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A Comparison between Growth
Morphology of “Eutectic” Cells/
Dendrites and Single-Phase
Cells/Dendrites

S.N. TEWARI, S.V. RAJ, and I.E. LOCCI

Directionally solidified (DS) intermetallic and ceramic-
based eutectic alloys with an in-situ composite micro-

structure containing finely distributed, long aspect ratio,
fiber, or plate reinforcements are being seriously examined
for several advanced aero-propulsion applications. In design-
ing these alloys, additional solutes need to be added to the
base eutectic composition in order to improve their high-
temperature strength, and provide for adequate toughness
and resistance to environmental degradation. Solute addi-
tion, however, promotes instability at the planar liquid-solid
interface resulting in the formation of two-phase eutectic
“colonies.”[1–4] Because morphology of eutectic colonies
is very similar to the single-phase cells and dendrites, the
stability analysis of Mullins and Sekerka[5] has been
extended to describe their formation.[6,7,8] Onset of their
formation shows a good agreement with this approach;[9]

however, unlike the single-phase cells and dendrites, there
is limited examination of their growth speed dependence of
spacing, morphology, and spatial distribution.[4,10–11] The
purpose of this study is to compare the growth speed depen-
dence of the morphology, spacing, and spatial distribution
of eutectic cells and dendrites with that for the single-phase
cells and dendrites.

Figure 1 shows typical transverse (normal to the growth
direction) and longitudinal microstructures of two-phase
eutectic cells (Figure 1(a)) and dendrites (Figure 1(b)) in
directionally solidified (DS) NiAl-Cr(3 pct Mo) samples
solidified at 100 K cm�1.[10] The alloy growth direction is
indicated by the arrows in the corresponding longitudinal
views at the bottom. The two-phase eutectic contrast within
the eutectic colonies is not visible in these figures because
of the low magnification. It is, however, evident in the typical
high-magnification views of the colony boundary shown in
the insets of the transverse micrographs. At growth speeds
less than 3.5 �m s�1, the microstructure (not shown here)
was planar. It became cellular at higher growth speeds, as
shown in Figure 1(a), for a sample grown at 7 �m s�1. The
longitudinal and transverse appearances of these eutectic
cells are almost identical to the single-phase cells that form
during directional solidification of binary alloys. At 35 �m s�1

or higher growth speeds, the two-phase eutectic colonies
developed a branched appearance, as shown in the longitu-
dinal view of a sample directionally solidified at 70 �m s�1

(Figure 1(b)). Faint trace of these branched features can also
be seen within the corresponding transverse view at the top.
However, these eutectic dendrites do not have the usual four-
fold symmetry of the side branches associated with the liquid-
solid interfacial energy anisotropy in the fcc single-phase
dendrites. Instead, the two-phase eutectic dendrites have
“seaweed type” branches very similar to those observed in
the succinonitrile-acetone[12] at a very low degree of con-
stitutional supercooling.

Assuming that the centers of mass of these eutectic cells
and dendrites on the transverse views represent their loca-
tions, one can obtain Voronoi polygons, typical as shown
in Figure 2(a) for the sample grown at 70 �m s�1. The
number within each polygon indicates the number of cor-
responding nearest neighbors. Figure 2(b) shows the relative
frequency distribution of the number of nearest neighbors
for the eutectic cells and dendrites in DS NiAl-Cr(3 pct Mo)
samples directionally solidified at speeds ranging from 7
to 141 �m s�1. There is no significant difference between
the eutectic cells growing at speeds less than 70 �m s�1

and the eutectic dendrites growing at higher speeds. A
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Gaussian fit through the data points, indicated by the solid
line in Figure 2(b), shows that there is a dominance of five
to six neighbors, but there is extensive noise embedded in

the distribution. This behavior is very similar to that obser-
ved for the single-phase cells and dendrites in the fcc metal-
lic alloys. However, the distribution of single-phase cells,
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Fig. 1—Typical transverse (shown at the top) and longitudinal (shown at the bottom) microstructures of (a) eutectic cells and (b) dendrites in DS NiAl-
Cr(3 pct Mo) samples solidified at 100 K cm�1. Arrows in the longitudinal views at the bottom show the alloy growth direction: (a) eutectic cells growing
at 7 �m s�1 and (b) eutectic dendrites growing at 70 �m s�1.

(b)(a)

Fig. 2—Spatial distribution of nearest neighbor eutectic cells and dendrites. (a) Voronoi polygons corresponding to the transverse microstructure shown in
(b). (b) Frequency distribution of number of nearest neighbor eutectic cells and dendrites. Growth speeds for NiAl-Cr(3 pct Mo) alloy samples are indi-
cated by the various symbols. The thick solid line is Gaussian fit to all the data points in (b). The thin broken line represents the Gaussian fit observed for
the single-phase cells in DS Pb-2.2 wt pct Sb alloy.[13]

(a) (b)
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typically represented by that observed in DS Pb-2.2 wt pct
Sb alloy[13] and included here as the dotted curve in Fig-
ure 2(b), is less noisy than that of eutectic cells.

