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ABSTRACT

This paper describes nonlinear regression estimators for the
three-parameter Weibull distribution. Issues relating to the bias
and invariance associated with these estimators are examined
numerically using Monte Carlo simulation methods. The estimators
were used to extract parameters from sintered silicon nitride failure
data. A reliability analysis was performed on a turbopump blade
utilizing the three-parameter Weibull distribution and the estimates
from the sintered silicon nitride data.

INTRODUCTION

To date, most reliability analyses performed on structural
components fabricated from ceramic materials have utilized the two-
parameter form of the Weibull distribution. The use of a two-
parameter Weibull distribution to characterize the random nature of
material strength implies a nonzero probability of failure for the full
range of applied stress. This represents a conservative design as-
sumption when analyzing structural components. A three para-
meter form of the Weibull distribution is available. The additional
parameter is a threshold stress that allows for zero probability of
failure when applied stress is at or below the threshold value. By
employing the concept of a threshold stress, design engineers can
effectively tailor the design of a component to optimize structural
reliability.

Difficulties in estimating parameters as well as a lack of
strength data with corresponding fractographic analysis has limited
the use of this distribution. Several authors (including Weibull,
1939; Weil and Daniel, 1964; and Schneider and Palazotto, 1979)
have proposed estimation methods for the three-parameter
distribution. For various reasons these techniques have not been
widely utilized. The nonlinear regression method proposed by
Margetson and Cooper (1984) is adopted here to establish estima-
tors for the three-parameter Weibull formulation. Estimators are
applied using failure data obtained from the open literature.
Specifically, Weibull parameters are estimated from failure data

NASA Resident Research Associate at Lewis Research Center
National Research Council — NASA Research Associate at
Lewis Research Center.

reported by Chao and Shetty (1991). The data were generated from
test specimens fabricated from a monolithic silicon nitride. Strength
tests were conducted on this material using three-point bend, four-
point bend, and pressurized-disk, specimen geometries. Here the
Weibull parameters are estimated from the four-point bend test
data, and failure data from the three-point bend tests and
pressurized-disk tests are subsequently used to challenge structural
reliability predictions made for these latter two geometries. To
conduct structural reliability analyses, the three-parameter Weibull
distribution was embedded in a reliability model known as the
principle of independent action (PIA). We point out that the three-
parameter form of the Weibull distribution can be extended to
Batdorf's (1974, 1978) model and reliability models proposed for
ceramic matrix composites (see Duffy et al., 1991; or Thomas and
Wetherhold, 1991). All reliability computations presented here were
made utilizing the integrated design program CARES (Ceramic
Analysis and Reliability Evaluation of Structures) (Nemeth et al.,
1990) .

In general, the objective of parameter estimation is the
derivation of functions (or estimators) that are dependent on the
failure data and that yield, in some sense, optimum estimates of the
underlying population parameters. Various performance criteria can
be applied to ensure that optimized estimates are obtained consis-
tently. Two important performance criteria are estimate invariance
and estimate bias. An estimator is invariant if the bias associated
with the estimated value is independent of the true parameters that
characterize the underlying population. Bias is a measure of devia-
tion of the estimated parameter from the true population parameter.
Here the functional value of an estimator is a point estimate (in
contrast to an interval estimate) of the true population parameter.
The values of the point estimates computed from a number of sam-
ples obtained from a population will vary from sample to sample. A
sample is defined as a collection (i.e., more than one) of observa-
tions taken from a specified population, and a population represents
the totality of all possible observations about which statistical
inferences could be made. In this paper, the observations are the
failure strengths of test specimens fabricated from ceramic materials.
The issues of bias and invariance and their relationship to the
functions proposed by Margetson and Cooper (1984) are explored
numerically. In the numerical studies, distributions of the point
estimates are obtained by taking numerous samples from the popu-
lation and computing point estimates as a function of sample size.



If the mean of a distribution of such estimates is equal to the value
of the true parameter for a given sample size, the associated esti-
mator is said to be unbiased. If an estimator yields biased results,
the value of the individual estimates can be corrected if the
estimators are invariant (see Thoman et al., 1969, for the procedure
associated with two-parameter maximum-likelihood estimators).
The Monte Carlo simulations that are presented later demonstrate
that the functions are neither invariant nor unbiased.

