5.0, (d) 7.5, and (e) 10.0 msec. 

 

     

     

(a)                (b)               (c)               (d)             (e) 

Figure 6.2:  Set of magnitude images (top) and phase images (bottom) from the 75% 

orifice model; Slice location: 1.0 cm downstream from the orifice, Flow Rate = 1.2 

L/min, Upstream Re = 1271; Spatial Resolution: 0.9x0.9 mm
2
; TE: (a) 2.65, (b) 3.5, (c) 

5.0, (d) 7.5 and (e) 10.0 msec. 
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In Figures 6.3 the underestimation of the flow rates was higher at the lower TEs 

(TE = 2.65 and TE = 3.5 msec) when compared to higher TEs. Although the flow through 

the model was turbulent with a Re = 11654 at the orifice and Upstream Re = 5827 

downstream from the orifice, there was not much signal loss.  

 

     

     

(a)                (b)               (c)               (d)             (e) 

Figure 6.3:  Set of magnitude images (top) and phase images (bottom) from the 75% 

orifice model; Slice location: at the orifice, Flow Rate = 5.5 L/min, Orifice Re = 11654; 

Spatial Resolution: 0.9x0.9 mm
2
; TE: (a) 2.65, (b) 3.5, (c) 5.0, (d) 7.5 and (e) 10.0 msec. 

 

Figure 6.4 shows that, the signal in the magnitude images improved with a decrease 

in TE. This is the result of the turbulent velocity fluctuations causing voxel dephasing 

and thus inducing errors in flow measurements 
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 (a)                (b)               (c)               (d)             (e) 

Figure 6.4:  Set of magnitude images (top) and phase images (bottom) from the 75% 

orifice model; Slice location: 1.0 cm downstream from the orifice, Flow Rate = 5.5 

L/min, Upstream Re = 5827; Spatial Resolution: 0.9x0.9 mm
2
; TE: (a) 2.65, (b) 3.5, (c) 

5.0, (d) 7.5 and (e) 10.0 msec. 

 

Figures 6.5 and 6.6 show that the signal loss in the magnitude images and the noise 

in the phase images improved as the TE decreased. The flow through the model was 

highly turbulent with Re = 22248 at the orifice and Re = 11124 downstream from the 

orifice. As a result with an increase in TE, the protons have more time to move randomly 

in all directions and thus leading to intra voxel dephasing effects. 
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(a)                (b)               (c)               (d)             (e) 

Figure 6.5:  Set of magnitude images (top) and phase images (bottom) from the 75% 

orifice model; Slice location: at the orifice, Flow Rate = 10.5 L/min, Orifice Re = 22248; 

Spatial Resolution: 0.9x0.9 mm
2
; TE: (a) 2.65, (b) 3.5, (c) 5.0, (d) 7.5 and (e) 10.0 msec. 

 

     

     

(a)                (b)               (c)               (d)             (e) 

Figure 6.6: Set of magnitude images (top) and phase images (bottom) from the 75% 

orifice model; Slice location: 1.0 cm downstream from the orifice, Flow Rate = 10.5 

L/min, Upstream Re = 11124; Spatial Resolution: 0.9x0.9 mm
2
; TE: (a) 2.65, (b) 3.5, (c) 

5.0, (d) 7.5 and (e) 10.0 msec. 
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Overall, although the flow was turbulent, not much signal loss was observed in the 

case of the 75 % orifice model. The signal loss in the magnitude images increased with 

an increase in TE. 

 

In the 94% orifice model, the measured flow rates upstream of the orifice were in 

close agreement with the true flow rates for all TEs used.  