Figure 3(a) shows the minimum spanning tree for the
sample grown at 70 �m s�1. A minimum spanning tree is
a connected graph without any closed loop, which contains
all the centers of mass of all the colonies and for which
the sum of the edge lengths is minimal. Such a tree repre-
sents the shortest total length of the branches in order to
connect all the nodes. The mean branch length (�1) and
its standard deviation are a measure of the intercellular/
interdendritic spacing. The mean branch length and its
standard deviation can be normalized by dividing them

by the square root of the average cell surface area to yield
m and � parameters. The m vs � plots can then be used to
compare arrangements with different nearest neighbor spac-
ings.[14] Figure 3(b) plots the m and � values obtained for
the eutectic cell (at growth speeds less than 35 �m s�1)
and dendrite samples examined in this study (filled symbols).
The open circles are for single-phase cells observed in
DS Pb-2.2 wt pct Sb alloy samples.[13] The solid line in
this figure corresponds to the expected m and � values
for a hexagonal tessellation with varying amounts of super-
imposed noise; the points on the solid line correspond to
10 pct noise increments starting from zero at � � 0. As
the imposed noise increases, the value of m decreases and
that of � increases. Figure 3(b) shows that the extent of
disorder in the spacing distribution of eutectic cells and
dendrites is generally higher than that observed in the
single-phase cells; this is also in agreement with Figure 2(b),
which showed that the frequency distribution of nearest
neighbors is noisier for the eutectic cells/dendrites as com-
pared with single-phase cells. This plot also shows that the
extent of disorder increases with increasing growth speed;
the branched eutectic features grown at speeds of 35 �m s�1

are more disordered as compared with the eutectic cells
growing at lower growth speed.

Figure 4 plots the growth speed (V ) dependence of the
mean spacing (�1) of eutectic cells and dendrites and com-
pares it with that of the single-phase cells. Mean cell/
dendrite spacing and its standard deviation are plotted in
Figure 4(a) as a function of growth speed for the DS NiAl-
Cr(3 pct Mo) alloy. The regression fit (solid line in Figure 4(a))
shows the following dependence: �1 � 358 � 60 �m
(V, �m s�1)�0.19�0.05.

Figure 4(b) shows a schematic representation of the experi-
mentally observed growth speed dependence of primary
spacing for single-phase cells and dendrites. Shallow cells
with almost spherical tips form at the onset of breakdown
of a planar liquid-solid interface; their spacing decreases
with increasing growth speed. At higher growth speed, deep
cells with nearly elliptical tip shape form, resulting in an
increase of spacing. The onset of side branching and for-
mation of dendrites with paraboloidal tips cause a rapid
spacing increase, resulting in the maximum shown in Fig-
ure 4(b). From then on, the spacing continues to decrease
with increasing growth speed. It is quite evident that the
growth speed dependence of the eutectic cells and dendrites
(Figure 4(a)) is very different from that of single-phase cells
and dendrites (Figure 4(b)). The spacing for the eutectic cells
decreases with increasing growth speed, and it continues to
decrease even after the formation of side branches as opposed
to the rapid increase associated with the side-branch forma-
tion in the single-phase cells.

A power-law growth speed dependence, �1 � AV�0.5, is
predicted theoretically for single-phase cells.[15,16] As shown
in Figure 4(c), this is in good agreement with experiments;
Al-0.73 wt pct Cu[17] yields an exponent of �0.48, and suc-
cinonitrile-0.055 wt pct acetone[18] shows it to be �0.50. The
two-phase eutectic cells and dendrites, however, yield a much
lower exponent, about �0.19 for the NiAl-Cr(3 pct Mo) alloy
examined here and �0.26 for the CBr4-C2Cl6 eutectic alloy
studied by Akamatsu and Faivre.[11]

The preceding observations indicate that the growth
mechanisms of two-phase eutectic cells and dendrites must

1634—VOLUME 35A, MAY 2004 METALLURGICAL AND MATERIALS TRANSACTIONS A

(a)

(b)

Fig. 3—Nearest neighbor spacing distribution of eutectic cells/dendrites
in DS NiAl-Cr(3 pct Mo) alloy. (a) A minimum spanning tree based on
the eutectic dendrite microstructure shown in Fig. 1(b). (b) The m-� plot
for the eutectic cells and dendrites observed in DS NiAl-Cr(3 pct Mo)
alloy samples. The open circles correspond to the single-phase cells
observed in the DS Pb-2.2 wt pct Sb alloy.[13] The solid line corresponds
to a hexagonal tessellation with increasing amount of superimposed ran-
dom noise generated by a uniformly distributed random-number genera-
tor. The points on the solid line correspond to noise increments of 10 pct
starting from � � 0.
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(a) (b)

(c)

Fig. 4—A comparison between the growth speed dependence of eutectic cell and dendrite spacing with that of single-phase cells and dendrites. (a) Eutec-
tic cells and dendrites in DS NiAl-Cr(3 pct Mo) alloy. (b) Single-phase cells and dendrites in DS binary alloys. (c) A comparison between growth speed
dependence of eutectic cells and dendrites and that of single-phase cells during directional solidification.

be very different from those of the single-phase cells and
dendrites.

Further theoretical development is needed to quantitatively
predict growth speed dependence of morphology and spacing
of the two-phase eutectic cells and dendrites.
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