ESTIMATING WEIBULL DISTRIBUTION PARAMETERS

Weibull (1939, 1951) proposed the first probabilistic model
that accounted for scatter in failure strength and the size effect
encountered in structural components fabricated from brittle materi-
als. His approach is based on the weakest link theory (WLT)
attributed to Midgley and Pierce (1926). This earlier research
(sponsored by the textile industry) focused on modeling yarn
strength. Unlike Midgley and Pierce, who assumed a Gaussian dis-
tribution for yarn strength, Weibull proposed a unique probability
density function for failure strength that now bears his name.
Weibull's three-parameter probability density function has the
following form

f (x)	 k1 ^ x >I 'I" — 
'lexp — I x	 I^	 (1)

for a continuous random variable x, when 0 < A < x, and

f(x) = 0	 (2)

for x < A. The cumulative distribution function is given by the
expression

F(x) = 1 — exp — ^x — A^-
	

(3)

for x > A, and

F(x) = 0	 (4)

for x < A. Here a(>0) is the Weibull modulus (or the shape
parameter), p(>0) is the scale parameter, and A(>0) is the
threshold parameter. When applied to analyses of structural com-
ponents, the random variable x usually represents a component of
the Cauchy stress tensor or an invariant of this tensor. For a uni-
axial stress field in a homogeneous isotropic material, application of
Weibull's theory yields the following expression for the probability
of failure

P = 1 - exp — f V I ° 
Q 

7 ]'d V	 (5)

= 1 — exp(—B)	 0 > -t

where

B =	 0 — 7 adV	 (6)
r

	

fV	 3

and

	

P=0	 0 <q	 (7)

:Vote that a, p, and -1 are material parameters and will not
depend on the geometry of the test specimen. In this context Q
has the dimension of (stress)•(volume) l ^ a , q has the dimension of
stress, and a is dimensionless.

Certain monolithic ceramics have exhibited threshold behavior
(e.g., Quinn, 1989; Chao and Shetty, 1991). It is anticipated that
ceramic matrix composites will similarly exhibit this behavior
(Duffy et al., 1991). Threshold behavior is demonstrated if the
failure data displays a nonlinear behavior when the ranked proba-
bility of failure (Ti ) is represented as a function of the corresponding
failure values. Careful fractography must yield clear evidence that
only one type of defect is causing failure. Thus, the fractographic
analysis must demonstrate that the nonlinear behavior of the failure
data is not the result of competing failure mechanisms. When ex-
perimental data indicates the existence of a threshold stress, a three-
parameter Weibull distribution should be employed in the stochastic
failure analysis of structural components. However, the three-
parameter form of the Weibull distribution has been somewhat
ignored as a result of difficulties encountered in extracting estimates
of the parameters from experimental data. Margetson and Cooper
(1984) proposed a relatively simple nonlinear regression method to
estimate the three distribution parameters. Regression analysis
postulates a relationship between two variables. In an experiment,
typically one variable can be controlled (the independent variable)
while the response variable (or dependent variable) is uncontrolled.
In simple failure experiments the material dictates the strength at
failure, indicating that the failure stress is the response variable.
The ranked probability of failure (Ti ) can be controlled by the
experimentalist since it is functionally dependent oil the sample size
(N). After numbering the observed failure stresses (O t , o z , 0 31 ...,
o N ) in ascending order, and specifying

`R,(o;) = (i — 0.5)/N	 (8)

then clearly the ranked probability of failure for a given stress level
can be influenced by increasing or decreasing the sample size. The
procedure proposed by Margetson and Cooper (1984) adopts this
philosophy. They assume that the specimen failure stress is the
dependent variable, and the associated ranked probability of failure
becomes the independent variable.

