
13

Figure 5: Motes send their local time stamps at the time of car passing through them
to the sink. Sink in turn send the collected data to the base station, where it analyzes
the received data.

3.2 Requirements of Time Synchronization Proto-

col

The time synchronization protocols to be applicable to these low power net-

works then have to meet the following requirements:

• The protocol should be able to maximize time synchronization precision among

the motes.

• The functioning of the protocols should not end up using more power to main-

tain synchronization in the network.

14

3.3 Type of Time Synchronization Protocols

Many algorithms have been proposed keeping above requirements into consid-

eration and achieved a high precision in the range of micro seconds [2] [3] [4] [5] [6] [8]

[12] [13] [14]. Every time synchronization protocols depend upon message exchange

between the motes to achieve the process of synchronization. The efficiency of the

time synchronization protocols depends upon the amount of precision it achieves and

number of message exchanges it uses to achieve synchronization. Time synchroniza-

tion protocols can be broadly divided into two categories depending upon the process

of achieving synchronization by the protocol. They are

• Symmetric

• Asymmetric

In symmetric protocols, mote which initializes the synchronization process and

mote which responds to the initiator mote both send and receive messages as part of

synchronization. In short protocols which involve in bi-directional message exchange

are symmetric protocols. Pair wise synchronization is one of the examples of sym-

metric protocols. Protocols which come under the category of symmetric protocols

are TPSN [3] , delay measurement time synchronization [14], tiny sync [6] etc.

Protocols in which there is only unidirectional message exchange as a part of

synchronization, those protocols are termed as asymmetric protocols. Some of the

widely used asymmetric protocols are FTSP [4], RBS [2], converge to max [13]etc.

15

One Time Synchronization

Time in sec

0

Initially

T
im

e
d
if
fe

re
n
ce

 i
n
 s

ec Sync
After

“t” sec
After

“2t” sec
After

“3t” sec

Figure 6: Shows how one time synchronization, still makes motes ending up with
different local time after certain period of time.

3.4 Problem with Current Time Synchronization

Protocols

Consider two motes running some time synchronization protocols to get syn-

chronized. Motes initially perform process of synchronization and get synchronized

to some level of precision and as time goes on, the time difference between two motes

increases due to hardware limitation (discussed in Section 2.1) . The time difference

at a give time between two motes after the process of synchronization is called as

Drift. As a result, the effect of doing synchronization process vanishes and time

difference between the motes tends to increase. In short, drift increases as time goes

on (see Figure 6).

16

Periodic Synchronization

Time in sec

0

Initially
T
im

e
d
if
fe

re
n
ce

 i
n
 s

ec Sync
After

“t” sec
After

“2t” sec
After

“3t” sec

Figure 7: Shows how periodic synchronization can keep motes synchronized.

The existing solution to this problem is periodic synchronization, which is

part of every time synchronization protocol. In periodic synchronization, motes pe-

riodically perform process of synchronization. The period after which motes perform

the process of synchronization is called as period of synchronization. As a result

of doing periodic synchronization time difference between two motes at any given

time is limited(which depends upon on period of synchronization)(see Figure 7).

Periodic synchronization solution to maintain nodes in synchronization ends

up as a costly solution as nodes periodically have to do message exchange as a part

of synchronization which results in lot of power consumption. The only way power

expenditure can be reduced is by actively reducing the number of messages being sent

out. This problem of power loss due to message exchange can be reduced by use of

software component, called Booster for time synchronization protocol (BTSP).

CHAPTER IV

BOOSTER FOR TIME

SYNCHRONIZATION PROTOCOL

After all, every time synchronization protocol is trying to do its job by keeping

the nodes as tightly synchronized as possible by doing periodic synchronization. It is

the application that decides on what level of synchronization is required, and this level

of accuracy can change during the lifetime of the application deployment. Further,

the application only cares that the quality of service it requests is actually available.

It does not care about how it is achieved. In particular, if the same level of accuracy

can be provided by performing local computations, this is preferred, since the lifetime

of the nodes battery source can be extended.

