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Data-driven Predictive Maintenance Scheduling Policies for

Railways

Pedro Cesar Lopes Gerum, Ayca Altay, Melike Baykal-Gürsoy

Rutgers University, 96 Frelinghuysen Road, CoRE Building, Room 201, Piscataway, NJ 08854
pedro.gerum@rutgers.edu, ayca.altay@rutgers.edu, gursoy@soe.rutgers.edu

Abstract

Inspection and maintenance activities are essential to preserving safety and cost-effectiveness

in railways. However, the stochastic nature of railway defect occurrence is usually ignored in

literature; instead, defect stochasticity is considered independently of maintenance schedul-

ing. This study presents a new approach to predict rail and geometry defects that relies

on easy-to-obtain data and integrates prediction with inspection and maintenance schedul-

ing activities. In the proposed approach, a novel use of risk-averse and hybrid prediction

methodology controls the underestimation of defects. Then, a discounted Markov decision

process model utilizes these predictions to determine optimal inspection and maintenance

scheduling policies. Furthermore, in the presence of capacity constraints, Whittle indices

via the multi-armed restless bandit formulation dynamically provide the optimal policies

using the updated transition kernels. Results indicate a high accuracy rate in prediction and

effective long-term scheduling policies that are adaptable to changing conditions.

Keywords: Rail Defect Prediction, Random Forests, Recurrent Neural Networks, Markov

Decision Processes, Restless Bandits, Whittle Index

1. Introduction

The demand for rail transport is experiencing a boost at a global level, subsequently

straining railway companies’ ability to maintain service quality (Sharma et al., 2018). Simson

et al. (2000) and Budai-Balke et al. (2009) argue that track maintenance and renewal costs

are one of the major costs for railway companies. Corrective maintenances are spot-on

inspections and repairs of existing defects, while preventive maintenances are inspections
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and adjustments on defect-prone tracks (Sharma et al., 2018). Without effective inspection

and maintenance, the safety and security of the public and goods utilizing rail networks

cannot be ensured. However, inspections and maintenance activities may become costly if

done excessively. Therefore, there is a need for efficient inspection and maintenance policies.

In rail terminology, geometry defects are horizontal and/or vertical misalignments in the

track (Sharma et al., 2018), whereas rail defects include track wear such as corrosion or

impairments such as broken rails or cracks (Clark, 2004). Some prior work classifies defects

as yellow or red, depending on their severity (He et al., 2015; Cárdenas-Gallo et al., 2017),

which will also be employed in this study. Yellow defects are minor defects, such as superficial

cracks or buckling, and satisfy the Federal Railroad Administration (FRA) standards. On

the other hand, red defects are major defects (e.g., broken rails) that do not satisfy FRA

standards and need immediate repair.

Railway companies routinely face the problem of how to decide which segments to in-

spect and maintain. Such decisions depend on the number of defects a track is expected to

have, making accurate defect predictions an important step in this process. In literature, the

prediction of defects and the scheduling of maintenance activities are mostly treated as dif-

ferent problems due to their complex nature involving numerous constraints. Furthermore,

literature avoids treating all possible defect types together due to the increase in complex-

ity. A few studies (Sharma et al., 2018; Merrick and Soyer, 2015) integrate prediction and

maintenance. Sharma et al. (2018) introduce a Markovian model to predict whether defects

happen or not, and use Markov decision theory to determine the optimal inspection and

repair policy. Merrick and Soyer (2015) employ a nonhomogeneous Poisson process to model

the stochasticity of track failures in order to plan for their replacement. In this paper, we

propose an innovative integration of defect prediction and optimal scheduling, as well as

solutions for issues both in defect predictions, and inspection and maintenance scheduling.

First, we account for the stochastic nature of defect prediction. Then, using the results

obtained, we develop an iterative approach to schedule inspections with or without crew

limitations optimally. Figure 1 visually describes the integration process that is used in this

paper.

The remainder of thes paper is organized as follows: Section 2 reviews previous research.
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Section 3 presents the defect and inspection data. Rail segments may have different de-

fect characteristics. Hence, to be able to address the optimal inspection and maintenance

scheduling problem in an efficient way, they have to be clustered into similar groups as de-

scribed in Section 4. Section 5 details the prediction of defects using the available data, and

section 6 describes how to use the prediction for unconstrained scheduling. Section 7 gener-

alizes the scheduling of inspections and maintenance for a capacity-constrained problem and

provides a framework for how to continuously improve the model with the addition of new

data. In each of these sections, we have used the data presented in Section 3 extensively to

provide examples. Finally, conclusions are presented in Section 8.

Figure 1: Flowchart of how defect prediction, and inspection and maintenance scheduling can be integrated.
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2. Background

This section reviews first the previous work on defect prediction and then, on inspection

and maintenance scheduling.

2.1. Defect Prediction

Earlier research employs summary statistics, especially standard deviation, to evaluate

the risk of defects or derailments (Hamid and Gross, 1981). However, these summary statis-

tics are not static over time and depend on conditions such as season, and load.

Other studies in defect prediction use classification and regression-based data analysis

methods. Focusing on geometry defects, Sharma et al. (2018) develop a Track Quality

Index (TQI) based Markov model. The authors divide rail tracks into 0.1-mile segments

and compare Random Forests (RF), Logistic Regression (LR) and Support Vector Machines

(SVM) models that predict a binary, defect/no defect, outcome. Martey et al. (2017) propose

to predict geometry defects in a big data environment. Since analyzing big data is expensive,

the authors cluster tracks and employ Principle Component Analysis (PCA) to identify the

most important features that affect defect occurrence. In both studies, RF outperforms other

methods.

Moridpour et al. (2017) introduce a regression-based model for the degradation level of

light-rail tracks using Artificial Neural Networks. A similar study is conducted by Güler

(2014) to predict degradation due to geometry defects using ANN. While this study pri-

oritizes geographic and hardware-related inputs, Moridpour et al. (2017)’s study relies on

railway traffic data. Both studies satisfy the requirement for detailed data for accurate

prediction and declare a success rate of more than 70% for ANNs.

2.2. Inspection and Maintenance Scheduling Optimization

The scheduling of inspections and maintenances has been described as a complex, multi-

variate problem of major importance (Fan et al., 2011; Chen et al., 2014; Peralta et al.,

2018; D’Ariano et al., 2019; Ghofrani et al., 2018). Previous studies attempt to solve this

problem by implementing various adaptations of well-known optimization problems such as

the Vehicle Routing Problem (VRP) or the Traveling Salesman Problem (TSP). However,
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a common issue faced by most studies is the assumption that defects are deterministically

known. Most authors fail to account for the stochasticity of where and when defects occur,

and thus disregard the prediction problem.

