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How Random Incidents Affect Travel-Time
Distributions

Melike Baykal-Gürsoy, Andrew Reed Benton, Pedro Cesar Lopes Gerum, and Marcelo Figueroa Candia

Abstract—We present a novel analytical model to approx-
imate the travel-time distribution of vehicles traversing
a freeway corridor that experiences random quality of
service degradations due to non-recurrent incidents. The
proposed model derives the generating function of travel
times in terms of clearance time, incident frequency, and
severity, as well as other traffic characteristics in closed-
form. We validate the model using data from a freeway
corridor where weather events and traffic accidents serve
as the principal causes of service degradation. The resulting
model is equivalent in performance to widely used method-
ologies while uniquely providing a clear connection on
how incidents affect travel time distribution. Through this
connection, the model readily yields travel time reliability
measures for alternative roadway behaviors, providing
crucial information for long-term planning.

Index Terms—travel time reliability, stochastic models,
random incidents, Markov modulated service.

I. INTRODUCTION

THE travel time experienced by travelers is one of
the most critical performance measures in a trans-

portation system. However, it can be highly variable in
the face of non-recurrent events that lead to congestion.
Travelers often expect recurrent events such as morning
or evening rush hours. They adapt by leaving early
or choosing a different route. Conversely, non-recurrent
events occur randomly. Not being able to predict such
events, travelers do not prepare or plan for them in
advance. As a result, non-recurrent congestion leads to
delay [1] and overall traveler dissatisfaction.
Travel time reliability is a measure of travel time vari-
ability due to non-recurrent events [2], [3] and is directly
associated with travelers’ quality of service. To estimate
several travel time reliability metrics, we require a travel
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time distribution, typically estimated through statistical
analysis of observed or simulated data, or analytical
models such as the ones derived from queuing theory.
Theoretically, the true distribution could be directly
determined using empirical travel time observations.
However, such an approach can only capture measurable
behaviors of a system particular to its present configura-
tion. For example, travel time distributions immediately
generated from data provide no information on the effect
of incidents on travel time. Moreover, if one is interested
in what-if scenario analysis under uncertainty, travel-
time data must be obtained through simulations since
such data may not exist.
This paper is the first that focuses on deriving analytical
approximations for the travel-time distribution under
congestion resulting from non-recurrent events. The re-
sulting model explicitly considers the stochastic nature
of traffic deteriorating circumstances and requires simple
calibration. The analytical solution can be readily em-
ployed in most scenarios. A noteworthy innovation of the
model is its flexibility to account for either frequent or
infrequent deteriorating events with any level of severity.
Hence, the travel time distribution can be forecast under
vastly different scenarios without extensive simulations.
By analyzing incidents with different severities, du-
rations, and frequencies, decision-makers can develop
better incident management practices in the field [4].
The paper is structured as follows: section II surveys
the related literature; section III introduces the notation
and describes the analytical model, as well as presents
our main result; section IV shows the validation and
calibration methodology; section V demonstrates the
calculation of the reliability indices and how to perform
scenario analysis; finally, section VII discusses the find-
ings and future work.

II. LITERATURE REVIEW

The last decade has seen increased attention to the study
of travel time reliability [5]. The calculation of statis-
tical indices of travel time reliability has experienced
prominence due to their direct relation to the level of
service (LOS) provided by traffic systems [1], [6]–[9].
Examples of travel-time reliability measures include the
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90th and 95th travel time percentiles, the Buffer Index
(BI), the Median based BI (M-BI), the Planning Time
Index (PTI), the Percentage of Trips on Time (PTT)
[2], α-reliable mean excess travel time [10], Fosgerau’s
reliability ratio [11] and others [12]. The computation of
travel time reliability indices often requires travel time
distributional information.
The literature has not yet agreed on a distribution to
fit travel time. Traditional choices include normal, log-
normal, Weibull, and gamma. Susilawati et al. [13], and
Taylor [14] show how Burr (type XII) often outperforms
the traditional choices. Zang et al. [12] consider an
approach for approximating the travel time percentile
function. In [15], the authors investigate two and three-
component normal mixtures. The two-component model
sets the two mixture components to represent the non-
congested state and represent the congested state. This
model is further validated for lognormal distributions
in [16]. Yang and Wu [17] consider a gamma mixture
model and verify the difference in performance when
more components are added to the mixture.
All these models assume that no change in traffic condi-
tion happens mid-route. They work well in situations
where roadway conditions remain constant for long
periods, but not when changes may occur. Moreover,
despite their good performance, mixture models provide
little insight into the impact particular types of incidents
have on travel time. They cannot be tuned for different
incident rates and severities.
This paper determines travel time distributions through
an analytical model that incorporates various levels
of service and causes of travel time variability. Our
approach has some similarity to those that also use
a Markovian approach [18]–[20]. However, there are
significant differences. In [18], the authors model the
vehicle speed as a finite state continuous-time Markov
Chain (MC). In our model, the speed (or the service
time) is itself a random variable and experiences external
random effects. Also in the others, the authors model the
traffic speed on arterial networks [19] or travel-time state
within each link over time [20], and from one link to
another, as a discrete time MC to obtain route travel
times.