This thesis propose a software component, called Booster for Time Synchroniza-

tion Protocol (BTSP) [1] that continually monitors the drift between two nodes, and

performs internal corrections of the local clock value. When the time synchronization

protocol wants to initiate a message exchange with another node in order to synchro-

nize with it, BTSP checks to see if this message exchange is actually necessary (based

17

18

on the level of accuracy that the application needs). BTSP allows the message ex-

change to proceed only if the quality of service required by the application is in danger

of being violated. Otherwise, the message exchange does not occur. Given the variety

in different time synchronization protocols, it is designed in way that this behavior

to be outside of the context of the protocol itself. Otherwise, to apply this wrapper,

one should revisit the implementation of every time synchronization protocol in use.

Accordingly, BTSP has been designed as a wrapper (similar to the Decorator design

pattern [21]) around the component that manages messaging on the node. As such,

the implementation of BTSP is a drop-in replacement for radio interface providing

component, and the time synchronization protocol does not need any modification in

its implementation other than using this component, and initializing it with the right

parameters.

4.1 BTSP Algorithm

Any time synchronization protocol has a process of maintaining synchroniza-

tion between a pair of nodes or in the entire network. The main function of the BTSP

wrapper is to improve the performance of the time synchronization protocol without

degrading its accuracy or efficiency. The BTSP wrapper is designed to work with any

time synchronization protocol that involves pair-wise collaboration between nodes.

For example, the Timing-sync Protocol for Sensor Networks (TPSN) [3] works by

exchanging clock information between two nodes. Similarly, in the Reference Broad-

cast Synchronization (RBS) scheme [2], nodes compare the recorded timestamps of

a reference broadcast sent by a beacon. By contrast, in the Flooding Time Synchro-

nization Protocol (FTSP) [4], nodes synchronize based on the roots broadcast. The

current design of BTSP is not directly applicable to such a protocol.

Consider a time synchronization protocol that fits the aforementioned profile.

19

Suppose that the protocol mandates that a synchronization action, in the form of

a message exchange, is to be performed at the rate of every TP seconds. Further

suppose that the maximum synchronization error (between any two nodes) allowable

for the application under consideration is DLimit. The following description shows how

the BTSP wrapper will interact with the time synchronization protocol in use, and

how the wrapper will sustain time synchronization while reducing message exchanges.

This behavior is captured in Figure 8. For the ensuing discussion, lets us assume that

two motes A and B are participating, and further, we will describe the actions from

the point of view of node A.

The BTSP wrapper first allows the time synchronization protocol (TSP) com-

ponent to establish synchronization, through whatever means it uses. This might be

a simple handshake in a protocol such as TPSN, or a reference broadcast followed by a

comparison in a protocol such as RBS. Regardless, this first step is essential. At this

time, motes A and B are apart with a minimum synchronization error of D1.Following

this, the BTSP wrapper forces the node to be quiet and does not allow the node to

send any messages for a set period of time that we call the training period, TTraining.

This TTraining is chosen to be a multiple of TP , and so, at the end of TTraining, the

node participates in a message exchange.

As a result of this message exchange with node B, A can again calculate the

relative drift between A and B. Let us call this drift D2. Using these two drift values,

the average drift (DAvg) per second can be calculated as:

DAvg =
D2 −D1

TTraining

(4.1)

Using this average drift per second, and the limit on synchronization error

(provided by the application) (DLimit), the BTSP wrapper can estimate how long it

is safe not to participate in a handshake message exchange.

20

Figure 8: BTSP Timeline.

21

Figure 9: Time Synchronization stack at each node.

TW =
DLimit

DAvg

(4.2)

The TSP needs to interact with the BTSP wrapper for bootstrapping purposes,

but after that it can function without any interaction with BTSP. But yet BTSP

does not change the operations of the TSP. So even though TSP does know about the

existence of the BTSP wrapper, still at every TP interval, will initiate a handshake

message exchange. This is done by invoking send command on the communication

component (normally by send component provided in TinyOS, but since our wrapper

has replaced it, our BTSP component) (Figure 9). At this point, BTSP will intercept

this message attempt, and will make the decision of whether or not this message is

sent out on the radio. Instead of sending the message, the BTSP wrapper will provide

feedback to the TSP component as though the message exchange was completed with

B. Since it can calculate what the drift should be (based on its training), the response

that BTSP provides to TSP will not be substantially different from what it would

receive from a real message exchange. We refer to this phase of the protocol as the

internal correction period.

22

Figure 10: Message interception by BTSP Wrapper.