Heinicke et al. (2015) characterize maintenance scheduling as a multi-depot VRP with

time windows. Fan et al. (2011) also consider a VRP, but only include transportation (travel)

costs. In both studies (Fan et al., 2011; Heinicke et al., 2015), however, the problems end up

being NP-hard, thus making a polynomial run time to reach the optimal solution difficult

to achieve.

Camci (2014) coins the term Traveling Maintainer Problem that corresponds to schedul-

ing TSP with repair and inspections costs also included in the overall cost. Pour et al.

(2018) construct a Mixed Integer Programming problem to assign teams according to their

capabilities. Luan et al. (2017) solve this problem using a Lagrangian relaxation approach.

A more extensive study is conducted by Lidén and Joborn (2017) further incorporates the

railway traffic into inspection and maintenance scheduling. Nonetheless, all of these studies

mention that the large number of variables results in considerable execution time due to

the NP-hardness of the mathematical programs. Hence, heuristics and metaheuristics are

frequently implemented to obtain a feasible schedule (Camci, 2014; Andrade and Teixeira,

2016; Khalouli et al., 2016). Column generation methods are employed to find exact optimal

solutions for large-sized mathematical programs (Nishi et al., 2011; Lannez et al., 2015).

Furthermore, there are some studies on risk-based approaches that incorporate qualita-

tive data into the maintenance scheduling problem. Wang et al. (2018) break down failure

consequences into fuzzy linguistic classes from negligible to catastrophic, and qualify fail-

ure likelihood from very low to very high. Consilvio et al. (2016) consider the problem of

how to choose threshold levels to achieve a tolerable degradation range. A similar risk-

based approach by Jiang et al. (2003) employs multiple degradation states with associated

probabilities of failure to decide on the maintenance schedule.

In a recent review of railway transportation, Ghofrani et al. (2018) classify railway main-

tenance as: i) condition-based, ii) preventive, and iii) corrective maintenance. The subject

matter of this paper, predictive maintenance, is accounted as a special topic within condition-

based maintenance. According to Ghofrani et al. (2018), literature mostly deals with track
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defects using corrective maintenance, and scheduling is mostly planned in cases when defects

are already known. Moreover, condition-based maintenance is mostly exploited for vehicle

maintenance but rarely applied to tracks. Turner et al. (2016) provide an extensive literature

review on planning and scheduling of railway traffic in Europe, also discussing a few studies

that incorporate maintenance activities into transportation planning and scheduling.

Next, we present the data that will be later used in the examples.

3. Preprocessing Rail Data

Most rail companies gather data to understand how their processes behave, including

defects and inspections. However, due to human interaction in data registration, as well as

the lack of enforced standards, many companies may hardly maintain the accuracy of such

data. Furthermore, some companies also struggle with the availability of detailed data for

prediction and scheduling. Therefore, there is a trade-off between the benefits of process

optimization through data analyses, and the cost of obtaining accurate and detailed data.

In this section, we explain faulty data treatment and noise filtering while maintaining an

acceptable level of data.

In this study, we use rail data that was gathered over a two-year period (2016 and 2017).

The defect database includes a list of all rail and geometry defects found in each segment of

the network, detailing the time and the location in which the defect was found, and the type

and severity (yellow or red) of the defect found. The inspection data include the type of

inspection, the segment inspected, and the time of inspection. However, the inspection data

do not provide the exact beginning and end of inspection locations. Moreover, segments vary

from 300m to 60km in length, with an average of 17 km. Figure 2 displays spatio-temporal

defect observations on a particular segment. The horizontal axis represents the whole length

of the rail segment while the vertical axis represents time. The blue dots on the vertical axis

correspond to the inspections. Finally, a third database contains the daily load information

for each segment. Load information is determined as the total gross tonnage endured by the

segment, including the weight of wagons. The number of wagons transported or wheels in

contact with the track is not available.

The defect data do not hold records for the related inspection and vice versa. To better
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Figure 2: Spatiotemporal defect observations.

assess how the number of defects per inspection is distributed, each defect (rail or geometry)

found in the defect dataset is matched to a corresponding inspection. This matching is one-

to-many; a defect can be found during only one inspection, an inspection can find multiple

defects. Through this process, we are able to achieve 91% match, losing only 9% of the defect

data. For each inspection, we match the defects that are located in the inspected segment,

found through the specific inspection type, and registered during the time of the inspection

with a buffer of no more than one day added to represent the delay between the time the

inspection outcomes are recorded and the inspection execution time. Unmatched data may

represent a human error, as well as data systems’ mismatches, so they are removed. Faulty

data, such as inspections with negative execution times, or with negative inter-arrival times

have also been also removed, along with the defects that match them.

The raw data contains more than 26 000 inspections and 82 000 defects. Broken rails

are one of the most commonly encountered red defect types (Figure 3). Moreover, they are

most often rated as red: around 96% of broken rails are classified as such. Table 1 shows

the defect types that are most commonly rated as red. Note that the visual and ultrasound

7



cracks usually precede broken rails.

Figure 3: Distribution of defects classified as ‘red’ per type of defect.

Defect Type Percentage of Defects from each

type classified as ‘red’

Broken rails 95.97%

Visual Cracks 58.05%

Ultrasound cracks 52.52%

Warping 39.88%

Buckling 32.25%

Table 1: Defect types with highest rates of red defects.

4. Clustering Rail Segments

This problem involves a network that may contain numerous rail segments. These seg-

ments differ in terms of their defect-proneness due to the external conditions they may

endure: different loads, seasonal conditions, etc. While a generalized prediction method

may fail to capture defect characteristics of all segments, implementing a prediction method

for each rail segment is inefficient and not reliable due to the lack of data. Clustering similar

segments pools sufficient data for prediction (Pour and Benlic, 2017; Doric et al., 2017).
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Feature selection is vital as every incorrect feature might increase the rate of misclassified

data (Azizyan et al., 2014). In this study, the feature space includes 14 features extracted

through the available data for 170 rail segments. Four defect groups considered are: all

defects, red defects, yellow defects, and broken rails. For all defect groups, three statistics

are recorded: the annual number of defects, the average time between defects (in days), and

the average number of defects found per inspection. Two additional features selected are the

length of the segment and the sustained load. In order to find the best representation, each

subset of features is enumerated. Each subset is then fed into the K-Means algorithm (Khan

and Ahmad, 2004) in order to make two decisions: the features selection, and the selection

of the optimal number of clusters. The validity of each clustering setting is measured by the

C-index defined by Hubert and Levin (1976) as

C =
S − Smin

Smax − Smin
, (1)

where S is the sum of pairwise distances among all data points that lie in the same cluster,

Smin is the sum of the smallest n pairwise distances among all data points, and Smax is

the sum of the largest n pairwise distances among all data points. A smaller index value

indicates better clustering.