 

Figures 6.7 – 6.10 show that the signal loss in the magnitude images and the noise 

in the phase images improved with a decrease in TE. Slight signal loss was observed at 

1.0 cm downstream from the orifice and TE = 7.5 msec. Shorter TEs (2.65 and 3.5 msec) 

measured better at 5.5 L/min and the signal loss had an effect on the flow measurements 

leading to underestimation of the Flow rates at all TEs and slice locations. As the 

measurement location moved further downstream from the orifice, the underestimation 

increased as the turbulent jet caused more multi-directional flow patterns. This turbulence 

effect was more significant at 8.5 L/min. 
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      (a)            (b)            (c)            (d)             (e) 

Figure 6.7:  Set of magnitude images (top) and phase images (bottom) from the 94% 

orifice model; Slice location: At the orifice; Flow Rate = 5.5 L/min, Orifice Re = 23308; 

Spatial Resolution: 0.9x0.9 mm
2
; TE: (a) 2.65, (b) 3.5, (c) 5.0, (d) 7.5 and (e) 10.0 msec. 

 

     

     

      (a)            (b)            (c)            (d)             (e) 

Figure 6.8:  Set of magnitude images (top) and phase images (bottom) from the 94% 

orifice model; Slice location: 1.0 cm downstream from the orifice; Flow Rate = 5.5 

L/min, Upstream Re = 5827; Spatial Resolution: 0.9x0.9 mm
2
; TE: (a) 2.65, (b) 3.5, (c) 

5.0, (d) 7.5 and (e) 10.0 msec. 
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      (a)            (b)            (c)            (d)             (e) 

Figure 6.9:  Set of magnitude images (top) and phase images (bottom) from the 94% 

orifice model; Slice location: 3.0 cm downstream from the orifice; Flow Rate = 5.5 

L/min, Upstream Re = 5827; Spatial Resolution: 0.9x0.9 mm
2
; TE: (a) 2.65, (b) 3.5, (c) 

5.0, (d) 7.5 and (e) 10.0 msec. 

 

     

     

      (a)            (b)            (c)            (d)             (e) 

Figure 6.10:  Set of magnitude images (top) and phase images (bottom) from the 94% 

orifice model; Slice location: 5.0 cm downstream from the orifice; Flow Rate = 5.5 

L/min, Upstream Re = 5827; Spatial Resolution: 0.9x0.9 mm
2
; TE: (a) 2.65, (b) 3.5, (c) 

5.0, (d) 7.5 and (e) 10.0 msec. 

 

Figure 6.11 shows that the signal loss in magnitude images and noise in phase 

images improved with a decrease in TE. The flow is highly turbulent with Re = 44496. 
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As the TE increased, the protons have more time to move randomly in all directions and 

thus causing voxel dephasing and errors in flow measurements.  

 

     

     

      (a)            (b)            (c)            (d)             (e) 

Figure 6.11:  Set of magnitude images (top) and phase images (bottom) from the 94% 

orifice model; Slice location: At the orifice; Flow Rate = 8.5 L/min, Orifice Re = 44496; 

Spatial Resolution: 0.9x0.9 mm
2
; TE: (a) 2.65, (b) 3.5, (c) 5.0, (d) 7.5 and (e) 10.0 msec. 

 

Figures 6.12 – 6.14 show that TE did not have much effect on the signal loss in the 

magnitude images. The flow through the model is turbulent with Re = 11124. In the case 

of phase images, the noise improved with a decrease in TE, lower TEs (2.65 and 3.5 

msec) measured better when compared to higher TEs because of lesser dephasing effects. 

Though there is signal loss observed at 1.0 cm downstream from the orifice, flow rates 

were overestimated at TE = 7.5 msec and TE = 10.0 msec. Signal loss was observed at 

TE = 3.5 msec at all the slice locations downstream from the orifice. 
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      (a)            (b)            (c)            (d)             (e) 

Figure 6.12:  Set of magnitude images (top) and phase images (bottom) from the 94% 

orifice model; Slice location: 1.0 cm downstream from the orifice; Flow Rate = 8.5 

L/min, Upstream Re = 11124; Spatial Resolution: 0.9x0.9 mm
2
; TE: (a) 2.65, (b) 3.5, (c) 

5.0, (d) 7.5 and (e) 10.0 msec. 