Since the internal corrections that BTSP is performing are all based on esti-

mates, there will be some error creep over time. Eventually, in TW seconds, the BTSP

wrapper will allow the next message exchange initiated by the TSP to go through. At

the end of this new message exchange, the BTSP wrapper will learn of a new drift

value DN . This drift value is used to update the current average drift per second

(DAvg). Over time, since the BTSP wrapper is continuously learning and updating

the average drift between the two nodes, the length of time during which message

exchanges are not needed (TW) will likely increase. After the average drift has suf-

ficiently matured, the frequency of message exchange with the BTSP wrapper will

be substantially smaller than that of the bare TSP (TW >> TP). Consequently, the

number of message exchanges that are required will decrease progressively, thereby

increasing the energy efficiency of time synchronization (Figure 10) .

4.2 Application of BTSP Wrapper

Most important point that has to be noted regarding the BTSP wrapper is, it

never initiates message exchange and it merely acts as a gatekeeper where it checks

whether to allow a message to be sent out or not. BTSP wrapper does not affect the

message structure of the message that has to send out and also it does not interfere

while receiving a message. As mentioned in Section 4.1, BTSP wrapper can be used

23

with many existing time sync protocols. The changes that need to be made in existing

TinyOS applications in order to leverage BTSPs advantages are as follows:

• The first change required in a TSP implementation is that the TSP must boot-

strap BTSP to mark the specific kinds of messages that are used for synchro-

nization handshakes. The purpose of this bootstrapping is that the TSP com-

ponent (such as level discovery, tree membership, secure key sharing, etc.), and

the application itself (sensor readings, health status, etc.), will send several

kinds of messages during the deployment. The BTSP wrapper only concerns

itself with handshake messages. For this, BTSP provides an interface called

TSBootstrap. Using this interface, the TSP and the application can register

the message type(s) that may need to be blocked by BTSP. All other kinds of

messages are simply let through by BTSP.

• The second change that is required is for the application to tell BTSP what the

tolerable synchronization error is. To do this, the BTSP component provides

the SetTolerance interface. The application can call the SetTolerance.set()

command to provide the expected quality of service level to the wrapper.

This tolerance level can be changed during the deployment lifetime as well.

For example, suppose that the application were to decide, based on available energy

levels, and based on advice from, say, the Energy Management Architecture [22], that

the tolerance can be increased, BTSP can be reconfigured on the fly to use this new

tolerance level.

4.2.1 BTSP Implementation in TinyOS -1.x

In TinyOS-1.x, GenericComm provides send and receive interfaces to the layers

above it. The send and receive interfaces in GenericComm are linked with send and

24

Figure 11: Wiring diagram for time synchronization in TinyOS-1.x.

Figure 12: Wiring diagram for time synchronization in TinyOS-1.x with BTSP Wrap-
per.

receive interfaces provided by the radio respectively (see wiring diagram in Figure 11

).

The BTSP wrapper is implemented as a drop-in replacement for Generic-

Comm in TinyOS-1.x. As such, the BTSP component provides all the interfaces

that GenericComm does. So using this component does not change the structure of

existing TinyOS application. Such applications can be minimally modified to take

advantage of BTSP with small localized changes(see wiring diagrams in Figure 12).

4.2.2 BTSP Implementation in TinyOS -2.x

In TinyOS-2.x, AMSend and AMReceive provide send and receive interfaces

respectively to the layers above it. The send interface in AMSend and receive interface

in AMReceive are linked with send and receive interface respectively provided by the

radio (see wiring diagram in Figure 13).

The BTSP wrapper is implemented as a drop-in replacement for AMSend in

TinyOS-2.x. As such, the BTSP component provides all the interfaces that AMSend

25

Figure 13: Wiring diagram for time synchronization in TinyOS-2.x.

Figure 14: Wiring diagram for time synchronization in TinyOS-2.x with BTSP Wrap-
per.

does. So using this component does not change the structure of existing TinyOS

application(see wiring diagram in Figure 14). The AMReceive component remains

the same as BTSP wrapper is not concerned with receiving of messages.

CHAPTER V

IMPLEMENTATION AND RESULTS

In previous chapter (Chapter 4) we learn how to make any existing time syn-

chronization protocol take advantage of features provided by BTSP wrapper. In this

chapter, we will evaluate the performance of time synchronization protocol with and

without use of BTSP wrapper.