The lower and upper bounds for the number of clusters are set in a way that satisfies the

following properties: (i) sufficient data remains for prediction in each cluster, (ii) the ratio of

the outlier rail segments to all rail segments is not large, and (iii) the number of clusters that

contain each outlier segment is not large. The algorithm is run 10 times for each possible

number of clusters for a higher accuracy to negate the effect of random initial cluster centers

(Khan and Ahmad, 2004). The cluster number with the smallest average C-Index of 10

runs is selected. Even with small C-Index values, some undesirable outcomes, such as high

misclassification rate or clustering imbalance may arise. A threshold for misclassification

rate is chosen as 10% (Bioch and Popova, 2002), and a limit of 60% of segments is set to

ensure the balance in clustering.

Results

The three features selected by the algorithm with best clustering results are (C-index:

0.0894): i) the annual number of broken rails, ii) the average time in days between broken
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rails, and iii) the average number of all types of defects per inspection. Two out of three

features involve broken rails, which is the most common defects in all rail segments. These

attributes determine the similarity of defect characteristics of rail segments; however, the

emergence of defects may depend on other criteria. It is the task of the prediction module to

reveal possible input combinations that lead to similar values of these three defect character-

istics. Although the lengths of segments vary, the inspection length tends to be consistent,

thus offsetting a possible bias. Moreover, the dataset suggests no correlation between the

length of a particular segment and the number of inspections performed on that segment

(see Figure 4).

Figure 4: This figure shows the lack of correlation between the number of inspections performed and the

length of the segments.

Once the feature selection is completed, the number of clusters is then decided. Figure

5 displays the average C-index with respect to the number of clusters using these three

attributes. In literature, there are other algorithms that do not require an initial setting for

the number of clusters such as agglomerative hierarchical clustering. However, rail clustering

has challenges that may not exist in other situations: for example, i) the linkage parameter

has to be manually adjusted in a way that gives a clear cutoff point for clustering, ii) even

with best cutoff points, some clusters do not have the best possible C-index, iii) for some

of the subsets, even the best cutoff point leads to the violation of the clustering constraints

presented above (i.e., large number of outliers, small and excessive number of clusters).
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K-Means provides sufficient flexibility to avoid these challenges.

Figure 5: Number of cluster vs. C-index for 170 rail segments.

Figure 5 indicates that the minimum average C-Index is obtained in the case of 14

clusters (C-index: 0.0036), out of which 4 contain a total of 140 rail segments (82.8% of all

rail segments), and the remaining 10 contain only a few rail segments with insufficient data.

More specifically, clusters 1 to 4 contain 24, 28, 47 and 41 rail segments with sufficient data

for prediction; hence, the predictions and the scheduling model will be evaluated over these

140 rail segments using 4 clusters.

5. Non-linear Regression Models for Defect Prediction

Literature agrees that predicting the number of defects in a track is mostly a non-linear

problem. Most authors aim for closed-form equations for prediction but advanced ‘black-box’

techniques are replacing them because these techniques enable the employment of different

feature sets as inputs. Machine-learning approaches, such as RF and ANNs have recently

been used for defect prediction (Güler, 2014; Moridpour et al., 2017; Sharma et al., 2018),

but very little has been done on the integration of such prediction models with inspection

and maintenance scheduling policies. Furthermore, many studies use features that are often

not available to rail companies. In this study, we focus on methods that use data that are

widely available in most locations. In sections 6 and 7, we integrate these approaches into
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the scheduling model to increase the efficiency of inspection and maintenance scheduling

policies. In this section, we compare two common methods to predict the number of yellow

and red defects: Random Forests and Recurrent Neural Networks (Sharma et al., 2018).

Random Forest (RF) is an ensemble regression model that combines independent regres-

sors, namely decision trees. Each decision tree is constructed by randomly selecting a subset

of features from the set of all features, and by using the bootstrap aggregation technique.

The prediction is determined by averaging the outputs of all decision trees. The use of mul-

tiple trees reduces the chance of over-fitting, and decreases the variance (Friedman et al.,

2001). Each tree is generated by sampling the training data with replacement, and by using

a randomly generated set of 5 features from the 7 possible features. Then, trees are grown

with the criterion of using the maximum impurity gain from all candidates to split branches.

The impurity of each node is calculated with the Gini’s diversity index to determine the

impurity of each node (Breiman et al., 1984). We grow 300 trees in this modeling approach.

Recurrent Neural Networks (RNNs) are special types of Neural Networks that recursively

calibrate the prediction accuracy by providing the lagged output as an additional input

(Burden and Winkler, 2008). RNNs produce different results each time they are run, and

thus, 10 networks are trained with the same data, and their results are averaged in order to

obtain the final result. The algorithm parameters are 10 neurons on one hidden layer, and α

and β parameters coming from a uniform distribution (0,10). A deeper network is not chosen

in order to avoid overfitting and high computation time. RNNs are known to perform well

for large databases and the RNN in this study does not take inputs for rail segments directly;

its inputs are the integrated defect and inspection data. Hence, even though there are 170

segments overall, all segments in 4 clusters have a sufficiently large number of inspections to

render reasonable confidence level in the test results.

The prediction model is run separately for red defects, and yellow defects, which are more

numerous than yellow defects. The inputs of both models, as mentioned above, involve the

number of red and yellow defects the previous inspection has found; hence, the inputs are

inspection related. The number of inspections is the same for both red and yellow defects;

any inspection can find both types. Thus, red and yellow defect prediction models have

the same number of inputs. The prediction model determines different structures for the
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relationship between the inputs and the outputs for red or yellow defects.

Finally, since the predictions results are real numbers, we use Multinomial Ordinal Re-

gression (MRO) to assign each prediction to its corresponding number of defects.

5.1. Results

In this section, we provide the results of using RF and RNN to predict rail defects of

different severity levels. We use the standard loss function that maximizes accuracy by

analyzing mean absolute error and mean squared error. However, some risk-averse decision-

makers may consider false negatives worse than false positives. For such cases, we propose

a new formulation in Section 5.2.

Both methods exhibit similar results and show a small error rate that matches the one

in literature, even though fewer and more commonly found features are used. Sharma et al.