III. NOTATION AND ANALYTICAL MODEL

The proposed model derives the probability distribution
of the travel time of a single-vehicle traveling on a cor-
ridor subject to random quality of service degradation.
Because the speed depends on the driver’s preferences,
state regulations, and roadway conditions, vehicles take
a random amount of time to traverse the corridor.
The terminology service time refers to the time taken
to traverse the corridor when the system remains under

the same traffic conditions, either normal or deteriorated.
Because circumstances may change mid-course, we con-
sider the travel time to refer to the vehicle’s overall
traversing time. Travel time thus incorporates possible
traffic condition shifts that could occur while traveling.
Under normal traffic conditions, the service time re-
quired to complete the trip, Su, is distributed randomly
with cumulative distribution function (CDF) FSu(t). We
denote the mean service time under normal conditions
by E[Su] = 1/µ. Here, µ = 1

E[Su] represents the rate
of service completion, i.e., service rate under normal
conditions.
When an incident happens, the vehicle’s service rate
decreases to αµ with 0 < α < 1. Hence, the mean
service time under normal conditions, 1/µ, increases to
1/αµ ≡ E[Sd] ≥ 1/µ. We define µ′ = αµ as the service
rate under incidents.
Note that these service times depend on roadway condi-
tions. As such, they are affected by link location, traffic
volume level, curvature on the roadway, roadway quality,
distance from ramps, and other exogenous factors. The
combined effect of these factors on service times are
represented by the service time parameters, which are
assumed to be constant.
These degradations in the quality of service take place
randomly. We assume that whenever the system is under
normal traffic conditions, it remains in this state for
an exponentially distributed amount of time with mean
1/f . Here, f represents the incident rate. Up periods
define such periods, which are independent and identi-
cally distributed (iid). Similarly, down periods indicate
the periods in which the roadway is experiencing a
degradation of service. Down periods are also assumed to
follow an iid exponential distribution with mean duration
1/r, where r is the repair rate. This type of service
process is said to be Markov modulated [21]. Section
IV verifies that the exponentiality assumptions for the
up and down periods are valid with data.
Suppose one assumes that system changes do not occur
during service, meaning that a car travels either under
normal or deteriorated conditions. In that case, the travel
time distribution can be written as a mixture of two
random variables corresponding to normal and deterio-
rated service times. Our analytical model does not make
this assumption. We assume changes occur randomly
and may happen during service. Moreover, whenever
a service regime change occurs, the new service time
is resampled. The new sampled service time value is
then added to the travel time already expended. This
behavior is also present in other applications, such as the
CPU processing times under processor sharing service
discipline [22], [23]. We show that this assumption does
not impact the validity of the results for our data.
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Experiencing changes mid-service may be unrealis-
tic in short corridors. Travel times for short traffic-
homogenous road sections are usually much quicker than
the times between incidents or incident durations. In con-
trast, travelers may experience multiple system changes
in long corridors. The analytical model proposed in this
paper is sufficiently general to cover both situations.

