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Applying Neural Networks to Find
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of a Boolean Function
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To find a minimal expression of a boolean function includes a step to select the minimum cost cover from a set of
implicants. Since the selection process is an NP-complete problem, to find an optimal solution is impractical for
large input data size. Neural network approach is used to solve this problem. We first formalize the problem, and
then define an "energy function" and map it to a modified Hopfield network, which will automatically search for
the "minima. Simulation of simple examples shows the proposed neural network can obtain good solutions most of
the time.

Key Words: Logic minimization; Neural networks; Optimization; Quine-McCluskey method; Hopfield-network.

1. INTRODUCTION

gic minimization is to simplify a boolean func-
ion so that the implementation cost can be

reduced. Among the different techniques, two-level
minimization is the most well-understood one and
has a wide application in the design of Pro-
grammable Logic Array (PLA)[2]. This technique
normally involves two basic procedures: the genera-
tion of Prime Implicants (PIs), and the selection of
PIs. The generation of PIs can be exhaustive, as in
traditional Quine-McCluskey method [15] and in
McBoole [6], or heuristic, as in Espresso [2]. Once
the PIs are found, we need to select a subset that
can cover the function completely and has a minimal
total cost. This selection process is an NP-complete
problem [9] and may take exponential computation
time to obtain an optimal answer. Although certain
pre-processing techniques, such as column reduc-
tion, row reduction [14] and partition [17], can re-
duce the size of the input table, there is no effective
way to obtain the optimal solution from the reduced
table.
A neural network is an interconnected network of

a large number of simple processors [18]. Although
neural networks are primarily used for information
processing and biological modeling, it has been

shown that neural networks can collectively compute
good solutions to a wide range of complex optimiza-
tion problems, such as Traveling Salesman, 3-
Satisfiability, etc. [11] [12] [20] [19]. Since it is possi-
ble to implement the massive neural network in a
VLSI chip [16] in the future, neural networks can be
an alternative approach to obtain answer for some
"hard" computational problems. In this paper, we
investigate the possibility of applying neural network
approach to solve the coverage problem. We first
formalize this problem and define the "energy func-
tion", and then derive network configuration accord-
ingly.
The remaining of the paper is organized as fol-

lows: Section 2 gives an overview on neural network
and its application to optimization; Section 3 shows
the formulation of the network; Section 4 discusses
the implementation issues and gives two examples;
and the last section summarizes the study.

2. OVERVIEW ON OPTIMIZATION NEURAL
NETWORKS

An artificial neural network is a network of a large
number of simple computation elements, known as
neurons, connected by links with variable weights.
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FIGURE Diagram of a Single Neuron

Instead of performing a program of instructions
sequentially, neural network model explores many
competing hypothesis simultaneously using its mas-
sively parallel net. A typical neuron is shown in
Figure l(a). The neuron’s operation contains two
basic steps. The first step calculates the activation
(u) of the neuron by" summing n weighted incoming
signals (i.e., for neuron j, performs Y’.in= 1WijUi(t) Oj
and assign the value to uj(t / 1)). The second step
passes the results through an output function
g(.)(i.e., for neuron j, performs g(uj(t / 1)) and
assign the value to vj(t + 1)). Normally, g(-) is a
nonlinear sigmoid function, which is monotone in-
creasing and bounded. A neuron can be extended to
a "nonlinear" neuron if the summation in the first
part is replaced by a more general nonlinear func-
tion f(v l(t),..., vn(t)). A neuron can also be imple-
mented as an analog device with a nonlinear ampli-
fier of gain g(-) [16]. The analog version of the
neuron is shown in Figure l(b). The two steps now
can be described as duj(t)/dt _,in=lWijUi(t)--Oj
and vj(t)= gi(uj(t)). The time unit here is normal-
ized to the RC time constant of the integrator. The
analog neuron can also be extended to a nonlinear
one by generalizing the fist part: duj(t)/dt
fi(v l(t),..., v,,(t)). In the remaining discussion, we
will use the analog version. While the primary re-
search interests in neural network are concentrated
in the information processing and biological model-
ing, it has been shown that the neural network can
collectively compute good solutions to complex opti-
mization problems [19]. This approach comes from

the observation that in certain properly designed
networks, the dynamic of the networks will force the
network to converge to a minimal energy state [10].
If we can map the problem solution to this minimal
energy state, the network can "automatically" solve
the optimization problem.
The procedure listed below (extended over [7])

outlines the basic steps of this approach:

introduce a set of variable {Vl(t), v2(t),...,
v,(t)} to represent the quantities to be opti-
mized.

2. determine an energy function, E(u1(t),
v2(t),...,Vn(t)) as a measurement of "opti-
mality". E is a scalar function. It should be
bounded below and its minimum should corre-
spond to the desired solutions of the optimiza-
tion problem.

3. introduce ui(t) as the activation for neuron i;
and define vi(t) as vi(t) g(ui(t)), where g(.)
is a high gain sigmoid function:

1
g(ui) -(1 + tanh(Aui)),

4. define the rate of change of ui(t) as

dub(t) dE(vl( t), v2(t),..., gn( t))
dt dvi( )

5. construct the network accordingly.