5.1 Implementation of BTSP

The implementation of the BTSP wrapper is itself composed of two parts. The

majority of the wrappers implementation is agnostic to the particular time synchro-

nization algorithm being used. However, a small portion of the implementation does

depend on the particular protocol being utilized. This protocol-specific part is where

the wrapper is customized to learn about the protocols behavior.

Our evaluation of BTSP is based on using TPSN as the time synchronization

protocol. TPSN is a symmetric protocol: a pair of nodes A and B are executing

the same set of actions relative to each other. In a different protocol, such as RBS,

26

27

which depends on reference broadcasts, and relative differences that nodes A and

B see with respect to the beacon, the bootstrapping will change a little. However,

all the protocol-specific parts of the wrapper implementation are localized to the

TSBootstrap interface. The other commonly-used interfaces (Send and Receive, in

particular) are protocol-agnostic and do not change with the particular time synchro-

nization protocol being used.

5.2 Results

It is hard to predict the amount by which a pair of nodes will differ from

each other after certain amount of time as every node works at different oscillating

frequency due to hardware limitations. Using a time synchronization protocol we can

only set the period of synchronization but not the limit on synchronization error.

However, by using the BTSP wrapper, an application has the luxury of setting the

limit on the amount of synchronization error that can be tolerated. To evaluate the

efficiency of the BTSP we have tested it with TPSN on the XSM (extreme scale

motes) [23](Figure 15) for single hop as well as multi-hop networks.

5.2.1 Efficiency of the BTSP wrapper

Before we begin to discuss the energy savings of using the BTSP wrapper in

conjunction with TPSN, we first need to establish that BTSP does not degrade the

efficiency and accuracy of TPSN in any way. Here efficiency refers to the average

synchronization error a protocol can achieve after a given process of synchronization.

Figure 16 shows the minimum synchronization error achieved by bare TPSN and

the TPSN/BTSP combination. As one can see from the Figure 16, the average

synchronization error is almost identical. This means that the BTSP wrapper indeed

maintains the same baseline as the bare implementation of TPSN alone. The protocol,

28

Figure 15: XSM Mote [24].

as explained in Section 4.1 does not do anything to interfere with the synchronization

process, except reduce the number of handshake message exchanges.

5.2.2 Message Complexity with Constant TP

Now that we have established that BTSP does not degrade TPSNs efficiency,

we can proceed to profile the performance improvements that BTSP enables. In

this first test, we fixed the synchronization period for TPSN (TP) to be a constant.

Then, we varied the maximum tolerable synchronization error (DLimit). For different

values of DLimit, we measured the number of handshake messages sent out using

bare TPSN, and TPSN/BTSP over an application deployment of one hour. The

results are shown in Figure 17. When TPSN is used without BTSP wrapper it has

to do 60 handshakes during the one hour irrespective of the limit of synchronization

error. However, when BTSP is used, it tries to maintain time difference between

nodes within the limit of synchronization error by replacing some of the handshake

message exchanges by internal corrections of the clock using the estimated value of

29

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3

Period of Synchronization (s)

A
ve

ra
ge

 S
yn

ch
ro

ni
za

tio
n

er
ro

r
(u

s)

TPSN
TPSN With BTSP

Figure 16: Efficiency of TPSN with BTSP wrapper.

30

3 4 5 10 20
0

10

20

30

40

50

60

70

Maximum Synchronization error (ms)

N
um

be
r

of
 h

an
ds

ha
ke

s
pe

r
ho

ur

TPSN
TPSN With BTSP

Figure 17: Message complexity of bare TPSN and TPSN/BTSP for constant period
of synchronization.

31

average drift (DAvg). As a result, it limits the number of handshakes. The number of

handshakes required by the TPSN when used along with the BTSP wrapper decreases

as the tolerance limit of the synchronization error increases, while TPSN has no way

of such dynamic adaptation.

5.2.3 Message Complexity with Constant DLimit

Next, we look at the number of handshake messages that are sent out with

a constant allowed synchronization error by the application (DLimit) and varying

periods of synchronization. Figure 18 shows the number of handshake messages sent

out in a deployment (one hour) with TP varying from 20 seconds to 60 seconds. As

the period of synchronization increases, the number of messages sent out by TPSN

reduces (as expected). But in all cases, the number of messages sent out by the

TPSN/BTSP combination is only a fraction of TPSNs message complexity this is

due to the fact that BTSP blocks most of the messages from being sent out by still

maintaining the synchronization error with in the allowed limit.