A. Full Travel Time Distribution

This section derives a closed-form expression for the
moment generating function of the travel time random
variable, which we denote by T .
The moment generating function (MGF) of a random
variable uniquely determines its distribution, and imme-
diately provides all its moments. The MGF of a nonneg-
ative continuous random variable X is derived from the
Laplace transform of its density function fX . Because
it transforms convolutions into multiplications, Laplace
transforms considerably facilitate the tractability of dis-
tributions that involve sums of random variables [24].
Proposition 1 presents the resulting closed-form Laplace
transform, LT (·), of the travel time T . Although a
procedure to derive the Laplace transform of a job
completion time r.v. in general service systems can be
found in the works of Kulkarni et al. [25], [26], we use
a much simpler counting argument for a particular class
of server systems yielding more detailed results.
Proposition 1. Consider a two-service-regime server as
described above. Let LSu(·) and LSd(·) represent the
Laplace transforms of the service time distributions
during up and down periods, respectively. Then, the
travel time random variable T has a distribution with
Laplace transform for complex variable s ≥ 0 given as

LT (s) = E[e−sT ] =
1

1− V (s){
r

f + r
· LSu(s+ f)

(
1 +

f

s+ r
[1− LSd (s+ r)]

)
+

f

f + r
· LSd (s+ r)

(
1 +

r

s+ f
[1− LSu(s+ f)]

)}
,

(1)

where,

V (s) =
rf [1− LSu(s+ f)] [1− LSd(s+ r)]

(s+ f)(s+ r)
,

and with mean

E[T ] =

1

r
(1− LSd(r)

[
1− r

r + f
LSu(f)

]
LSd(r) + LSu(f)− LSu(f)LSd(r)

+

1

f
(1− LSu(f))

[
1− f

r + f
LSd(r)

]
LSd(r) + LSu(f)− LSu(f)LSd(r)

. (2)

Proof. A proof of is provided in Appendix A.

Under particular circumstances, the travel time Laplace
transform given in proposition 1 can be inverted analyt-
ically. In general, numerical Laplace inversion methods
are necessary [27]. Section IV-D further discusses nu-
merical inversion methods.
The two terms in Eq. (1) are weighted by the proba-
bilities that a traveler arrives to the system during an
up period, r/(f + r), or arrives during a down period,
f/(f+r). The multipliers of these probabilities describe
the Laplace transforms of the total travel time for a trav-
eler arriving during an up or down period, respectively.
The above structure of LT (s) informs us that these two
travel times are statistically independent, suggesting that
the travel time distribution is a mixture of two random
variables. Because deterioration may randomly happen
during service, the mixing distributions differ from the
original service time distributions.
As a matter of comparison, if we were to rely solely on
renewal arguments, we might have written the Laplace
transform and mean of the travel time as follows. Con-
sidering only the up and down process in steady-state,
the probability of the system being in an up period is
r/(r + f), and in a down period is f/(r + f). Then,
ignoring the switch overs between up and down periods,
we could write the Laplace transform of the mixture
service time as

LM (s) :=
r

r + f
LSu(s) +

f

r + f
LSd(s).

This model corresponds to the mixture models used in
literature. But, clearly, this is quite different than the
formula given in Eq. 1.
It is worth mentioning that the arguments employed
to obtain the analytical results permit a more general
result than the one shown in proposition 1. For example,
Baykal-Gürsoy and Duan [28] analyze a generally dis-
tributed service system with general down periods and
partial breakdowns.
Vehicular traffic averages and incident frequency and
duration provide the estimates of the four parameters for
the model (r, f , ~θ, and ~θ′ – where ~θ, and ~θ′ denote the
parameters vectors of the service time distributions dur-
ing up and down periods, respectively). Then, the only
missing input is a profile for the service time distribution
under normal traffic conditions fSu(t). For the sake of
simplicity, we assume the profile of the distribution for
the service time under deteriorated conditions will be the
same, only with different parameters.
The analytical model immediately gives the travel time
distribution in the Laplace domain LT (s). This result
is then inverted to the time domain fT (t), often via
numerical methods.
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IV. MODEL IMPLEMENTATION

Implementing the proposed model for an actual traffic
corridor requires statistical information about (1) the
vehicle’s service time under normal traffic conditions
and (2) the events that deteriorate/deviate the traffic
from these conditions. This section validates our model’s
technical assumptions using vehicular traffic data and
shows how it can be reasonably calibrated using readily
available data averages.

A. Traffic, accident, and weather datasets

We use traffic data from an 8.5-mile freeway segment
depicted in Fig. 1.