6. add relaxation mechanism to the network if
necessary.

In this procedure, step (1) determines the number
of the required neurons; step (4) and step (3) specify
the activation function and output function respec-
tively. Once these entities are determined, the ac-
tual network can be constructed accordingly. By
choosing dui(t)/dt -dE/dvi(t), we can show that
dE/dt < 0 (the proof is in the Appendix). The in-
equality implies that as time progresses, the energy
of the network will decrease or remain the same.
However, since E is bounded below, the energy will
evnetually reach the minimal point (in a local sense).
In other words, becuase of our choice of E, output
function and activation function, the dynamics of
the network will force itself to converge to a mini-
mal energy state, which corresponds the desired
solution of the optimization problem. The purpose
of the high-gain sigmoid function is to reduce the
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width of the "linear" region (the region with a value
close to 0.5) and ensures that the output moves away
from the "undetermined" area. Since steps (1) to (5)
only guarantee that the network converges to a local
minima, sometimes we may need to apply relaxation
techniques, such as simulated annealing, to obtain a
global minima [1, 13]. Relaxation can be thought as
"coarse searching", which will help the network to
escape from local minima.

3.1 Formal Description of the Network

With the formal description, a neural network can
be constructed as follows:

1. use n neurons to represent set {x1, x2,... Xn}
and use the output of ith neuron (v), to repre-
sent the value of xi.

2. define the energy function E as

3. FORMULATION

In logic minimization, the set of PIs and the vertices
to be covered are normally represented as a table,
with rows as PIs and columns as vertex. For each
column, a check mark is placed in a row if that
vertex is covered by the corresponding PI. For each
PI, there is a positive number associated with it to
represent the cost of implementing this PI (such as
the number of literals). The goal of the. coverage
process is to select a set of PIs so that there is at
least one check mark in each column and the total
cost of the set is minimal.

Mathematically, we can use a matrix and a cost
vector to describe the PI-vertex table. Let rn and n
be the number of vertex and PIs. The cost vector
can be defined as (cj), 1 < j < n, where cj is the
cost associated with jth PI and cj < 0. The relation
of vertex and PIs can be defined by a matrix [aji],
where aji {0, 1}, 1 < j < n, 1 < < m; aji 1 if
jth PI covers ith vertex and aji 0 otherwise.

After introducing the two entitites we can formal-
ize the coverage problem as an optimization prob-
lem [3]:

let {XI, X2,...,Xn} be a set of variables, where
xj {0, 1} and xj 1 if Pj is selected; assign proper
values to xj so that they can

n

minimize cjXj
]=1

n

subject to ajix >_ 1, 1,..., rn
j=l

The first line represents the total cost that needs to
be minimized, and the second line represents m
constraints which state that for each column there
must be at least one check mark.

E cjvj + D F ajiu 1
jr1 if j=l

where F(y) [ y2 if y < 0
0 ify>0

3. define the output function as a high-gain sig-
moid function:

1
U g(ui) -(1 + tanh(Aui)), A >> 1

4. define the activation of jth neuron (uj) as

duj m (n )-cj+DE(-aji)f -, akjUk-- 1
i=1 k=l

where f(y) [ 2y
0

and D > E7=1

if y<0
if y>0

3.2 The Energy Functionxq

There are two major terms in the energy function,
the first term Ecjvj represents the total cost of the
selected PIs, and the second term DEF(Eayiv 1)
represents the penalty for the violation of con-
straints. The first term is always greater than 0
because cj is always positive. The .second term is
greater than or equal to 0, depending whether the
constraints are satisfied. It returns a positive value if
any constraint is violated (i.e., for some i, .,ajiuj < 1)
and returns 0 if all constraints are satisfied (i.e., for
all i, Y’.ajiu >_ 1).
There is a constant scaling factor D in penalty

term. The value of D can be interpreted as the
penalty for the violation of a single constraint and
can be used to specify the relative weights between
the cost term and the penalty term. Since it is more
desirable to obtain a valid sub-optimal solution than
an invalid solution, any constraint violation should
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be given a larger penalty. The D is used to assure
this.
Our choice of D comes from the following obser-

vation. Y’.]=lCj can be interpreted as the cost in-
curred to the case that all PIs are selected. This is a
valid solution since all the vertices are covered.
Also, this is the worst solution since its cost is larger
for any other valid solutions. In other words, Ey= lCj
represents the cost (and energy value as well) of the
worst valid solution. Since any invalid solution is
worse than the worst valid solution, its energy value
should be larger than E’= Cj. Thus, we choose D >
E’=lCi and guarantee that constraint violation will
always be penalized more.