 

     

     

      (a)            (b)            (c)            (d)             (e) 

Figure 6.13:  Set of magnitude (top) and phase images (bottom) from the 94% orifice 

model; Slice location: 3.0 cm downstream from the orifice; Flow Rate = 8.5 L/min, Re = 

11124; Spatial Resolution: 0.9x0.9 mm
2
; TE: (a) 2.65, (b) 3.5, (c) 5.0, (d) 7.5 and (e) 10.0 

msec. 
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      (a)            (b)            (c)            (d)             (e) 

Figure 6.14:  Set of magnitude (top) and phase images (bottom) from the 94% orifice 

model; Slice location: 5.0 cm downstream from the orifice; Flow Rate = 8.5 L/min, Re = 

11124; Spatial Resolution: 0.9x0.9 mm
2
; TE: (a) 2.65, (b) 3.5, (c) 5.0, (d) 7.5 and (e) 10.0 

msec. 

 

The Effects of In-plane Resolution 

In the case of 75% orifice model, resolution had a minimal effect on the flow 

measurements. The effect can be seen at flow rates of 5.5 L/min and 10.5 L/min, at the 

orifice and at TE = 3.5 msec. At 5.5 L/min the measured flow rates exhibited errors of 

18.2%, 30.4%, and 40.7% at 0.9 x 0.9, 1.5 x 1.5 and 2.0 x 2.0 mm
2
 in-plane resolutions, 

respectively. Thus agreeing with the hypothesis of the higher the resolution the better the 

accuracy in the flow rate measurements. On the other hand, at 10.5 L/min, the measured 

flow rates followed a different trend with the highest resolution exhibiting the maximum 

error and the error decreased as the resolution decreased. This is an exception.  

 



111 

 

    

Figure 6.15: Percentage error in flow rate measurement as a function of in-plane 

resolution for the 75% orifice model; Slice position: at the orifice; for a true flow rate of 

5.5 L/min 

 

 

 

Figure 6.16: Percentage error in flow rate measurement as a function of in-plane 

resolution for the 75% orifice model; Slice position: at the orifice; for a true flow rate of 

10.5 L/min 
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In the case of 94% orifice model, resolution played a significant role in the flow 

measurements. At 5.5 L/min, the in-plane resolution did not play a significant role in 

affecting the flow rate measurements with a few exceptions. At 1.0 cm downstream from 

the orifice the error in the measured flow rates increased with a decrease in the resolution, 

thus the results were in agreement with our hypothesis. But at 5.0 cm downstream from 

the orifice and TE = 7.5 msec, the measured flow rates were more accurate at 1.5 x 1.5 

mm
2 

resolution when compared to the other 2 resolutions (0.9 x 0.9 mm
2
 and 2.0 x 2.0 

mm
2
).  

 

 

Figure 6.17: Percentage error in flow rate measurement as a function of in-plane 

resolution for the 94% orifice model; Slice position: 5.0 cm downstream; for a true flow 

rate of 5.5 L/min 

 

2.65

3.5

5

7.5

10

Error %

Resolution, mm2

94% orifice, 5.5 L/min, 5.0 cm downstream from the orifice



113 

 

At 8.5 L/min, the in-plane resolution had a significant effect on the flow 

measurements at all the slice locations except for the 6.0 cm upstream. At the orifice, the 

error in the flow measurements increased with a decrease in the resolution, thus proving 

that the higher the resolution the accurate the measurements except at TE = 3.5 and 7.5 

msec, where the behavior is inconsistent which might be due to the signal loss effect. At 

1.0 cm downstream from the orifice, though signal loss was observed, the some of the 

measured flow rates were overestimated, thus the signal loss did not show an effect on 

the measurements. Surprisingly, at 3.0 and 5.0 cm downstream from the orifice, the lower 

resolution (2.0 x 2.0 mm
2
) resulted in accurate flow measurements compared to the 

highest resolution (0.9 x0.9 mm
2
). It is clear that the high turbulence and signal loss had 

an effect on the measurements at 8.5 L/min and at slice locations downstream of the 

stenosis. 