Fig. 1: Interstate 894, Milwaukee, WI

The traffic data is reported by detector stations located
near or at interchanges with eighteen detectors in the
South-East direction and seventeen in the West-North
direction. The average spacing between detector stations
is half a mile. Every sensor gives minute-time stamped
speed, volume, and occupancy data for 14 months from
January 1, 2008, to February 28, 2009. The speed data is
truncated (censored) at the local speed limit of either 55
or 60 miles per hour. The proportion of truncated speed
data ranges from 1% to 70%, with an average of 51%.
The original accident data comes from reports of both the
local police authorities and the State Traffic Operations
Center (STOC) of the Wisconsin DOT. The data includes
the start and end times of each accident, together with
the identification of the nearest detector station. We note
that the impact of accidents may cause delays in adjacent
sections, despite only being recorded by one detector.
We obtain weather event data from the Climate Data
Online system of the National Oceanic and Atmospheric
Administration [29]. This data is given as the hourly
amount of precipitation in hundredths of inches recorded
at the Milwaukee Mitchell International Airport weather
station during the same period as the traffic data. The
data also indicate days with snow, fog, and thunder-
storms.

These datasets are then combined by labeling any time
interval from our selected time windows with no accident
and adverse weather reports as an up period. The service
time distribution during the up periods provides infor-
mation on how the system behaves under non-congested
conditions. Similarly, we define as a down period any
time interval with reported accidents or serious weather
events (snow or over half an inch of hourly rain).
This combined dataset will allow us to estimate the
parameters of normal service time, deteriorated service
time, uptime, and downtime distributions in the later
sections. For example, the deterioration frequency f and
the restoration frequency r can be obtained from up and
down intervals’ average duration. Let Ū denote the mean
uptime duration of the system and D̄ the mean downtime
duration. Then f = 1/Ū and r = 1/D̄.

B. Validation of Model Assumptions

Our principal assumption is that the uptime and down-
time are exponentially distributed. Although it is clear
that neither the uptime or downtime processes will
be perfectly memoryless, we illustrate below that they
provide a close fit to our dataset.
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Fig. 2: Scaled event duration histograms with fitted exponen-
tial distributions.

For demonstration purposes, we select a southbound
half a mile stretch between Cleveland and Oklahoma
avenues. This stretch is one of the most incident-prone
sections of the road, with 137 recorded incidents in
the 14 months of the study. Fig. 2 shows normalized
histograms of the durations of the up and down periods
for this road section, as well as the corresponding
exponential distributions fitted to the data. It considers
both the whole year together and the winter months
separately from the rest of the year. In the summer,
incidents seldom occur, providing little information on
the uptime and downtime duration behavior.
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Note that, although the down durations include accidents
and weather events, which have different behaviors in
winter, the plots do not indicate multimodality. Nev-
ertheless, we will also consider only weather related
incidents in winter. For both up and down time durations,
exponential fit seems to be appropriate.
In our example, we obtain the mean uptime duration as
Ū ≈ 41 hours and the mean downtime duration as D̄ ≈
21.5 hours for the complete period. In the summer, we
see longer periods without incidents, Ūsum. ≈ 96 hours,
and faster clearance times, D̄sum. ≈ 0.6 hours. This
occurs because most incidents reported are accidents and
rainfalls, whose impact often lasts a short time. Finally,
winter data shows that the uptime duration and downtime
duration are similar, Ūwin. ≈ D̄win. ≈ 28 hours. Because
accidents may impact neighboring sections despite being
recorded in a single section, and weather affects the
whole roadway, we use these values for validation across
all sensors in our validation tests depending on the
incident type involved. We also consider including only
weather-related incidents in the winter data for downtime
durations and use Ūwin. ≈ D̄win. ≈ 70 hours.
The failure frequency f and the repair frequency r
correspond to the adjusted exponential distributions’ rate
parameters. Since we consider a half-mile section of the
road, service times are on the scales of seconds, thus
much shorter than the duration of up or down periods.
However, for longer segments, the service times may be
relatively similar to incident durations.