Using Eq. (5), an expression can be obtained relating the
ranked probability of failure (Pi ) to an estimate of the failure

strength (n j ). Assuming uniaxial stress conditions in a test speci-
men with a unit volume, Eq. (5) yields

o ; = 7 + p[ln(1/1 — P;)1116' 	 (9)

where n i is an estimate of the ranked failure stress. In addition,

&, ^, and 7 are estimates of the shape parameter (a), the scale
parameter (p), and the threshold parameter ( ,y), respectively.
Defining the residual as

2



bi = b i — ai	 (10)	 BIAS AND INVARIANCE

where ai is the i'th ranked failure stress obtained from actual test
data, then the sum of the squared residuals is expressed as

N	 N	
2

(b;) 2 =	 (7 + bwi /a 	 (11)
i=1	 i=1

Here the notation of Margetson and Cooper (1984) is adopted where

W i = ln(1/1 — Ti )	 (12)

Note that the forms of b; and Wi change with specimen
geometry (see the discussion in a later section relating to the four-
point bend specimen geometry). It should be apparent that the
objective of this method is to obtain parameter estimates that mini-
mize the sum of the squared residuals. Setting the partial deriva-
tives of the sum of the squares of the residuals with respect to
n, p, and ry equal to zero yields the following three expressions

N	 N	 N
1V 

i=1	 i=1	 i=1
	

(13)

N	 N	 N

N	 (W i)2/& —	 (Wol 
a	 (Wi)l/5

i=1	 i=1	 i=1

N	 N	 N	 N

(Wi)2/6	 O'i	 °i(Wi)l/a
	

(Wi)1/6

7=	
i=1	 i=1	 i=1	 i=1

N 
	

N	 N

N L (W i) 2
/& —	 (Wi)l/5	 (Wi)l/5

(14)

and

N	 N
E °i( WX/ain ( Wi) — 7 E (Wi)l/aln(Wi)
i=1	 i=1	 (15)

N
Q r' (W i ) 21a ln(W i ) '5 'tconv

i=1

in terms of the parameter estimates. The solution of this system of
equations is iterative. The third expression is used to check
convergence of the iterative solution. The initial solution vector for

	

this system is determined after assuming a = 1. Then 	 is com-
puted from Eq. (13) and 7 is calculated from Eq. (14). The
values of these parameter estimates are then inserted into Eq. (15)
to determine if the convergence criterion is satisfied to within some
predetermined tolerance (neon,). If this expression is not satisfied,
a is updated and a new iteration is conducted. This procedure
continues until a set of parameter estimates are determined that
satisfy Eq. (15).

Issues relating to estimate bias and invariance are examined
numerically using Monte Carlo simulation methods. In this study
uniform random numbers are generated in groups of N (which char-
acterizes the sample size), and this is repeated 10 000 times for
each value N. Each group of uniform random numbers is generated
on the interval 0 to l using the Cray random number function
RANGET. The uniform random number is converted to a strength
observation by employing the inverse of the three-parameter Wei-
bull distribution for failure strength given in Eq. (9). Defining
(S;) N as the i'th random number on the interval 0 to 1 in a sample
of size N, then the i'th failure strength is

1	
l^a

(°i)N = 7 + ^ In	 (16)
f 1 — (SdN,

where a, p, and 7 are the true distribution parameters of an
infinite population characterized by a three-parameter Weibull
distribution. Again, uniaxial stress conditions are imposed on a
specimen of unit volume. However, this method can be extended to
other specimen geometries as well.

Once a sample of N random numbers is generated and con-
verted to failure strength observations, the estimators described by
Eq. (13) through (15) are used to obtain the point estimates

a, ^, and 7. Percentile distributions of the point estimates, as
well as a mean value of the point estimates, can be constructed by
repeating this sampling procedure for each value of N. Here the
Monte Carlo simulations are carried out 10 000 times for each N.
The arithmetic mean of each estimated parameter is a measure of
the bias associated with the estimator in determining that para-

meter, and is usually characterized as a function of the sample size
(N). This is depicted graphically in Fig. 1. In this figure the
vertical axes represent a ratio of the point estimate value to the

parameter true value used to generate the failure observations. The
true population parameters are arbitrarily chosen, with a = 1.75,
= 1000, and A = 300. The horizontal axes represent the sample
size N. Note that for all three estimators the mean value of the
ratio approaches 1 for large values of N. Thus, each estimator
exhibits the attractive property of decreasing bias with increasing