 

Figure 6.18: Percentage error in flow rate measurement as a function of in-plane 

resolution for the 94% orifice model; Slice position: at the orifice; for a true flow rate of 

8.5 L/min 
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Figure 6.19: Percentage error in flow rate measurement as a function of in-plane 

resolution for the 94% orifice model; Slice position: 1.0 cm downstream; for a true flow 

rate of 8.5 L/min 

 

 

Effect of Imaging Parameters and Geometry on MRPVM Flow Measurements 

 

One of the hypotheses of the study was that lower TEs provide more accurate flow 

measurements. In order to avoid signal loss, appropriate Venc values were chosen in all 

flow rate cases. In the study, major signal loss was observed in the 94% orifice model and 

for a true flow rate of 8.5 L/min. A slight signal loss was observed for the 5.5 L/min true 

flow rate case as well. This has affected the flow measurements at those particular flow 

rates. Approximately, for the same Re = 23000, no signal loss was observed in case of 

75% orifice model, but signal loss was observed in case of 94% orifice model. Also, the 
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results indicate that lower TEs (2.65 msec and 3.5 msec) produced more accurate flow 

rate measurements compared to higher TEs. In general, the results of this study are in 

agreement with previous similar studies [62]. Measurements were slightly underestimated 

at 1.2 L/min and at 6.0 cm upstream from the orifice. This possibly is due to experimental 

errors.  

In-plane spatial resolution had a significant effect only in the 94% orifice model and 

at 5.5 L/min and 8.5 L/min flow rates. The higher resolution (0.9 x 0.9 mm
2
) measured 

accurately when compared to the lower resolutions in most of the cases. The effect of in-

plane resolution is negligible in other cases. 

The effect of geometry can also be clearly seen. For the same Reynolds number, the 

signal was observed in case of 94 % orifice model but not in 75 % orifice model. Also, 

the effect of turbulence can be clearly seen from the signal loss in the flow compensated 

magnitude images and noise in the phase images. 

As the Reynolds number increased, the effect of TE on the flow rate measurements 

increased, as a result we can see more scattering of the results at higher Reynolds 

numbers (i.e. at 8.5 L/min). 
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CHAPTER VII 

 

LIMITATIONS AND FUTURE RECOMMENDATIONS 

 

There were several limitations in the study conducted. First and foremost, water 

was used as the working fluid, whose viscosity differs from that of the blood. Secondly, 

the orifice models used have stationary walls whereas the tissue walls contract and 

expand during the blood flow in the human body.  

All the experiments were carried out under steady flow conditions whereas pulsatile 

flow conditions prevail in-vivo. The results need to be validated. Finally only two 

degrees of area reduction orifice model were tested. Another limitation was the 

experiments were carried out only once, no repetitions were performed. 

Experiments need to be conducted to compare the steady flow results with the 

pulsatile flow results. Also, in our experiments studies were conducted only on two 

orifice models, further study on more degrees of area reduction orifice models would be 

useful in evaluating the accuracy of MRPVM in measuring Flow rates.  



117 

 

Comparing these results with CFD simulated results might provide valuable 

information for clinical valuation. Also studying more number of TEs in a short range at 

lower TE values might provide us information in choosing better TEs in clinical studies. 
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CHAPTER VIII 

 

CONCLUSIONS 

 

The main of this study was to investigate the effect of vessel geometry and imaging 

parameters (echo times and in-plane spatial resolution) on the quality of acquired 

MRPVM data in turbulent flow conditions. Two glass models with different percentage 

of area reductions were used in the experiments. The experiments were carried out using 

five different TE values: 2.65, 3.5, 5.0, 7.5 and 10.0 msec and three different in plane 

spatial resolutions: 0.9 x 0.9 mm
2
, 1.5 x1.5 mm

2
, 2.0 x 2.0 mm

2
 and at four different 

Flow rates: 1.2, 5.5, 8.5 and 10.5 L/min. Axial MRPVM acquisitions were acquired at 

five different slice positions: 6 cm upstream from the orifice, at the orifice, 1 cm 

downstream from the orifice, 3 cm downstream from the orifice and 5 cm downstream 

from the orifice. Flow rates were obtained from the acquired phase images and then 

compared with the true Flow rates measured via rotameter to see the accuracy. 
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The results prove that MRPVM is very accurate under laminar flow conditions but 

leads to underestimation of Flow rates under turbulent flow conditions. Turbulence and 

signal loss were the main reasons for the underestimation of the Flow rates. This 

underestimation increased with an increase in the flow rate and with an increase in the 

percentage of area reduction in the orifice. Resolution had a negligible effect on the 

measurements but when it comes to echo times, lower TEs measured accurately 

compared to higher TEs.  