C. Calibration

When modeling traffic conditions, 1/µ and 1/µ′ are
parameters that are straightforward to obtain. They are
the mean service times for the normal and deterio-
rated traffic conditions, respectively. The required service
times are approximated from the speed data by “walking
the speed field” of the specific road section [30], which
yields sufficiently good service time estimations for our
statistical analysis. In order to obtain 1/µ, we use the
mean service time during up periods of the system, and,
similarly, 1/µ′ is the mean service time for down periods
of the system as described before. Finally, because we
focus on non-recurrent congestion, we only consider
non-rush hour times.
Figures 3 show probability-scaled service time his-
tograms for up and down periods respectively in the
half a mile test road section. The mean service time
is 1/µ = 29.60 seconds during the uptimes and it is
1/µ′ = 32.67 seconds during the downtimes, giving
α = 29.60

32.67 = 0.906. As expected, 1/µ < 1/µ′, i.e.,
the mean service time increases under deteriorated traffic
conditions.
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Fig. 3: Scaled service time histograms and their means.

The final step to complete the implementation of our
analytical model is to select a distribution to the service
times, Su, under the normal traffic conditions which cor-
respond to our up-periods (see Fig, 3). If non-parametric
distributions are to be used, they can be transformed
numerically to the frequency domain in order to be used
in proposition 1.
For convenience, we use triangular and gamma distribu-
tions as examples in this paper. These two distributions
are flexible and relatively easy to compute. Their overall
shapes also match what one would expect from service
time under normal conditions during non-peak hours.
However, we emphasize that different roadways may
have different distributions of service time. Each case
must be analyzed separately.
Once properly defined, the travel time distribution de-
scribed in proposition 1 can be inverted numerically to
the time domain. We now discuss this process and the
computation of reliability metrics using our distribution.

D. Computing Travel Time Distribution and Reliability
Measures

We now show how to compute various travel time reli-
ability measures under our model. The simplest case is
moment-based reliability measures. These can be found
using the property

E[Tn] = (−1)n
dn

dsn
LT (s)

∣∣∣∣
s=0

. (3)

This will provide us with the mean, variance, skewness,
and kurtosis of travel time that could directly be used in
approximating the percentile function as in [12].
Most other travel time reliability measures require the
distribution function. For general distributions, this will
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require numerical inverse Laplace transform methods
- a particularly robust method comes from Abate and
Whitt [27], who write the Bromwich integral as a Fourier
series. Other popular algorithms can be found in [31],
[32].
Provided a numerical evaluation of f(t), we find the
cumulative distribution function F (t) by numerically
integrating f over the interval [0, t]. Once f and F have
been found, the remaining reliability measures, including
α-quantile, Buffer Index, Planning Time Index [2], α-
reliable mean excess travel time [10], and Fosgerau’s re-
liability ratio [11], are immediate from their definitions.

V. RESULTS

This section compares our model to several probability
distributions proposed in literature. We find that our
model is competitive.

A. An approach for fitting censored data

The data set displays truncated speed observations at 55
miles per hour for some sensors and 60 miles per hour
for some others. That is, for speeds less than 55 mph (60
mph), we observe the speed exactly. For vehicle speeds
greater than 55 mph (60 mph), we only know that the
speed exceeded 55 mph (60 mph).
We refer to this concept as right-censoring, as it re-
sembles the common problem faced in survival analysis.
Because these speeds are then inverted to compute travel
times, the resulting travel time observations are left-
censored. As is the case in survival analysis, censored
observations can occur frequently and belong to the
overall population, so they should not be filtered as
outliers.
We provide the maximum likelihood estimator, which
only uses the left-censored travel-time observations. Sup-
pose that out of k travel-time observations, n are left-
censored at T– that is, we do not know their exact
value, only that their value was less than or equal to
T . We can include this information by using the CDF
F (T ) = P{service time ≤ T}. To do so, we consider
the likelihood function

L(θ) = (F (T ))
n
k−n∏
i=1

f(ti),

where the pdf and cdf are parameterized by θ. From here,
we proceed as usual by maximizing this function either
analytically or numerically. This is the best parametric
estimator we can construct without reconstructing speeds
with supplemental data and carries all the properties of
a maximum likelihood estimator.
Unfortunately, even with a modified estimator, there
is irreparable data loss due to this left-censoring. As

discussed in [33] and [34], overly censored data sets
can result in degenerate estimators, possibly bringing
parameters to their extreme values (e.g., variance ≈
0). This is not realistic in most cases. Throughout our
experiments, we will avoid using overly censored data
sets to mitigate this problem.