sample size. However, the arithmetic mean associated with each
parameter is riot invariant with respect to the underlying population
parameter. This is evident in Fig. 2 which depicts the arithmetic
mean values of the parameter estimates from the previous example
along with arithmetic mean values from a second example. For the
second sample, the true population parameter a has been increased
such that a = 2.75, and the other values of the true parameters are
unchanged. Clearly the arithmetic means associated with the
Weibull modulus (a), the scale parameter (p), and threshold stress
(-I) change for sample sizes of less than 100. If the mean values
remained invariant, then the three curves in each graph in Fig. 2
would coincide regardless of the values assumed for the true
population parameters. This lack of invariance precludes unbiasing
the point estimates obtained using this method. If the estimators
were invariant, the bias could be removed in a systematic fashion
using the method outlined by Thoman et al. (1969) for the
maximum-likelihood estimate of the Weibull modulus. The authors
indicate that the ratio associated with the two-parameter maximum-
likelihood estimator for the scale parameter is also not invariant
with respect to the underlying population parameters. However,
Thoman et al. (1969) were able to construct a function that
contained the ratio associated with the scale parameter and the

estimate of the Weibull modulus, but was not dependent on the true
population parameters. This function enabled Thoman et al. (1969)
to establish unbiasing factors and confidence bounds for the
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Figure 1.-Arithmetic mean values and
percentile distributions of the ratio of
the point estimate to the true population
parameter for each estimator (a = 1.75,
R = 1000, y = 300).
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maximum-likelihood estimate of the two-parameter scale parameter.
Similar functions for the nonlinear regression estimators discussed in
this paper have not been developed. Thus, removing the bias
associated with these estimators is not possible, and the design

engineer should recognize that the amount of bias may be significant
for small sample sizes.

Along with the mean value, the 10th and 90th percentile dis-
tributions are depicted for each estimator in Fig. 1. These percen-
tile distributions are related to confidence bounds for a point
estimate. The percentile distributions are obtained by ranking in
order (from lowest to highest value) the ratios of point estimates to
the true value of the distribution parameter. In this case the 10th
percentile distribution represents the ratio associated with the

1000th ranked value. Hence, 999 ratios had lesser values. Simi-
larly, the 90th percentile distribution represents the ratio associated
with the 9000th ranked value. If the number of samples was
increased from 10 000 to infinity, then these ranked values would
yield the exact confidence bounds for the estimators. Note that for
these estimators the confidence bounds narrow with increasing sam-
ple size (N). This is indicated by the decreasing separation in the
percentile distributions. However, the percentile distributions are
not invariant with respect to the true population parameters.
Again, increasing a from 1.75 to 2.75 affected the percentile
distributions (Fig. 3). This precludes the computation of confidence
bounds on parameter estimates since the value of the true popula-
tion parameter (the quantity being estimated) would have to be
known a priori.

APPLICATION - PARAMETER ESTIMATION AND
RELIABILITY ANALYSIS

In this section, parameters from the sintered silicon nitride
(grade SNW-1000, GTE Wesgo Division) data presented in Chao

TABLE L - ESTVvLkTED PARAMFTFRS rrnr sn 1r-0^ :rrunu.

Specimen Strength, MPa
number

Three-point bend Four-point bend Pressurized disk

l 715.6 613.9 549.7
2 729.6 623.4 575.5
3 741.0 639.3 587.4
4 758.6 642.1 622.0
5 771.1 653.8 636.7
6 773.1 662.4 639.3
7 821.2 669.5 642.6
8 830.4 672.8 646.3
9 832.8 681.3 659.3
l0 863.2 682.0 659.6
11 868.2 699.0 660.4
12 870.9 714.5 661.4
13 878.3 717.4 667.8
1•1 881.1 725.5 668.9
15 899A 741-6 670.9
16 900.6 74.1.9 68.1.8
17 905.0 751.0 686.2
18 913.8 761.7 691.3
19 916.8 763.9 693.8
20 928.0 774.2 698.1
21 931.0 791.6 706.9
22 934.6 795.2 718 I
23 935.1 829.8 718.9
24 941.1 838.4 726.4
25 941.6 856.4 732.3
26 949.1 869.3 738.1
27 951.6 882.9 748.2
28 953.8 ----- 771.5
29 956.5 ---- 780.7
30 979.9 ----- 786.3
31 ----- 796.2
:32 811.6