From our experiments we conclude that MRPVM can be used for flow 

measurements under laminar flow conditions, but more in vivo studies and CFD 

simulations needs to be carried out to see its efficiency under turbulent flow conditions. 
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Appendix A 

 

 

Figure A.1: Percentage error in flow rate measurement as a function of in-plane 

resolution for the 75% orifice model; Slice position: 1.0 cm downstream; for a true flow 

rate of 1.2 L/min 
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Figure A.2: Percentage error in flow rate measurement as a function of in-plane 

resolution for the 75% orifice model; Slice position: 3.0 cm downstream; for a true flow 

rate of 1.2 L/min 

 

 

Figure A.3: Percentage error in flow rate measurement as a function of in-plane 

resolution for the 75% orifice model; Slice position: 5.0 cm downstream; for a true flow 

rate of 1.2 L/min 
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Figure A.4: Percentage error in flow rate measurement as a function of in-plane 

resolution for the 75% orifice model; Slice position: 3.0 cm downstream; for a true flow 

rate of 5.5 L/min 

 

 

Figure A.5: Percentage error in flow rate measurement as a function of in-plane 

resolution for the 75% orifice model; Slice position: 5.0 cm downstream; for a true flow 

rate of 5.5 L/min 
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Figure A.6: Percentage error in flow rate measurement as a function of in-plane 

resolution for the 75% orifice model; Slice position: 3.0 cm downstream; for a true flow 

rate of 10.5 L/min 

 

 

Figure A.7: Percentage error in flow rate measurement as a function of in-plane 

resolution for the 75% orifice model; Slice position: 5.0 cm downstream; for a true flow 

rate of 10.5 L/min 
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Figure A.8: Percentage error in the flow rate measurement as a function of TE for 94% 

orifice model at each slice position for a true flow rate of 5.5 L/min; In-plane resolution: 

1.5 x 1.5 mm
2 

 

 

Figure A.9: Percentage error in the flow rate measurement as a function of TE for 94% 

orifice model at each slice position for a true flow rate of 5.5 L/min; In-plane resolution: 

2.0 x 2.0 mm
2
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Figure A.10: Percentage error in flow rate measurement as a function of in-plane 

resolution for the 94% orifice model; Slice position: 6.0 cm upstream; for a true flow rate 

of 5.5 L/min 

 

 

Figure A.11: Percentage error in flow rate measurement as a function of in-plane 

resolution for the 94% orifice model; Slice position: At the orifice; for a true flow rate of 

5.5 L/min 
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Figure A.12: Percentage error in flow rate measurement as a function of in-plane 

resolution for the 94% orifice model; Slice position: 3.0 cm downstream; for a true flow 

rate of 5.5 L/min 

 

 

Figure A.13: Percentage error in the flow rate measurement as a function of TE for 94% 

orifice model at each slice position for a true flow rate of 8.5 L/min; In-plane resolution: 

1.5 x 1.5 mm
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Figure A.14: Percentage error in the flow rate measurement as a function of TE for 94% 

orifice model at each slice position for a true flow rate of 8.5 L/min; In-plane resolution: 

1.5 x 1.5 mm
2 

 

 

Figure A.15: Percentage error in flow rate measurement as a function of in-plane 

resolution for the 94% orifice model; Slice position: 6.0 cm upstream; for a true flow rate 

of 8.5 L/min 
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Appendix B 

 

Figure B.1: Relationship between the measured flow rate and the true flow rate for all 

TEs, at 6.0 cm upstream from the 75% orifice; In-plane resolution = 1.5 x 1.5 mm
2
.  