-3

/ \

-4 -2 -2

/

FIGURE 2 First Implementation of the Proposed Network

4. IMPLEMENTATION-AND EXAMPLES

In our proposed network, both activation function
and output function are non-linear. While the out-
put function is a regular signmoid function, the
activation function (which is -c + DE,=I
ajif(E=lajivj 1)) is fairly complicated for a single
neuron to compute: However, close observation

E 1) re-shows that the calculation of f( j=lajivj-
sembles the operation of a regular neuron except
the output function is f(.) and there is no integra-
tor. Thus, we can introduce a set of slightly modified
neurons to perform this task. The detailed imple-
mentation is explained by the following example.
The coverage table of the first example is shown

in Table 1 which has 4 PIs and 5 vertices. In this
example, there are total 24 possible selections, and
{P2, P4} is the optimal solution.
The implementation derived from section 3.1 is

shown in Figure 2 The D is chosen to be 11.1.
In this configuration, the activation function
(denoted by a square box) is complicated and hard
to implement. Further, computation to obtain
DEim=l(-aji)f(Y’.=lajivj- 1) is duplicated in every
neuron.
A better alternative implementation is shown in

Figure 3. In this configuration, we simplify the im-
plementation of original neurons by distributing the

TABLE
The Coverage Table for the First Example

PI Vertex Cost
P/" Yl Y2 Y3 Y4 Y5 c

-1 -1 -1 -1

.,I

7

-3 -4

:--11.1

:--114
,--11.1

-2 -2

FIGURE 3 The Alternative Implementation of the Proposed
Network

computation of activation functions to a new group
of neurons. There are two groups of neurons in this
implementation. The first group contains n neurons.
The input part now is very simple, which is in a
standard linear summation, form, similar to the con-
vetional neuron. The second group contains rn neu-
rons and each of them performs the computation of
f(ETflajivj 1). They are regular neurons with f as
their output functions and without the integrators.
This network is similar to the one used in [20].
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value of vi

v

v4
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time
0 0.2 0.4 0.6 O.B 1

FIGURE 4 A Representative Convergence Trace for Example

Although the two types of neurons look similar,
their operation speeds need to be different. Since
the neurons in the second group are not involved
the network energy, they are essentially just "com-
putational elements" that compute the activation
functions. Their computation should be completed
before any neuron in the first group changes to a
new output value. Therefore, the neurons in the
second group should be operated much faster than
the neurons in the first group. We may need to add
additional capacitance in the inputs of the neuron of
the first group to ensure that it has a proper time
constant.
The operation of the network is simulated by

software. 50 randomly generated initial conditions,
in which the u is uniformly distributed between
[-0.5, 0.5], are used. Simulation results show that
all of them converge to the correct value and the
convergence normally takes less than one time con-
stant. A typical convergence trace is shown in Fig
ure 4.
The convergence table of the second example is

shown in Table 2, which is adopted from [15].
{P2, P3, P6} and {P1, P2, Ps} are the two optimal
selections. This is a difficult case since the table is
cyclic and no heuristic rules, such as essential PI,

TABLE 2
The Coverage Table for the Second Example

PI Vertex Cost
e Yl Y2 Y3 Y4 Y5 Y6 c

dominance etc., can be used to reduce the complex-
ity. The D is chosen to be 12.1. Again, 50 randomly
generated initial conditions are used. Simulation
results show that 46% converge to {P2, P3, P6}, and
40% converge to {P1, P2, Ps}, and 14% converge to
undeterministic states (with some output values near
0.5). The convergence is normally within one time
constant. A typical convergence trace is shown in
Figure 5.

5. SUMMARY

In this paper, we apply the neural network approach
to obtain the minimal cost coverage of a given
PI-vertex table. We first formalize the problem and
derive the energy function, and then map it to a
neural network. The actual implementation includes
two groups of neurons. One of them is used as
regular neurons that works towards minimal energy
state and another group is used as computation
elements that assist the calculation of activation
functions. Simulation on simple examples show that
the neural network can obtain good solutions in a
short amount of time.

In the current form, the major problem of this
approach is the required computation time. Simulat-
ing the neural network is essentially using numerical
analysis to solve a set of non-linear partial differen-
tial equations, which is computation intensive. This
limits the total number of PIs to a small number and
makes it not feasible for large practical problems.
However, this scheme may be an attractive alterna-
tive when the analog neural network VLSI is avail-
able [16]. The VLSI device eliminates the need of
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value o vi

tie
0 0.05 0 .a. 0 .:!.5 0.2 0

FIGURE 5 A Representative Convergence Trace for Example 2

simulation and can obtain the solution in a fraction
of the circuit’s time constant. It can house massive
neural networks, which, in turn, can support a large
number of PIs. Several other studies also suggest to
use Hopfield-like network to solve CAD related
problems including partition, placement, routing and
test generation [4, 5, 8, 21]. In the future, it may be
possible to include a generic programmable neural
network as an "accelerator’" chip in a regular CAD
system, and to use the chip to assist to solve the
"core computation" of certain optimization prob-
lems.

APPENDIX

Theorem

dE
For the configuration in section 2, -- < 0

Proof:

dE dE dv

dt i=1 dvi dt

n du dv
z.,

dt dti=1

n du du dv- dv dt dti=l

n

E (g-l(ui))’ dUi

Since g(.) is monotone increasing, g-l(.) is
monotone increasing and (g-1(.)), ____. 0. Thus,

dE
<0

dt
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