5.2.4 Energy Consumption

Lets examine the amount of energy consumed in maintaining time synchro-

nization. TPSN uses handshakes to maintain synchronization in the network. A

handshake involves messages exchanged between two nodes (two messages in total).

Consider a newly-deployed network and all the motes are powered with a input of

voltage of 3V. The XSM mote requires 10.4mA and 7.4mA of current to send and

receive a message respectively [20],

Power required to send a message = V oltage ∗ Current

= 10.4mA ∗ 3V

= 31.2mW

32

20 30 40 50 60
0

20

40

60

80

100

120

140

160

180

200

Period of Synchronization (s)

N
um

be
r

of
 h

an
ds

ha
ke

s
pe

r
ho

ur

TPSN
TPSN With BTSP

Figure 18: TPSN with and Without BTSP wrapper for a constant limit of synchro-
nization error.

33

Power required to receive a message = V oltage ∗ Current

= 7.4mA ∗ 3V

= 22.2mW

A handshake involves node A sending message to node B and it replies back

with a message. So a handshakes involves two send and two receive process in the

network.

Power consumed for one handshake = 2 ∗ Power required to send

+

2 ∗ Power required to receive

= 2* 31.2mW + 2* 22.2mW

= 106.8mW

As BTSP stops the node from doing the handshake, it not only saves energy at

the sending node but also in the receiver node. BTSP, in short, reduces the energy

consumption in the entire network and, consequently, increases the lifetime of the

network.

Figure 19 shows the energy consumption by TPSN with and without BTSP for

constant TP and for varying DLimit. TPSN without BTSP consumes same amount

of energy irrespective of the synchronization allowed, since TPSN lacks the capability

of dynamic adaptation based on DLimit. The energy consumption of TPSN with

BTSP decreases as synchronization error tolerance increases as fewer handshakes are

required.

5.2.5 Accuracy of Calculated Drift

The next measure of importance is how close the BTSP wrappers calculation

of drift between two nodes comes to the actual drift observed by TPSN. Figure 20

shows this comparison. As the period of synchronization increases, the actual drift

34

3 4 5 10 20
0

1000

2000

3000

4000

5000

6000

7000

8000

Maximum Synchronization error (ms)

P
ow

er
 C

on
su

m
pt

io
n

pe
r

ho
ur

 (
m

W
)

TPSN
TPSN With BTSP

Figure 19: Energy consumptions of TPSN with and without BTSP Wrapper.

35

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x 10
−3

Period of Synchronization (s)

D
rif

t b
et

w
ee

n
tw

o
no

de
s

(s
)

Actual Drift
Calculated Drift

Figure 20: The actual drift observed from handshakes in TPSN compared with the
drift calculated by the BTSP wrapper between a pair of nodes for different periods of
synchronization.

36

measured by TPSN also increases. Of note, however, is how closely the drift calculated

by the BTSP wrapper follows the actual drift. This measure is extremely important.

If the BTSP wrapper were not as accurate, then the error creep in drift will begin

to adversely affect the performance of time synchronization, even to the point of

rendering it useless with respect to the tolerance limit set by the application. The

relative drift between two nodes varies in a non-linear fashion. Towards the end of

the lifetime of nodes, the oscillating frequency decreases and relative drift between

nodes can change gradually. The BTSP wrapper does its correction, in a cumulative

linear fashion. The correction value changes after every internal correction period.

The BTSP wrapper tries to get a better estimate of the present drift between two

nodes.

5.2.6 Accuracy of Drift over Multiple Hops

In a multi-hop network setting, TPSN forms a spanning tree within the net-

work, and then initializes the process of synchronization. The drift between the root

node and other nodes in the network increases as the number of hops increases. This

is because of the compounding effect of error in the drift computation. Figure 21

shows the comparison of actual drift as measured by bare TPSN, and the drift cal-

culated by the TPSN/BTSP combination. Note how, even as the number of hops

increases, the accuracy of drift calculation does not waver.

37

0 1 2 3 4 5
0

0.002

0.004

0.006

0.008

0.01

Number of hops

D
rif

t (
s)

TPSN
TPSN With BTSP

Figure 21: The actual drift observed from handshakes in TPSN compared with the
drift calculated by the BTSP wrapper between root node and node in different hops.