(2018) have recently predicted the existence of a geometry defect at an accuracy rate of

75-77%. Cárdenas-Gallo et al. (2017) apply the red/yellow distinction to railway defects

and their accuracy is also around 80%. Performance measures obtained by RNN also closely

match those from the RF model, indicating that either model can be applied. Due to the

high likelihood of inspections finding few to no defects, the models tend to undershoot more

often than overshoot. RNN has slightly higher error rates for both yellow and red defects

and has a slightly higher undershooting rate than RF.

Tables 2a and 2b display the prediction of defects, red and yellow, respectively, during a

walking inspection (0, 1, or 2 or more defects). Predicting a more granular number of defects

demands more data points than are available in this study, but an increase in granularity is

recommended as more data become available. 80% of the data is used to train the model, with

the remaining 20% used for testing. The third and fourth columns describe the expected over

and under-predicted number of defects, respectively. The average number of over-predicted

defects is significantly skewed by extremely infrequent data points with no defect when it is

predicted to have two defects. Note that over-prediction of defects occurs in less than 2% of

all inspections, except in one cluster, where it occurs in around 4% of inspections.

Figures 6a and 6b depict the average accuracy for all clusters during one run. The overall

accuracy of perfect (spot-on) prediction for testing data is around 82% for red defects and
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Cluster MAE MSE E[over] E[under]

1 0.31 0.48 2.00 1.38

2 0.32 0.49 - 1.36

3 0.26 0.44 1.57 1.50

4 0.25 0.41 2.00 1.47

(a) Red Defects - RNN Error Results. Mean Absolute

Error and Mean Squared Error in number of defects

per inspection. The round numbers on the expected

overestimation are caused by a single overestimates.

Cluster MAE MSE E[over] E[under]

1 0.40 0.59 1.50 1.28

2 0.51 0.82 1.44 1.44

3 0.53 0.77 1.31 1.31

4 0.41 0.62 1.88 1.28

(b) Yellow Defects - Random Forest Error Results. Mean Ab-

solute Error and Mean Squared Error in number of defects

per inspection. The round numbers on the expected overes-

timation are caused by a few overestimates.

Table 2: Prediction results using RF and RNN.

62% for yellow defects on average. Yellow defects are harder to predict due to their high

variance in the data. Given the risk-averse characteristics of the problem, it may be preferable

to over-predict rather than to under-predict if one considers over-predictions acceptable.

(a) Red Defects - RNN Prediction Results. (b) Yellow Defects - RF Prediction Results.

Figure 6: Underestimation, overestimation and exact prediction rates.

5.2. Risk-averse adaptation

In designing systems for critical infrastructures, reducing missed observations is more

important than removing unnecessary screenings (Thomas et al., 2001). For railway sys-

tems, a missed observation refers to an overlooked defect, whereas an unnecessary screening

refers to an inspection of a defect-free rail segment. The risk of derailment and its possible

consequences may be more costly than performing an extra inspection. Hence, weights for

14



underestimations may be strictly larger than for overestimations.

Results obtained by both RF and RNN tend to favor undershooting due to the class

imbalance of the data. The logistic regression results provide the confidence level of the

model for each possible prediction option. The standard selection chooses the prediction

with the highest confidence level, ensuring a higher proportion of exact matches.

A proper means to account for the proportion of undershooting is to hybridize the two

models with the objective of decreasing the rate of underestimation while maintaining a

reasonable level of overestimation. In this setting, the loss function below reflects the im-

portance given to the underestimation,

ε(r) =

r, if r ≤ 1

1
2
(r2 + 1), if r > 1,

where r = y− ŷ, y is the actual number of defects and ŷ is the predicted number of defects.

This loss function is continuous, differentiable and has a minimum at r = 0. However, the

predicted value is piecewise linear, that is,

ŷ = [a+ b0ŷRF + b1ŷRNN ], (2)

where [·] denotes the rounding process using MRO. Hence, the minimization function be-

comes

min z =
∑
i,ri≤1

r2i +
∑
i,ri>1

[
1

2
(r2i + 1)]2, (3)

where ri = yi − ŷi, with i as the index of the data point.

Furthermore, the objective function 3 relies on the square of negative errors to amplify

their impact and forces the policy to shift from undershooting to overshooting. The values of

a, b0 and b1 are selected to minimizes the squared error. This objective function is convex and

differentiable as long as the rounding process in MRO is ignored. However, due to rounding,

a closed-form objective function cannot be written and traditional nonlinear optimization

techniques cannot be implemented. Hence, an algorithm that does not require a closed-form

performance measure, Particle Swarm Optimization (PSO) algorithm is selected to predict

the values of a, b0 and b1 (Eberhart and Kennedy, 1995). Its parameters are determined as

the number of particles being equal to 1000, the inertia coefficient being set as 0.2, and the
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cognitive and social coefficients being set as 1. The algorithm is run 20 times for each cluster

and defect severity, and for each run, the resulting local minima are recorded. The best local

optimum value is accepted as the solution.

Figures 7, 8, and 9 illustrate, for each cluster, the percentage of underestimated data,

the rate of false negatives, that is, the percentage of zero defect predictions when there is

at least one defect, and the average underestimation, respectively. The figures compare the

results among RF, RNN, and the hybrid method.

Figure 7: Percentage of underestimated data for each of the three approaches for each cluster.

Figure 8: Rate of false negatives for each of the three approaches for each cluster.
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Figure 9: Average underestimation for each of the three approaches for each cluster.

The rate of underestimation and the rate of false negatives are significantly reduced by

the hybridization. The overall average false negative rate is decreased to less than 5% from

15%, whereas the overall average undershooting percentage is decreased to 8% from 20%. As

for the expected underestimation, there are two cases in which the hybrid method performs

worse than pure methods, yet the average underestimation is decreased from 1.30 to 1.00.

Other performance measures are presented in tables 3a and 3b for red and yellow defects,

respectively. Given the model’s trade-off between overestimations and underestimations, the

overall expected overestimation has been increased from 1.00 to 1.50. However, this increase

can be considered acceptable in view of the decrease in underestimation.

Cluster MAE MSE E[over]

1 0.877 0.930 1.034

2 0.438 0.619 1.355

3 0.733 1.334 1.831

4 0.357 0.631 1.839

(a) Performance Measures of the Hybridization

for Red Defects.

Cluster MAE MSE E[over]

1 1.228 2.053 1.534

2 1.330 2.352 1.652

3 1.385 2.486 1.660

4 0.810 0.819 1.000

(b) Performance Measures of the Hybridization

for Yellow Defects.

