Solid-state Mechanical Properties of Crystalline Drugs and Excipients

Document Type


Publication Date


Publication Title

Journal of Thermal Analysis and Calorimetry


Thermal mechanical analysis (TMA) of crystalline drugs and excipients in their pre-melt temperature range performed in this study corroborate their newly found linear dielectric conductivity properties with temperature. TMA of crystalline active pharmacy ingredients (APIs) or excipients shows softening at 30–100 °C below the calorimetric melting phase transition, which is also observed by dielectric analysis (DEA). Acetophenetidin melts at 135 °C as measured calorimetrically by DSC, but softens under a low mechanical stress at 95 °C. At this pre-melting temperature, the crystals collapse under the applied load, and the TMA probe shows rapid displacement. The mechanical properties yield a softening structure and cause a dimensionally slow disintegration resulting in a sharp dimensional change at the melting point. In order to incorporate these findings into a structure–property relationship, several United States Pharmacopeia (USP) melting-point standard drugs were evaluated by TMA, DSC, and DEA, and compared to the USP standard melt temperatures. The USP standard melt temperature for vanillin (80 °C) [1], acetophenetidin (135 °C) [2], and caffeine (235 °C) [3] are easily verified calorimetrically via DSC. The combined thermal analysis techniques allow for a wide variety of the newly discovered physical properties of drugs and excipients.