B. Model Validation Across Sensors

To evaluate our distribution’s relative performance, we
fit some alternative distributions to the pooled travel
time empirical distribution and compute the Akaike
information criterion. The results are displayed in Tables
I and II.
This information measure is calculated as shown in
equation (4), where k is the number of parameters in
the model, and L is the likelihood of the model given
the calibration data.

AIC = 2k − 2 ln (L). (4)

This criterion ranks models by relative comparisons, and
it favors parsimonious models. Smaller values of the AIC
indicate that the quality of the model may be higher. In
the referenced tables, our models have a similar AIC
value compared to the other distributions considered.

Model 1 2 3 4 5 6 7 8 9 10 11 12

fT (t), gamma 82 84 89 47 63 37 44 47 74 53 81 74
Gamma 84 86 110 55 65 41 45 50 81 56 110 96
Log-normal 83 85 110 55 64 39 44 48 78 54 100 92
Log-logistic 81 83 95 52 63 38 44 45 70 50 90 80
Weibull 87 89 130 58 67 41 45 51 88 58 120 110
Burr XII 79 82 84 50 63 38 44 44 68 48 80 70

fT (t), gamma mixture 77 80 82 47 62 30 43 44 63 45 99 66
Gamma mixture 77 81 82 47 63 37 43 44 65 47 81 72
Log-normal mixture 77 81 80 45 63 36 43 42 62 43 75 66
Log-logistic mixture 77 81 95 45 63 35 43 41 62 42 90 80
Weibull mixture 77 81 84 46 63 36 43 43 63 44 79 71
Burr XII mixture 77 81 80 43 55 34 43 39 57 34 72 62

TABLE I: Wintertime AIC across sensors for various distri-
butions, all values in Thousands. All observations are Tues-
day - Thursday, 10:00 am - 4:00 pm, December - March.
f = r ≈ 10−5s−1

We use the gamma distribution for both service time dis-
tributions in our model because the gamma distribution
is a sufficiently flexible distribution for our purposes.
For comparison, we consider several distribution families
that have been used for travel time distributions [7]. To
show how our model performs relative to mixtures, we
also evaluate 2-component mixtures for each individual
distribution. To our knowledge, the Burr XII mixture has
not been considered as a travel-time distribution before.
Similarly, we also use 2-component gamma mixtures as
service time distributions to provide an even comparison
between our model and the alternatives.
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Model 1 2 3 4 5 6 7 8 9 10 11 12

fT (t), gamma 82 84 89 47 63 37 44 47 74 53 81 74
Gamma 84 86 110 55 65 41 45 50 81 56 110 96
Log-normal 83 85 110 55 64 39 44 48 78 54 100 92
Log-logistic 81 83 95 52 63 38 44 45 70 50 90 80
Weibull 87 89 130 58 67 41 45 51 88 58 120 110
Burr XII 79 82 84 50 63 38 44 44 68 48 80 70

fT (t), gamma mixture 77 80 82 47 62 31 43 45 63 45 100 66
Gamma mixture 77 81 82 47 63 37 43 44 65 47 81 72
Log-normal mixture 77 81 80 45 63 36 43 42 62 43 75 66
Log-logistic mixture 77 81 95 45 63 35 43 41 62 42 90 80
Weibull mixture 77 81 84 46 63 36 43 43 63 44 79 71
Burr XII mixture 77 81 80 43 55 34 43 39 57 34 72 62

TABLE II: Wintertime AIC across sensors for various distri-
butions, all values in Thousands. All observations are Tuesday
- Thursday, 10:00 am - 4:00 pm, December - March. Incidents
are restricted to snow. f = r ≈ 4× 10−6s−1

To ensure that overly censored sensors do not corrupt
our results, we include all sensors with less than 80%
censorship rate in both seasons. We consider only Tues-
day through Thursday, 10:00 am - 4:00 pm, as rush-
hour, late-hours, and Monday / Friday travel times are
significantly different in their distribution. We restrict
our dataset to winter season so that the failure, f ,
and clearance, r, rates are relatively constant across
observations, both of which are computed by taking the
mean up and downtime from the supplemental incident
dataset discussed in Section IV-B.