Table 3: Performance Measures for the Hybrid Model.
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6. Scheduling Inspection/Maintenance

Most authors assume a known list of defects across the network before scheduling main-

tenance activities. However, when this information is not known with certainty, one has to

resort to stochastic methods to find the optimum inspection policies. In this section, we

propose a Markov decision process (MDP) model (Ross, 1992; Puterman, 1994; Bertsekas,

2007) that integrates the stochastic nature of defect occurrence into scheduling. Through

this model, one can determine the optimal inspection policy for a specific segment over an

infinite time horizon. An assumption used is that all inspections are performed at the begin-

ning of the day, and all defects observed during the inspection are repaired instantaneously.

New defects might arise during the day after the inspection. Hence, one can model the

segment deterioration state as a discrete time Markov process that depends on the previous

state and the action taken in that state. Then, the Markovian decision problem to determine

the sequence of actions that minimize the discounted cost incurred over an infinite horizon

becomes

ν(s(0)) = min
a(t)∈A

E

[ ∞∑
t=0

αtc(s(t), a(t))| s(0)

]
, (4)

where ν(·) denotes the optimal total discounted cost, i.e., value function, starting in

state (·), s(t) ∈ S denotes the segment state at time t with S representing the set of states,

a(t) ∈ A denotes the binary variable representing if the segment is inspected or not at time

t with A representing the set of actions, and c(·, ·) denotes the expected cost incurred when

the state and action information are given. α represents the discount factor, and the notation

E[·|s(0)] represents the conditional expectation given the initial deterioration state of the

segment. Later on, we generalize our approach to the case of multiple segments under a

constraint on the availability of inspection teams.

Next, we discuss the dynamic programming formulation of the problem and the details

of the MDP model.
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6.1. Dynamic Programming Formulation

A direct method to generate the optimal policy for equation 4 is to use the following

dynamic programming equation (Ross, 1992; Puterman, 1994),

ν(s) = min
a∈A

{
c(s, a) +

∑
s′∈S

αν(s′) · p{s′|s, a}
}
,∀s ∈ S, (5)

with p denoting the transition kernel, and ν(s) representing the expected discounted cost

to go starting in state s from the current period onwards. Let c(s, a) correspond to the

expected cost of inspection and repair if the action is ‘inspect’, and the expected cost of the

risk of derailment otherwise. Since the state space, S, and the action space, A, are finite,

c(s, a) is uniformly bounded. p{s′|s, a} denotes the probability of moving to a new state s′,

given the current state s and the action taken in the current period, a. These probabilities

are estimated from the data. In this problem, we fix the discount rate as α = 0.95.

Let us define the state of the segment as a composition of the current level of rail dete-

rioration and the load during the next period. The rail deterioration level is 1, when no red

or yellow defects are present; 2, when no red defect is present; and 3, when at least one red

defect is present. Load is also separated into two states as high and low, where the cut-off is

the median load endured by the whole network, obtained from data. There are, therefore, six

possible states: (1, L), (2, L), (3, L), (1, H), (2, H), (3, H), denoted as 1, 2, . . . , 6, respectively.

After filtering the inspection data by one day inter-inspection time within each cluster, the

probability transition matrix for the action ‘inspect’, denotes as Pinsp, is obtained from the

frequency of each state change. These normalized frequencies correspond to the maximum

likelihood estimators of the transition probabilities (Bartlett, 1951; Anderson and Goodman,

1957).

Two methods are used to validate the transition matrix given in Table 4a:

1. Chi-Square testing for validation: This test compares the candidate for the transition

matrix to an independent trials matrix that is randomly generated using the transition

frequencies (Hiscott, 1981). Let n be the number of states, Fij be the number of transitions

from state i to j, SRi and SCj be the ith row sum and jth column sum of the F matrix,

and T be the sum of all elements in the matrix. Then, the independent trials matrix (IT )
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State 1 2 3 4 5 6

1 0.5266 0.1339 0.1072 0.1518 0.0447 0.0358

2 0.1772 0.2910 0.1899 0.2278 0.1013 0.0128

3 0.2058 0.1912 0.2793 0.1912 0.0148 0.1177

4 0.0981 0.0785 0.0719 0.4705 0.2026 0.0785

5 0.0556 0.1805 0.0695 0.3471 0.2916 0.0556

6 0.2352 0.0590 0.1471 0.3233 0.0590 0.1765

(a) Transition Matrix for the action ‘inspect’.

State 1 2 3 4 5 6

1 0.5266 0.1339 0.1072 0.1518 0.0447 0.0358

2 0.0000 0.6605 0.1072 0.0000 0.1965 0.0358

3 0.0000 0.0000 0.7677 0.0000 0.0000 0.2323

4 0.0981 0.0785 0.0719 0.4705 0.2026 0.0785

5 0.0000 0.1765 0.0719 0.0000 0.6731 0.0785

6 0.0000 0.0000 0.2485 0.0000 0.0000 0.7515

(b) Transition Matrix for the action ‘do not inspect’.

Table 4: Transition matrices for each action.

is written as

ITij =
SCj

T − SCi
. (6)

The null hypothesis is that there is no significant difference between the random matrix

and the predicted transition matrix. The χ2 statistic is evaluated as

χ2
observed =

n∑
i=1

n∑
j=1

(Fij − SRi · ITij)2

SRi · ITij
,

and tested at (n2 − 2n) degrees of freedom. In the case of the ‘inspect’ transition matrix,

χ2
observed is calculated as 45.38 and the χ2

threshold is 13.84. Therefore, there is enough evidence

that the null hypothesis is rejected at a 0.05 significance level.

2. Correlation with the two-step matrix : A validation method used by Sharma et al.

(2018) is based on the two-step state transition matrix, P2. If the one-step transition matrix

is P , then the correlation between P 2 and P2 must be high. In our case, the correlation is

found to be strong at level 0.8633.

Both methods validate the transition matrix for ‘inspect’, which is presented in Table 4a.

We use this transition matrix as a starting point to determine the transition matrix for the

action ‘do not inspect’.

Let us look at the transition matrix for the action ‘inspect’ separately for high and low

load (only considering the 3 deterioration states). The first row of the transition matrix for

the action ‘inspect’ represents, given there are no defects found at the current inspection

and the load is low, the probability of no red and no yellow defects happening, given as P̄red
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and P̄yellow, respectively, the probability of no red defects happening and some yellow defects

happening (Pyellow), and the probability of at least one red defect happening (Pred), given as

(P̄red · P̄yellow, P̄red · Pyellow, Pred). We use these parameters to generate the transition matrix

for the action ‘do not inspect’. The other rows are similarly defined for the other initial

states.