 

 

Figure B.2: Relationship between the measured flow rate and the true flow rate for all 

TEs, at 6.0 cm upstream from the 75% orifice; In-plane resolution = 2.0 x 2.0 mm
2
.  
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Figure B.3: Relationship between the measured flow rate and the true flow rate for all 

TEs, at the orifice, from the 75% orifice; In-plane resolution = 1.5 x 1.5 mm
2
. 

 

 

Figure B.4: Relationship between the measured flow rate and the true flow rate for all 

TEs, at the orifice, from the 75% orifice; In-plane resolution = 2.0 x 2.0 mm
2
. 
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Figure B.5: Relationship between the measured flow rate and the true flow rate for all 

TEs, at 1.0 cm downstream from the 75% orifice; In-plane resolution = 1.5 x 1.5 mm
2
. 

 

 

Figure B.6: Relationship between the measured flow rate and the true flow rate for all 

TEs, at 1.0 cm downstream from the 75% orifice; In-plane resolution = 2.0 x 2.0 mm
2
. 
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Figure B.7: Relationship between the measured flow rate and the true flow rate for all 

TEs, at 3.0 cm downstream from the 75% orifice; In-plane resolution = 1.5 x 1.5 mm
2
. 

 

 

Figure B.8: Relationship between the measured flow rate and the true flow rate for all 

TEs, at 3.0 cm downstream from the 75% orifice; In-plane resolution = 2.0 x 2.0 mm
2
. 
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Figure B.9: Relationship between the measured flow rate and the true flow rate for all 

TEs, at 5.0 cm downstream from the 75% orifice; In-plane resolution = 1.5 x 1.5 mm
2
. 

 

 

Figure B.10: Relationship between the measured flow rate and the true flow rate for all 

TEs, at 5.0 cm downstream from the 75% orifice; In-plane resolution = 2.0 x 2.0 mm
2
. 
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Figure B.11: Relationship between the measured flow rate and the true flow rate for all 

TEs, at 6.0 cm upstream from the 94% orifice; In-plane resolution = 1.5 x 1.5 mm
2
. 

 

 

Figure B.12: Relationship between the measured flow rate and the true flow rate for all 

TEs, at 6.0 cm upstream from the 94% orifice; In-plane resolution = 2.0 x 2.0 mm
2
. 
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Figure B.13: Relationship between the measured flow rate and the true flow rate for all 

TEs, at the orifice, from the 94% orifice; In-plane resolution = 1.5 x 1.5 mm
2
. 

 

 

Figure B.14: Relationship between the measured flow rate and the true flow rate for all 

TEs, at the orifice, from the 94% orifice; In-plane resolution = 2.0 x 2.0 mm
2
. 
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Figure B.15: Relationship between the measured flow rate and the true flow rate for all 

TEs, at 1.0 cm from the 94% orifice; In-plane resolution = 1.5 x 1.5 mm
2
. 

 

 

Figure B.16: Relationship between the measured flow rate and the true flow rate for all 

TEs, at 1.0 cm from the 94% orifice; In-plane resolution = 2.0 x 2.0 mm
2
. 
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Figure B.17: Relationship between the measured flow rate and the true flow rate for all 

TEs, at 3.0 cm from the 94% orifice; In-plane resolution = 1.5 x 1.5 mm
2
. 

 

 

Figure B.18: Relationship between the measured flow rate and the true flow rate for all 

TEs, at 30 cm from the 94% orifice; In-plane resolution = 2.0 x 2.0 mm
2
. 
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Figure B.19: Relationship between the measured flow rate and the true flow rate for all 

TEs, at 5.0 cm from the 94% orifice; In-plane resolution = 1.5 x 1.5 mm
2
. 

 

 

Figure B.20: Relationship between the measured flow rate and the true flow rate for all 

TEs, at 5.0 cm from the 94% orifice; In-plane resolution = 2.0 x 2.0 mm
2
. 
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