and Shetty (1991) are estimated. The four-point bend, the three-
point bend, and the pressurized-disk data are listed in Table I.
Focusing on the four-point bend specimen, the support span for this
test fixture was 40.373 mm and the inner load span was 19.622 rum.
The cross sections of the test specimens were 4.0138 mm wide and
3.1106 mm in height.' All failures occurred within the 19.6-mm

gage section. Thus, each specimen is assumed to be subjected to
pure bending. Under this assumption, Eq. (6) becomes (see Weil
and Daniel, 1964)

2 a+ 1	 a	 0B= ^ V
I
l

	 7	 a -'7 
a	

(17)

(	 )

where

V = b h I = 243.0 mm3	 (18)

and o( =Mc/I) is the outer fiber stress, assuming that the material
behaves in a linear elastic fashion. Chao and Shetty examined the
fracture surfaces of failed specimens using optical and scanning
electron microscopy. These studies indicate that failures were
initiated at subsurface pores (i.e., a volume defect). This type of
fracture site consistently occurred in all three specimen geometries.

Once again, Eq. (5) can be used to express the functional
relationship between the ranked probability of failure (P i ) and the
estimate of the failure strength (oi ). Using the definition of B
given in Eq. (17), then the following relationship exists between Pi
and of

of = 7 , + O * [o i ln(1/1 - Pi ) I 1/a*	 (19)

for pure bending conditions. Here

= a + 1	 (20)

(	 1/(1+a)
I^2(5

V 

+ 1)l (0) gl	 (21)

II`` 	 JI
	

JJ

and

7* = 7
	

(22)

are introduced. At this point the residual defined by Eq. (10)
cannot be formulated since Eq. (19) cannot be solved explicitly for
the estimated ranked failure stress (o i ). however, several alterna-
tives can be pursued to effect a solution. Margetson and Cooper
(1984) indicate that the actual ranked failure stress (o i ) should be
substituted for a i on the right hand side of Eq. (19). Defining

W i = 0, i ln(1/1 - Ti )
	

(23)

'All specimen dimensions and failure stresses in Table I
(including the three-point and the pressurized-disk geometries) were
obtained from a personal communication with Chao and Shetty.

.14
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then Eq. (13) through (15) can be solved for &', p *, and ry'.
Estimated values of the material parameters a, 0, and 7 would
then be computed from Eq. (20) through (22). However, once the
substitution of

&i = o f	(24)

is made, Eq. (11) no longer defines the sum of the squared residuals.
Exactly what is being minimized is difficult to define (an approxi-
mate residual, perhaps). However, this approximate method yields
fairly good results (Duffy et al., 1991). This becomes evident in the
following discussion in which results of the approximate method are
compared to a more rigorous solution.

Note that Eq. (13) through (15) and Eq. (19) represent NY3
equations in terms of N-3 unknowns (&', Q', 7', and & i ). The
alternative solution involves finding an initial estimate of the
Weibull parameters using the approach where the estimated failure
strengths are substituted with the actual strength data. After
computing an initial estimate of the parameters, Eq. (19) is solved

numerically (N times) for &i . With Eq. (12) redefined as

Figure 4.—Comparison of the probability of failure for the
Wi = &iln(1/1 – Ti)	 (25)	 four-point specimen using the two- and three-parameter

Weibull distribution.

then Eq. (13) and (14) are solved for updated values of
^' and 7 ' (using the previous value of &' ). The convergence
criterion given by Eq. (15) is checked. If the criterion is not
satisfied, &' is updated, and Eq. (19) is again solved numerically

for & i . This iterative process is repeated until the convergence
criterion is satisfied.