The transition probability for the action ‘do not inspect’ will be an upper triangular

matrix, because no repairs are performed when no inspection happens. The first row is

composed of (P̄red · P̄yellow, P̄red · Pyellow, Pred), which is the same as the transition matrix for

the action ‘inspect’. The second row is formed by (0, P̄red, Pred), because the system remains

in state 2 if no red defects are generated, and moves to state 3 otherwise. Finally, the third

row is formed as (0, 0, 1). With the transition probability for the action ‘do not inspect’

determined for high and low load, we can rebuild the 6-state transition matrix through

algebraic manipulations using the low load transition kernel, the high load transition kernel,

and the load transition kernel. This matrix are shown in tables 4a and 4b. The matrices

Pinsp and Pnot are based on the data and may not represent the “true” transition kernels.

A structured approach on how to continuously update these matrices with the addition of

incoming data, while still optimally choosing segments to inspect is presented in section 7.

When a = 0, c(s, a) can be defined as the risk cost dependent on the number of defects

existing at the beginning of the current period and the likelihood of new defects occurrence.

This cost can be computed by multiplying the cost of a derailment by the probability that a

derailment will occur given the number of defects present. Using Bayes’ rule, the probability

of a particular defect causing a derailment, p{der.|def.}, can be expressed as:

p{der.|def.} =
p{def.|der.} · p{der.}

p{def.}
.

Given a derailment, the probability of its being caused by a certain defect, p{def.|der.},

is calculated by Liu et al. (2012). Comparing the data provided in Liu et al. (2012) with our

data, we infer that the probability of a derailment being caused by a red defect is 22.6% and

the probability of a derailment being caused by a yellow defect is 9.6%.

Furthermore, Anderson and Barkan (2005) derive the probability of a derailment, depend-

ing on the length of the train. On average, they report the probability of a train derailing
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as p{der.} = 0.720 · 10−3. Finally, the probability of defect occurrence p{def.} is given by

Pred and Pyellow that are obtained from the transition matrix for the action ‘inspect’.

Therefore,

p{der.|red defect} =
22.6% · 0.720 · 10−3

Pred
,

p{der.|yellow defect} =
9.6% · 0.720 · 10−3

Pyellow
.

The cost of taking action ‘do not inspect’, c(s, 0), is just the probability of at least one

of the defects causing a derailment. It can be obtained from the equation below, where cder

represents the expected derailment cost, and R and Y are random variables denoting the

number of red and yellow defects present, respectively:

c(s, 0) = cder ·
∑
r,y

[
1−

(
(1− p{der.|red def.})r · (1− p{der.|yel. def.})y

)]
p{R = r, Y = y|s}.

In this study, the joint distribution conditioned on the current state, p{R = r, Y = y|s} ∀ r, y,

is obtained empirically from the data. Finally, we multiply the cost by a factor of 1.6 for the

states containing high load, accounting for the higher impact a derailment could bring, i.e.

c(i,H, 0) = 2c(i, L, 0) for i = 1, 2, 3.

We assume that other costs, such as damage to the image of the company, or lives lost

are included in the cost of a derailment. Such costs can be adapted to account for different

risk levels.

Furthermore, when a = 1, c(s, a) includes the inspection and repair costs. For purposes

of this research, we assume the inspection cost to be linearly dependent on the inspection

length, and the repair cost to be an increasing function of the expected number of defects.

Hence, it is also increasing in the state.

c(s, 1) = E[$ insp.] +
∑

i={red,yel.}

E[# def.i|s] · E[$ rep./def.i].

In this equation, the cost of inspection accounts for crew time, equipment used, and

delays caused, and the cost of repair accounts for parts, manpower, and delay costs. The

expected number is also obtained from the data. It should be noted that the parameters

used in both cost functions can also be estimated from the regression models described in
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Section 5. Each segment may have specific cost parameters, and should, therefore, have a

segment-specific policy to optimize the scheduling as well.

The solution of this MDP model obtained via the dynamic programming equation pro-

vides the optimal action for every state. However, MDPs assume the knowledge of the current

state to be able to forecast the future states. Consequently, the “state” definition should

include all the information one needs to forecast the next state. In the case of segments that

were not inspected during the previous period, the decision maker faces the problem of not

being able to observe the current state.

In order to provide the full state information, we augment the state space by the number

of days since last inspection (Bertsekas, 2005). If there was an inspection yesterday, the

inspection revealed red defects, and the load observed was High, then the augmented state

becomes s = (3, H, 0). We limit the time delay to at most 9 days with no inspection, since

that is the maximum delay we have observed in the data. The new state space is, therefore,

the set of all combinations of deterioration levels (1,2 or 3), load information (low or high),

and days since the state was last observed (0-9), i.e., s = (i, j, k), for i = 1, 2, 3, j = H or L,

and k = 0, 1, . . . , 9. The cardinality of the state space, |S|, is 3 · 2 · 10 = 60. Then, the new

transition matrices are presented in tables 5a and5b, where Pinsp and Pnot are the transition

matrices displayed in tables 4a and 4b, respectively. Because we limit the maximum number

of days since last inspection, Pbound is the boundary matrix with all states transitioning to

6 with probability 1, i.e. ([0,0,0,0,0,1](6x6)), where 0 corresponds to a column vector of

all zeros, and 1 corresponds to a column vector of all ones. It forces the system to change

the action to inspect after at most 9 periods. However, most set of realistic parameters see

an immediate switch. This structure with a finite set of states and Pbound as a boundary

condition improves the robustness of the model.

The new cost vectors also need to be updated. The cost of the action ‘do not inspect’

for state s, is the same as before, but accounts for the expected next state. For instance, if

the cost vector of not inspecting states s ∈ {1, 2, . . . , 6}, where s contains the deterioration

and load information is cnot = (c(1, 0), c(2, 0), . . . , c(6, 0))T , the cost vector associated with

(s, t), where t represents the time since the last inspection, is P t
not · cnot. The extended cost

of inspecting is constructed similarly across all states (s, t).
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State (·,·,0) (·,·,1) (·,·,2) ... (·,·,8) (·,·,9)

(·,·,0) Pinsp 0 0 ... 0 0

(·,·,1) Pinsp · Pnot 0 0 ... 0 0

(·,·,2) Pinsp · P 2
not 0 0 ... 0 0

... ... ... ... ... ... ...

(·,·,8) Pinsp · P 8
not 0 0 ... 0 0

(·,·,9) Pinsp · P 9
not 0 0 ... 0 0

(a) P Matrix for the action ‘inspect’,

State (·,·,0) (·,·,1) (·,·,2) ... (·,·,8) (·,·,9)

(·,·,0) 0 Pnot 0 ... 0 0

(·,·,1) 0 0 P 2
not ... 0 0

(·,·,2) 0 0 0 ... 0 0

... ... ... ... ... ... ...