Each service time distribution is fit using the maxi-
mum likelihood estimator discussed in section V-A. We
compute separate parameters and AIC for each sensor,
which produces the results shown in Tables I and II. For
illustration purposes, the gamma variants of each model,
using their MLE’s, are depicted in Figure 4. We see that
our model captures both the peak and the tail portions
of travel time distribution more accurately and seems to
fit the data more closely than the alternatives.

Table I displays AIC in wintertime including all in-
cidents, e.g., accidents and inclement weather with
r = f = 10−5s−1, while Table II only includes
snow events not accidents. Because each sensor has a
different number of observations, the computed AICs are
not comparable across sensors but only across models
within each sensor. Our model has a similar AIC to the
distributions considered, suggesting our model has an
equivalent fit across all sensors.

With results being comparable to the ones in the liter-
ature, we emphasize that the proposed model innova-
tively allows for a direct understanding of how different
incidents affect travel time. This unique characteristic
helps decision-makers study hypothetical scenarios on
how various changes in incident behavior alter the travel
time distribution without the need for time-consuming
simulations, as discussed in section VI.
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Fig. 4: Plot of each model based on the gamma distribution.
The proposed model more accurately captures both the peak
and tail, when compared to a simple gamma or gamma mixture.

VI. SCENARIO ANALYSIS

In this section, we illustrate the flexibility of our model
as the interpretable f, r and α parameters may be
adjusted. This allows for what-if scenarios, and long-
term traffic deterioration sensitivity studies.
To showcase how incident behavior variations affect
travel time, we consider two scenarios:

1) Roadways with infrequent but severe incidents. For
this, we vary α;

2) Roadways with frequent incidents that cause any
level of disruption. For this, we vary f and r.

In each scenario, we compute the mean (E[T ]), standard
deviation (σT ) and 95th percentile directly from the
obtained travel time distribution. We also include three
reliability metrics proposed by the Federal Highway
Administration [2]. The first is The Buffer Index (BI),
the fraction of time that travelers should add to their
mean travel time to ensure on-time arrival at the 95%
level. One shortcoming of BI is that it may potentially
overestimate the reliability when travel time distributions
are heavily right-skewed [35]. To provide a more accu-
rate picture, the second reliability metric we obtain is the
median based Buffer Index (M-BI), the fraction of time
that travelers should add to their median travel time to
ensure on-time arrival at the 95% level. The third is the
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Planning Time Index (PTI), the factor of free-flow time
that travelers should consider to ensure on-time arrival.
The top of Fig. 5 depicts our model’s travel time dis-
tribution using triangular service time distributions for
one particular sensor. This distribution is straightforward
to parameterize, and we choose it as the baseline (with
parameters a = 22.13, b = 40.91, c = 25.77) for each
of the scenarios discussed in this section.

A. Varying the severity of the incident

We start by showing the impact of the severity of the
traffic deterioration on the travel time. We vary the α
parameter, defined as

α =
1/µ
1/µ′

=
µ′

µ
=

110.17

121.60
= 0.906.

This is the ratio of expected service time under normal
and deteriorated traffic conditions.
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Fig. 5: Travel time PDFs for varying α.

Fig. 5 displays how the travel time PDF changes ac-
cording to decreases in α. This is equivalent to keeping
µ fixed and having the service rate under deteriorated
conditions decrease. We plot the corresponding values
of 1/µ and 1/µ′. As α drops, the distribution becomes
bimodal, with some proportion of the travelers expe-
riencing more significant travel times. The distribution
becomes disconnected for small values of α.
Table III shows the reliability indices calculated for each
experiment. Notice from Table III that, as expected, all
reliability indices increase as α decreases. For the case
with α = 0.5 BI (M-BI) indicates that a 69% (106%)
buffer needs to be added to the median travel time to
ensure on-time arrival at the 95% level of confidence.

Also, PTI demonstrates that the driver should expect to
travel more than double the distance at free-flow speed
to ensure on-time arrival at the same confidence level.

E[T ] [sec] σT [sec] 95th [sec] BI M-BI PTI

α = 0.906 30.81 4.50 39.01 0.27 0.29 1.32
α = 0.800 32.50 5.77 43.60 0.34 0.37 1.47
α = 0.700 34.56 7.85 49.82 0.44 0.49 1.68
α = 0.600 37.31 10.99 58.11 0.56 0.72 1.96
α = 0.500 41.15 15.64 69.73 0.69 1.06 2.36

TABLE III: Reliability indices for travel times distribution.