Both procedures are used to estimate parameters from the four-

point bend test data listed in Table I. The approximate
method produces estimates of & = 1.55, ^ = 988.6, and
j = 559.67. The procedure that includes the solution for bi

yields parameter estimates of & = 1.68, ^ = 861.6, and 7 = 558.1.
In addition, maximum-likelihood estimators are used to obtain point
estimates for a two-parameter Weibull distribution. This technique
gives estimated parameter values of & = 10.2 and ,0 = 767.8
(with j - 0). The values obtained from the two-parameter
maximum-likelihood estimators differ from the values reported in
Chao and Shetty (1991). They used an averaging technique pro-
posed by Batdorf and Sines (1980) that combines data from several
test specimens. The pooled data are used to compute estimates
from the three- and four-point bend data. The estimated scale
parameters from both configurations are averaged and, if the meth-
od of Batdorf and Sines (1980) is strictly adhered to, then the resi-
duals from two data points are minimized. The authors feel that for
this method to yield meaningful results, more than two specimen
geometries are needed. The results of the maximum-likelihood esti-
mators and both nonlinear regression methods are presented in
Fig. 4, where the probability of failure is plotted as a function of the
failure stress; that is, Eq. (5) is graphed using the different para-
meter estimates. The failure data is included using Eq. (8) to estab-
lish the vertical position of each data point. The straight line
represents the two-parameter fit to the data. The nonlinear curves
represent the three-parameter fit to the data. It is evident that the
estimated three-parameter distributions are more efficient in predict-
ing the failure data in the high-reliability region. Also note that
there is very little difference between the two procedures used to
establish the three - parameter estimates.

With the estimated Weibull parameters obtained using the
procedure that includes the solution for & i , reliability predictions
are made for the three-point bend and the pressurized-disk geome-

P

3.1397 mm

P/2	 P/2

3.9887	 30.2 mm
mm

(a)Three-point bend specimen.

p (pressure)

3.185 mml

50.8 mm

49.53 mm
(b) Pressurized disk specimen.

Figure 5.—Geometry of the three-point bend specimen and the
pressurized disk specimen.

tries used in the experimental study by Chao and Shetty (1991).
Both specimen geometries are depicted in Fig. 5. The geometries
are modeled using MSC/NASTRAN to determine the structural re-
sponse of the specimens to mechanical loads. The three-point bend
geometry is modeled with 136 eight-node elements (MSC/
NASTRAN CQUAD8). The mesh for this specimen is shown in
Fig. 6. The stress distribution obtained from the finite element
analysis is subsequently used as input for the integrated design



(a) Three-point bend specimen.
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(a) Three-point bend specimen.

(b) Pressurized disk specimen.

Figure 6.—Finite element discretization.

program CARES (Nemeth et al., 1990). A volume flaw analysis is
performed where the volume of a shell element is determined by
calculating the midplane area and multiplying this value by the
thickness of the element. The probability of failure curve is obtain-
ed by scaling (i.e., linearly increasing and decreasing) a single stress
distribution a number of times. For each stress distribution a reli-
ability analysis is performed with the CARES algorithm. An appro-
priate number of reliability computations are made to produce the
nonlinear curve in Fig. 7. The linear (two-parameter) curve is
established by determining the probability of failure at a single
point on the curve and drawing a straight line through this point
using the estimated Weibull modulus, which coincides with the slope
of the linear curve. The data clearly indicates nonlinear behavior;
however, both the two- and the three-parameter formulations yield
conservative estimates in the high-reliability regions, but noncon-
servative estimates in the high probability of failure region. Both
follow the trend of the data in the 5- to 60-percent probability of
failure range of the graph.