(·,·,8) 0 0 0 ... 0 P 9
not

(·,·,9) 0 0 0 ... 0 Pbound

(b) P Matrix for the action ‘do not inspect’.

Table 5: Augmented transition matrices for each action.

6.2. Optimal Policy

The solution to equation 5 reveals that a threshold-type policy is optimal. In fact, the

results inform the decision-maker how many days should elapse before inspecting in case

the current state has an optimal action of ‘do not inspect’. We present two computational

examples; the first assumes costs taken from the literature, and the latter uses a higher

inspection cost to exemplify how a more diverse policy may arise.

The first experiment is performed for a segment assuming that the cost of a derailment

is $1.5M, and the cost of an inspection is $1500 — assuming a 10km inspection at $150/km

(Soleimanmeigouni et al., 2016; Transportation Economics and Management Systems Inc,

2018). Repairs are assumed to cost $1500 for red defects and $1300 for yellow defects

(He et al., 2015). Analyzing the data, we have observed that both red defects and some

yellow defects require immediate repair, while 80% of yellow defects that are categorized as

superficial may not. Hence, we assume that only more severe yellow defects, as well as all

red defects will be repaired immediately.

In the first setting (with the inspection cost of $150/km), the optimal MDP solution is

to inspect the segment right away, no matter in which state the segment currently resides.

This suggests our data contains segments that are prone to defects. However, we know that

it may not always be feasible for companies to inspect every segment daily. In the case of

limitations as such, we provide another approach in the next section.

For the second experiment, we increase the inspection cost to $5000 ($500/km) so that

we can visualize a more diverse optimal policy. In this scenario, the threshold type policy
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prescribes an inspection rule in such a way that it is optimal to inspect every time the

segment has red defects under high load; to wait 1 day when the system has i) red defects

and is under low load, or ii) yellow defects, but no red defects and is under high load; to

wait 4 days when the system has yellow, but no red defects and is under low load; and

to wait 5 days whenever there are not defects regardless of the load (see Figure 10). It

should be noted that each country or railway company may have different regulations on the

inspection frequency. In the case of regulation violations, the scheduling problem becomes a

constrained problem that could be solved using the Linear Programming (LP) formulation

of discounted MDPs given in Kallenberg (1989).

1,L 2,L1,H 2,H 3,H3,L

INSPECTWAIT 4 DAYS BEFORE
INSPECTING AGAIN

WAIT 1 DAY BEFORE
INSPECTING AGAIN

STATE

ACTION

WAIT 5 DAYS BEFORE
INSPECTING AGAIN

Figure 10: Inspection Scheduling Policy Representation from costs described in section 6.2 and α = 0.95.

Yellow nodes represent the input (current state), and blue nodes represent the output (actions

to take). Note a threshold type policy is optimal.

The results are compared with a benchmark policy to measure the efficiency of the

policy obtained by MDPs and are demonstrated in Figures 11a and 11c. We construct our

benchmark policy based on the inspection schedule guidelines provided with the dataset.

Inspections are performed twice a week on major segments and once a week on the other

segments. Therefore, for the benchmark policy, we define a 7-day wait for states with low

load (1, 2 and 3), and a 4-day wait for states with high load (4, 5, and 6). Note that neither

the number nor the type of defects found previously have an impact on the policy for the

benchmark policy.

Expected gains are on the magnitude of tens of thousands of dollars per year for each

track segment, thus, showcasing the importance of reviewing how scheduling is currently
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being assessed. The benchmark policy is approximately 100% and 23% more expensive than

the policy resulting from the MDP approach for the respective cases in which inspection cost

is set to $150/km and $500/km.

(a) Inspection cost=$150/km, α = 0.95 (b) Inspection cost=$150/km, α = 0.5

(c) Inspection cost=$500/km, α = 0.95 (d) Inspection cost=$500/km, α = 0.5

Figure 11: Bar plot representing the value using the benchmark policy and the optimal value obtained from

the MDP formulation.

Figures 11b and 11d depict the results when the discount factor is set to α = 0.5. It

represents the short term savings by shifting to the MDP policy from the benchmark policy.

As expected, the values are a lot more dependent on the initial state, as the discount factor

has a higher impact on the convergence. The benchmark costs are approximately between
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12% and 35% more expensive than the MDP policy when the inspection cost is $150/km

and between 2% and 18% when the inspection cost is $500/km .

7. Segments as Restless Bandits

The results obtained in Section 6 provide decision-makers with a detailed policy they

should follow when deciding whether to inspect or not to inspect a segment. However,

crew limitations may cause the policy to be inadmissible. In this case, the problem can be

formulated as the following constrained mathematical program

lim
N→∞

min

{
E

[ N∑
t=0

αt
n∑
i=1

ci(si(t), ai(t))

]}
s.t.

n∑
i=1

ai(t) ≤ m, t ∈ {1, 2, ..., N}

ai ∈ {0, 1}∀i,

where si(t) denotes the state of the ith segment at time t, ai(t) denotes the binary variable

representing if segment i is inspected or not at time t, and ci(·, ·) denotes the expected cost

incurred at segment i when the state and action information are given.

Bandit problems are mathematical models to optimally allocate limited efforts in various

competing projects so that maximum reward or minimum cost is achieved under uncertainty

(Gittins et al., 2011). Original bandit problems assume no change of state and zero rewards

or costs for a particular segmente when it is not inspected. However, in the inspection

scheduling problem, this is not the case. A variation of the original bandit problem, called

the restless bandit problem, allows for such evolution of state and passively received reward or

cost (Gittins et al., 2011). Furthermore, this framework continuously updates the transition

matrices, maintaining and improving the system robustness.

Assume there are n segments to be inspected, and each segment has an initial augmented

state si ∈ S, with |S| = 60. Each state represents the level of deterioration of the rail segment

at the beginning of the period and the time passed since the last inspection, as described in

Section 6.1. Let us further assume that there are m crews available to inspect n segments.

Other parameters include a, a vector of actions for all states, and α ∈ [0, 1], the discount
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factor. Finally, let us assume that the initial probability transition matrices for the actions

‘inspect’ and ‘do not inspect‘ are the ones obtained in section 6.1. If m, the number of

crews available, is larger than n, all segments can be inspected and the problem becomes

unconstrained. On the other hand, if m < n, this problem can be characterized as a restless

bandit problem.