CHAPTER VI

RELATED WORK

For a time synchronization protocol to be applicable to wireless sensor network

it should possess some basic characteristics like less energy consumption, scope, pre-

cision, lifetime and cost [7] [17]. BTSP Wrapper works on the same guidelines by

decreasing the number of messages exchanged to maintain the time synchronization

without affecting the precision of the time synchronization protocol.

In Reference Broadcast Synchronization [RBS] [2], a beacon broadcasts a ref-

erence message. At the receiver side, the time of arrival of the message is recorded.

All the receivers exchange their recorded time stamp and the relative offset between

the nodes is calculated. It is a receiver - receiver synchronization. The major advan-

tage of RBS is it does not require any time stamping at the sender side. Its major

drawback is, the level of accuracy is low and its a relative synchronization.

TPSN [3] proposes a simple but a very effective way of synchronization between

a pair of nodes. It is sender-receiver synchronization. It attain’s synchronization

between a pair of nodes by exchanging MAC layer time stamped message between

sender and receiver. It does achieve a twice a better performance than RBS. The

38

39

major advantage with TPSN is, receiver is trying to get synchronized with the sender

and it eliminates few delays by using MAC layer time stamping. Its disadvantage

is network needs to form a spanning tree and is not suitable for dynamic networks.

When TPSN is used along with the BTSP Wrapper it blocks the message the sender

tries to send in order to maintain synchronization. TPSN performance increases when

used with BTSP Wrapper without decreasing the efficiency (refer results Section 5.2).

FTSP [4] achieves synchronization using flooding of messages in the network.

It attains an impressive high accuracy by using a MAC layer time stamping and using

a linear regression to remove clock drift and offset.

Time diffusion Synchronization Protocol [TDP] [5] proposes a way of synchro-

nizing the whole network instead of a pair of nodes. In TDP, sink broadcasts the time

stamped messages and the randomly selected master nodes relay it to its neighboring

nodes. The neighboring nodes reply back to the master node, which calculates the

average deviation using the reply message. The master node sends the average devia-

tion to its neighboring nodes. The major advantage with this protocol is it maintains

synchronization even in presence of mobility but uses a lot of message exchange be-

tween the master node and its neighbors. BTSP Wrapper increases the efficiency of

the TDP by blocking the messages sent by the master node.

Reach back firefly algorithm [8] presents a way of achieving synchronicity rather

synchronization in the network inspired from the firefly, which means nodes are rel-

atively synchronized rather than global synchronization. In [9] authors proposes

Elapsed Time of Arrival [ETA] which is a sender- receiver time stamping service

and based on ETA two more canonical services have been proposed Routing Inte-

grated Time Synchronization [RITS] and Rapid Time Synchronization [RATS] for

multi-hop networks.

In [6] author propose Tiny-Sync and Mini-Sync. There is no clock correction

40

in Time-Sync. The way Tiny-Sync works is, it tries to estimate the drift between

two nodes. The nodes perform a handshake with time stamped messages, from these

messages we obtain one data point. By performing many handshakes many data

points are obtained, using these data points an estimation of relative offset and relative

drift are estimated. When ever a new data point is obtained the accuracy of the

estimate increases. It stores only two data points and eliminates the useless data

points

The main difference between Time-Sync and Mini-Sync is that in Time-Sync

when ever a new data point is collected it compares it with presently stored two data

points, if it better than the previous ones then it will replace the worst , otherwise it

is discarded. When as in Mini-Sync the data point before being discarded or replaced

checks whether it is useful in future by doing some calculation. The paper also argues

that instead of having global synchronization it is enough to have a level to level

synchronization. This method does not do clock correction, it just estimates the

relative drift and offset. Tiny-Sync and BTSP wrapper work on the same lines where

the average drift between the two nodes is calculated based on the past values but

the major difference and advantage of BTSP over Tiny-Sync is BTSP is a wrapper

and it can used along with any time synchronization protocol, but Tiny Sync is like

any another protocol which tries to maintain synchronization using the past values

of synchronization error. BTSP Wrapper achieves better performance compared to

Tiny-Sync as the former has a better averaging technique.

In [12], the authors present a different way of forming a spanning tree for at-

taining synchronization in entire network. It proposes a secure way of gathering data.

