
Mathematics with Applications : In the Management, Natural, and Social Sciences, 10th Edition
Margaret L. Lial, Thomas W. Hungerford, and John P. Holcomb
Algebra and equations  Graphs, lines, and inequalities  Functions and graphs  Exponential and logarithmic functions  Mathematics of finance  Systems of linear equations and matrices  Linear programming  Sets and probability  Counting, probability distributions, and further topics in probability  Introduction to statistics  Differential calculus  Applications of the derivative  Integral calculus  Multivariate calculus  Appendix A: Graphing calculus  Appendix B: Tables. Formulas from geometry ; Areas under the normal curve ; Integrals.

Algebraic Models in Geometry
Ives Felix, John F. Oprea, and Daniel Tanre
Rational homotopy is a very powerful tool for differential topology and geometry. This text aims to provide graduates and researchers with the tools necessary for the use of rational homotopy in geometry. Algebraic Models in Geometry has been written for topologists who are drawn to geometrical problems amenable to topological methods and also for geometers who are faced with problems requiring topological approaches and thus need a simple and concrete introduction to rational homotopy. This is essentially a book of applications. Geodesics, curvature, embeddings of manifolds, blowups, complex and Kahler manifolds, symplectic geometry, torus actions, configurations and arrangements are all covered. The chapters related to these subjects act as an introduction to the topic, a survey, and a guide to the literature. But no matter what the particular subject is, the central theme of the book persists; namely, there is a beautiful connection between geometry and rational homotopy which both serves to solve geometric problems and spur the development of topological methods.

Differential Geometry and its Applications
John F. Oprea
Differential geometry has a wide range of applications, going far beyond strictly mathematical pursuits to include architecture, engineering, and just about every scientific discipline. John Oprea's second edition of Differential Geometry and Its Applications illuminates a wide range of ideas that can be beneficial to students majoring not only in mathematics but also in other fields. Differential Geometry and Its Applications was written to help students adapt to "a type of mathematics that is a unified whole," one that mixes together geometry, calculus, linear algebra, differential equations, complex variables, the calculus of variations, and various notions from the sciences. The textbook touches on many different mathematical concepts, including aspects of linear algebra, the GaussBonnet Theorem, and geodesics. It also encourages students to visualize and experiment with the ideas they are studying through their use of the computer program Maple. This allows students to develop a better understanding of the mathematics involved in differential geometry. The book is full of exercises that challenge students to combine concepts from different areas of mathematics to obtain solutions.
Printing is not supported at the primary Gallery Thumbnail page. Please first navigate to a specific Image before printing.