The restless bandit formulation chooses the best n of m competing segments optimally

by using a priority index called Whittle index if the problem is indexable. We will develop

the methodology below.

Since the constraint on the crew number can be bounded as

∞∑
t=0

αt
n∑
i=1

ai(t) ≤
m

1− α
, t ∈ {1, 2, ..., N},

by relaxing the activation constraint, we can write the Lagrangian dual function as

L(λ) = min
ai

{
E

[ ∞∑
t=0

αt
n∑
i=1

ci(si(t), ai(t)) + λ ·
( ∞∑
t=0

αt
n∑
i=1

ai(t)−
m

1− α

)]}
= min

ai

{
E

[ ∞∑
t=0

αt
n∑
i=1

(
ci(si(t), ai(t)) + λai(t)

)]}
− λ
(

m

1− α

)
= min

ai

{ ∞∑
t=0

αt · E
[ n∑
i=1

(
ci(si(t), ai(t)]) + λai(t)

)]}
− λ
(

m

1− α

)
s.t. ai ∈ {0, 1}∀i.

This problem can be decoupled for each segment, after disregarding the last term, which

is a constant.

Ci(λ) = min

{
E

[ ∞∑
t=0

αt(ci(si(t), ai(t)) + λai(t))

]}
s.t. ai ∈ {0, 1}∀i.

The set of all states for which it is optimal to choose a = 0 when λ is fixed increases

monotonically as λ increases. When λ = 0, all actions should be ‘inspect’ (based on the

result from Section 6). As λ increases, there is a point at which it is better not to inspect.
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Therefore, this problem is indexable (Gittins et al., 2011). The Whittle index is defined as

Wi(si) =

inf

{
λ :E

[
ci(si, 0) +

∞∑
t=1

αt(ci(si(t), ai(t)) + λ · ai(t))
]
<

E

[
ci(si, 1) + λ+

∞∑
t=1

αt(ci(si(t), ai(t)) + λ · ai(t))
]}

. (7)

Inspection decisions involve a risk-based approach that incorporates the trade-off between

the risk cost and the repair cost. The Whittle index, a well-established measure for restless

bandits, ranks the importance of this trade-off.

To compute the Whittle indices from equation 7, we solve several MDP for iteratively

increasing λ. Because the cardinality of both the state and action spaces is finite, value-

iteration or policy-iteration algorithms can be used to find the optimal cost function for each

MDP efficiently (Bertsekas, 2007). After calculating an index for each segment in the can-

didate segments as identified in Section 6, and sorting them from the highest to lowest, the

decision maker should pick the first m segments with the highest indices for inspection. Fi-

nally, the transition kernels are updated for these m segments using the maximum likelihood

estimation.

7.1. Example

We provide a simplified example in which 5 segments from the same cluster are being

considered for inspection, but only two crews are available. Of course, this methodology also

applies to more general cases in which segments come from different clusters.

The cost parameters are assumed to be the same as the ones given in Section 6.2, but

with minor perturbations to characterize the particularities of each segment. In this scenario,

inspections on segments B, and C cover 10 km of their length, while inspections on segments

A, D, and E cover 7 km of their length at the rate of $150 per km inspected.

Segments have been inspected t days ago and their last observed state is described in

Table 6a. Suppose that the initial belief for the transition matrices of this cluster is that

they follow the ones in Tables 4a and 4b.
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Segment A B C D E

Derailment ($) 2M 2M 2M 1.5M 1.5M

Inspection ($) 1050 1500 1500 1050 1050

Red Repair ($) 1500 1500 1500 1400 1400

Yel. Repair ($) 1300 1200 1300 1300 1200

Last State (3,L) (3,H) (2,L) (2,H) (1,L)

t 1 0 4 1 6

(a) Costs and state information for each segment.

Segment Augmented State Whittle Index

A (3,L,1) 9600

B (3,H,0) 10100

C (2,L,4) 2100

D (2,H,1) 2500

E (1,L,6) 10200

(b) Whittle Indices for each segment.

Table 6: Example cost and state parameters for each of the five segments and the corresponding results.

7.1.1. Inspection policy

The calculated Whittle indices are presented in Table 6b. Indices are calculated in in-

crements of 100. Providing such a table allows the decision-maker to quickly assess which

segments should be prioritized in a situation where only a limited number of crews is avail-

able. The decision-maker should choose the segments with highest indices.

Table 6b suggests that inspecting segments B and E is the best decision in this scenario.

The new states for segments B and E are observed, and t is set to 0. States for segments A,

C, and D are updated to (3,L,2), (2,L,5), and (2,H,2), respectively.

7.1.2. Updating transition matrices

Lastly, the transitions matrices for segments B and E need to be updated, after the

inspection is finished and the new state is known. Suppose the states after the inspection of

segments B, and E are 5 and 2, respectively. Since the new t is 0, given that they have just

been inspected, the corresponding augmented states are 5 (2,H,0), and 2 (2,L,0).

With two new inspections, we can update the frequencies of the augmented transition

matrices. We normalize the matrices by the total number of inspections, including the last

two inspections. Finally, we compute the updated probabilities for the transitions matrices

following the procedure in Section 6.1, but directly using the augmented matrices instead

(using MLE on the updated frequencies). These new transition matrices are now the updated

ones for the corresponding cluster. Due to the strong law of large numbers, it is expected

that they will tend to the “true” ones as more and more data are accumulated.
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8. Conclusion

This study proposes robust approaches for defect prediction in railways when faulty data

are present or detailed data are not available. Moreover, it proposes an integration between

such predictions and the problem of optimally scheduling inspections and maintenances.

The accuracy of the prediction models indicates that detailed data may not be necessary if

simple yet accurate data are available. Additionally, we present adaptations for higher levels

of risk-aversion. Furthermore, a threshold-type policy is shown to be optimal for scheduling

when each segment has a dedicated inspector, i.e., there are no crew limitations. A state-

augmentation approach is used to account for the partial observability of the system. Results

indicate the potential for considerable savings by using the optimal policy. Lastly, under an

additional constraint of crew limitations, we show that the problem is indexable. We provide

the index equation and describe the optimal policy, as well as how to update the transition

matrices after each period.

In this study, we do not account for the layout of the segments and how the geometry

of the system can play a role in the assignment of crews for inspection and maintenance.

Moreover, limitations such as available equipment, ongoing rail traffic, inspection and repair

durations, possible routes, etc. also form other constraints affecting detailed scheduling.

This paper presents a solution to the long-term master policy and schedule structuring

problem where crews are allowed to inspect any given segment within a region, independent

of where they are currently located. Future research will integrate long-term master policy

and schedules to short-term detailed schedule planning.
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