The method of synchronization is same as TPSN the only difference is the formation

of spanning tree. It uses fewer messages to attain the spanning tree compared to

TPSN. It is sender-receiver synchronization.

41

Converge to max is an asymmetric clock synchronization protocol [13], which

attains synchronization in network by following simple principle of every node ad-

justing its clock to at least as large as any neighbor. Whenever a node receives a

beacon it records the local time at that point. It then compares the recorded local

time with the time stamp in the received beacon and adjusts its clock if it is less than

received time stamp.It then sends out a beacon with a time stamp of its local time.

This procedure of converge to max is considered to fast converging protocol then any

another time synchronization protocol. One drawback of this protocol is, when a new

node joins the network with highest local time then every clock in the network has

to be updated.

Delay Measurement Time Synchronization [14] is another simple time synchro-

nization protocol, with main advantage being using less number of message to attain

time synchronization in the network. The biggest drawback of this method is, ac-

curacy attained is far less than some of the existing time synchronization protocols

like RBS. In this protocol, a node is elected as a leader and it broadcasts time stamp

messages. All the receivers measure the transfer delay and set their time as difference

of received time stamp and measured transfer delay. Transfer delay includes transmit

time delay, radio propagation time, receiver processing time, sender processing time.

As result all the node will synchronized to one node. In case of multi-hop network,

nodes in upper level send time stamp messages to nodes in the lower level.

Master-Slave Time Synchronization Architecture [15], point outs about the

security issues for masterslave based time synchronization protocols. It proposes

an Master Selection Algorithm (MSA) which selects a node to act as a backup for

master node in the network, so that it can replace master node in case of its failure.

The algorithm proposed adds the failure recovery feature to the existing master-slave

based time synchronization protocols. The way MSA works is it selects a node with

42

high resources to act as a backup.

In [16], authors modify the existing FTSP, so that it can be used for master-

slave type of synchronization.FTSP achieves better time synchronization compared

to any other existing protocol. FTSP is modified in a such way that a master node

periodically transmits the time stamped beacon messages and when the slave node

receives it, removes the transition errors and corrects its clock. This modified FTSP

is applied to zigbee networks.

BTSP Wrapper has been designed in a way that it can used by time synchro-

nization protocols which achieve global synchronization [10] [11](i.e all nodes tuned

to one ideal clock) or relative synchronization [8] (i.e synchronicity). Most of the time

synchronization protocols does not provide the application that is using it, the luxury

of setting the tolerable limit of synchronization error, but BTSP Wrapper work from

application point of view and allows the application to set a limit of synchronization

error.

CHAPTER VII

CONCLUSION

This thesis work proposes a Booster for Time Synchronization Protocols (BTSP)

wrapper that is designed to improve the energy efficiency of time synchronization

protocols in wireless sensor networks. While many protocols for time synchronization

have been proposed in the literature, few have the capability of dynamically tuning

themselves depending on network characteristics during a deployment. In zeal to

provide as much accuracy as possible, time synchronization protocols frequently tend

to be inefficient with respect to energy consumption. BTSP wrapper is designed as

a drop-in replacement for the messaging component, and intelligently manages when

message exchanges are necessary. For the most part, the wrapper uses the history

of handshakes to learn about the relative drift in clock values across nodes, and uses

this learning to perform internal corrections, rather than sending out messages. This

reduction in message traffic greatly increases the energy efficiency of the node and

results in increased effective lifetime for the sensor network. Implementation of BTSP

for TinyOS, and have evaluated in the context of TPSN running on XSM motes.

43

44

7.1 Future Research

BTSP wrapper is designed to work with a variety of symmetric time synchro-

nization protocols with efficiently saving a lot of energy, but there are still other

asymmetric protocols that do not fit the wrapper yet. In future BTSP Wrapper

can be modified to level of suitable to be implemented along with the asymmetric

protocols by involving a little of bit adjustments to time synchronization protocols in

use.

BIBLIOGRAPHY

[1] Dheeraj Bheemidi and Nigamanth Sridhar. A wrapper based approach to sus-

tained time synchronization in wireless sensor networks. In ICCCN’08: Pro-

ceedings of 17th International Conference on Computer Communications and

Networks, August 2008.