The pressurized-disk geometry is modeled with 260 six-node
elements (MSC/NASTRAN CTRIAX6). The axisymmetric mesh
for this specimen is also shown in Fig. 6. The probability of failure
curves are depicted in Fig. 7. All probability of failure curves are
generated by computing component reliability from numerous stress
distributions that are obtained, once again, by linearly increasing
and decreasing a single stress distribution. Isere the three-
parameter formulation clearly yields a better fit to the data. The
two-parameter formulation is distinctly conservative at all stress
levels, which can lead to overdesigned structural components. To
demonstrate this, the parameter estimates obtained from the four-
point bend data are used to compute the probability of failure of an
aerospace component. Specifically, the component analyzed is a
space shuttle main engine (SSME) high-pressure turbopump blade.
The finite element mesh used to analyze this turbopump blade is
depicted in Fig. 8. Moss and Smith (1987) used this mesh to ana-
lyze the dynamic characteristics of the blade. The mesh consists of
1025 brick elements (MSC/NASTRAN CHEXA). The shank of the
blade is fully constrained. For the purpose of demonstration, it is
assumed that the blade is fabricated from the monolithic silicon
nitride material discussed in Chao and Shetty (1991). In the analy-
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Figure 7.—CARES probability of failure results and failure data.

sis Young's modulus is taken as 285.0 GPa and Poisson's ratio is
0.23. The specific load case studied represents a rotational speed of
40 000 rpm at room temperature. At this rotational speed the two-
parameter formulation (using the PIA model) results in a com-
ponent failure probability (Pt) of 75.2 percent. The three-parameter
formulation results in a failure probability (P t) of .04 percent.
Utilization of the monolithic material would be summarily rejected
based on the limited data available and the results of the two-
parameter estimates. However, the results from the three-parameter
formulation could prompt further consideration. The notable differ-
ence in the probability of failure does not indicate conclusively that
the underlying population is characterized by a three-parameter

Weibull distribution. Additional test data may clearly demonstrate
whether the underlying population is characterized by a two- or
three-parameter Weibull distribution. In addition, possible design
studies could result in a further reduction in the component failure
probability. Whether or not further redesign would bring the com-
ponent failure probability within the stringent limits established for
various shuttle components is not the issue here. The authors do
not advocate using monolithic silicon nitride in the fabrication of
SSME turbopump blades. Rather, this aerospace example empha-
sizes that the common use of the two,-parameter formulation can
lead to extremely conservative design decisions.



Figure 8.—Finite element discretization of turbopump blade

CONCLUSIONS

Enough experimental data exists to suggest threshold- behavior
(indicated by a nonlinear behavior similar to that displayed in Fig.
4) in certain monolithics. However, whether nonlinear behavior can
be attributed to the existence of a threshold stress or competing
failure mechanisms is open to question because of the lack of careful
fractographic analysis for most data sets (except for the Chao and
Shetty data discussed previously and obtained through personal
communication). This paper has reviewed a number of aspects
related to the simple nonlinear regression technique proposed by
Margetson and Cooper (1984). From limited numerical studies it is
concluded that the estimators are well-behaved in the sense that
bias is minimized, and confidence bounds tighten as the sample size
is increased. However, the estimators are not invariant with respect
to the underlying parameters that characterize a population. This
precludes establishing exact confidence bounds and unbiasing
factors.

The estimators perform reasonably well in comparison to the
two-parameter maximum-likelihood estimators when both are ap-
plied to the silicon nitride data of Chao and Shetty (1991). Using
an improved estimator based on the method proposed by Margetson
and Cooper (1984), the three-parameter Weibull distribution easily
captures the nonlinear trend of the failure data. All reliability
computations are made using the simplified PIA model but better
correlation to the failure data might be obtained if other more
rigorous reliability models were employed. The authors are current-
ly pursuing this analytical approach.

Although the three-pararrreter formulation obviously provides a
better fit to the pressurized-disk data, this may not be readily
evident with the three- and four-point bend data. Goodness-of-fit
statistics such as the Kolmogoroff-Smirnoff statistic and the
Anderson-Darling statistic should be used to establish which form of
the Weibull distribution would best fit the experimental data.
These approaches are currently being studied by the authors.

Finally an aerospace component is analyzed, and the results
may indicate the conservativeness of the two-parameter formulation.
The authors advocate the use of the three-parameter formulation of
the Weibull distribution when experimental data exhibits threshold
behavior. Even though the estimates proposed by Margetson and
Cooper (1984) are not invariant, additional testing can be conducted
to minimize the bias associated with the parameter estimates. As
the reliability analysis of the SSME turbopump blade indicates, the
costs from additional tests may be well worth the dramatic decrease
in a component probability of failure.
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