[2] J. Elson, L. Girod, and D. Estrin. Fine-grained network time synchronization us-

ing reference broadcasts. In In Proceedings of the Fifth Symposium on Operating

Systems Design and Implementation (OSDI 2002), December 2002.

[3] S. Ganeriwal, R. Kumar, and M. B. Srivastava. Timing-sync protocol for sensor

networks. In In the proceeding of SenSys 03, November 5-7 2003.

[4] M. Marti, B. Kusy, G. Simon, and kos Ldeczi. The flooding time synchronization

protocol. In In the Proceeding of SenSys04, November 3-5 2004.

[5] W. Su and I. F. Akyildiz. Time-diffusion synchronization protocol. In In the

Proceeding of IEEE/ACM Transactions of networking, April 2005.

[6] S. yoon, C. veerarittiphan, and M. L. Sichitiu. Tiny-sync: Tight time synchro-

nization for wireless sensor networks. 3(2).

[7] J. Elson and D. Estrin. Time synchronization for wireless sensor networks. In

IPDPS 01: Proceedings of the 15th International Parallel and Distributed Pro-

cessing Symposium, page 186. IEEE Computer Society, 2001.

[8] G. Werner-Allen, G. Tewari, A. Patel, M. Welsh, and R. Nagpal. Fireflyinspired

sensor network synchronicity with realistic radio effects. In SenSys 05: Proceed-

45

46

ings of the 3rd international conference on Embedded networked sensor systems,

page 142153. ACM Press, 2005.

[9] B. Kusy, P. Dutta, P. Levis, M. Maroti, A. Ledeczi, and D. Culler. Elapsed time

on arrival: A simple and versatile primitive for time synchronization services.

International Journal of Ad hoc and Ubiquitous Computing, 2(1):239251, 2006.

[10] A. swol Hu and S. D. Servetto. Asymptotically optimal time synchronization

in dense sensor networks. In in WSNA 03: Proceedings of the 2nd ACM inter-

national conference on Wireless sensor networks and applications, pages 1–10.

ACM Press, 2003.

[11] H. Dai and R. Han. Tsync: a lightweight bidirectional time synchronization

service for wireless sensor networks. SIGMOBILE Mob. Comput. Commun. Rev.,

8(1):125–139, 2004.

[12] S. Chen, A. Dunkels, F. Osterlind, T. Voigt, and M. Johansson. Time synchro-

nization for predictable and secure data collection in wireless sensor networks.

In The Sixth Annual Mediterranean Ad Hoc Networking WorkShop, June 12-15

2007.

[13] T. Herman and C. Zhang. Stabilizing clock synchronization for wireless sensor

networks.

[14] S. Ping. Delay measurement time synchronization for wireless sensor networks.

Intel Research Berkeley Lab, 2003.

[15] F. Otto, D. P. Mirembe, E. Olule, and S. Ouyang. Enhanced master-slave time

synchronization architecture for wireless sensor networks. In In the proceedings

of ATNAC, December 2006.

47

[16] D. Cox, E. Jovanov, and A. Milenkovic. Time synchronization for zigbee net-

works. In In the Proceedings of the 37th SSST, 2005.

[17] J. Elson and K. Romer. Wireless sensor networks: A new regime for time syn-

chronization. In In Proceedings of the First Workshop on Hot Topics in Networks

(HotNetsI), October 2002.

[18] TinyOS Wiki. http : //en.wikipedia.org/wiki/T inyos.

[19] TinyOS. http : //www.tinyos.net.

[20] Mica2 Datasheet. http : //www.xbow.com/products/Product pdf files/Wireless

pdf/MICA2 Datasheet.pdf .

[21] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of

reusable object-oriented software. Addison-Wesley Professional, 1995.

[22] X. Jiang, J. Taneja, J. Ortiz, A. Tavakoli, P. Dutta, J. Jeong, D. Culler, P. Levis,

and S. Shenker. An architecture for energy management in wireless sensor net-

works. SIGBED Rev., 4(3):31–36, 2007.

[23] P. Dutta, M. Grimmer, A. Arora, S. Bibyk, and D. Culler. Design of a wireless

sensor network platform for detecting rare, random, and ephemeral events. In

IPSN 05: Proceedings of the 4th international symposium on Information pro-

cessing in sensor networks, page 70. IEEE Press, 2005.

[24] XSM. http : //www.cs.berkeley.edu/ prabal/projects/index.html.