B. Varying the frequency of incidents

This section shows how the tail of travel time distri-
bution thickens as the frequency of incidents increases.
Traditional mixture models fail to capture this behavior
without data observed under an increased incident rate.
Consider a roadway corridor of 30 miles, 60 times longer
than our previous example. The time parameters (1/µ,
1/µ′) are scaled by a factor of sixty and are now read
in minutes. For example, 1/µ is now 29.60 min and
1/µ′ = 32.67 min (α remains the same). Suppose that
the mean downtime duration is 30 min, D̄ = 1/r = 30
min. This says that, on average, incidents are cleared
out after 30 minutes. Let us now analyze the impacts
of having an increasing incident frequency. This could
result from changes in speed limits, sudden increases in
demand, or environmental changes such as the variation
in the deer population. We calculate the travel time
distribution for three different values of the uptime
duration (the inverse of incident frequency): 1/f = 30,
1/f = 120 and 1/f = 240 min. In the most extreme
case, failures and repairs are expected to happen every
30 minutes.

0 50 100 150

Travel Time (min)

0

0.05

0.1
f = 1/30
f = 1/120
f = 1/240

Fig. 6: Effect of changes in the failure frequency.

Fig. 6 depicts the travel time density functions for
these three cases. We observe that the more frequent
the incidents, the thicker the tail becomes, indicating
that such systems become more unstable with higher
probabilities of abnormally long travel times.
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Table IV shows that the reliability indices increase,
consistent with the decrease in service quality. Standard
deviation grows rapidly, and the 95th percentile moves
drastically to the right. For the most severe case, BI gives
a value larger than one. This indicates that the mean
travel time is smaller than half the 95th percentile. Also,
the PTI value is almost 4, which means that a driver
who expects to get on time at the 95% confidence level
should picture a trip four times longer than the original
one (that is, a 120-mile trip) to be traveled at free-flow
speed.

E[T ] [min] σT [min] 95th [min] BI M-BI PTI

1/f = 30 53.72 31.72 117.52 1.19 2.48 3.97
1/f = 120 37.16 15.73 69.87 0.88 1.07 2.36
1/f = 240 33.58 11.52 58.86 0.75 0.74 1.99

TABLE IV: Reliability indices for travel times distribution.

This section shows that our model can compute the travel
time distribution with varying incident frequencies. As
seen in Fig. 6, our model’s outcome can be largely
different from the traditional mixtures currently proposed
in the literature [15]–[17].

VII. DISCUSSION AND CONCLUSIONS

We present an analytical model and calibration strategy
to approximate a road segment’s travel time distribution
subject to random degradations of service. By focusing
on off-peak hours, the model incorporates the stochas-
ticity of traffic degradation due to non-recurrent events.
This analytical approach provides the travel time distri-
bution, from which a variety of reliability indices can be
readily computed.
Accident and weather reports serve as non-recurrent
events for the validation of the assumptions of our ana-
lytical model and the justification of its application to a
travel time reliability study. The resulting travel time dis-
tributions adequately approximate empirical data. Stan-
dard reliability indices can be calculated directly from
the full analytical travel time distribution.
We present scenarios to illustrate the flexibility of the
model for other non-recurrent events. We verify that our
model accurately describes the travel time distribution
when the frequency of failure is high. Otherwise, our
model is in line with traditional single or mixture models.
This model is the first to analyze travel time distribution
in roadways subject to random incidents (currently re-
stricted to a single type of degradation). For future work,
we plan to extend the model to multiple levels of degra-
dation. We will also consider numerical implementations
that allow the use of service time distributions (fSu(t)
and fSd(t)) that do not have a closed-form Laplace
transform (e.g., lognormal distribution). For this, we

need to reliably and efficiently approximate the Laplace
transform for truncated versions of the distributions.
An additional limitation is that this model only captures
the travel time along individual links. For more realism
in modeling route travel time distributions, the depen-
dence of travel times between adjacent links could be
incorporated into the model. However, such an inclusion
brings about numerous questions unique to Markovian
environments, particularly regarding how link up-down
periods should be modeled, which we plan to investigate
in our future research.
Finally, the ability to compute travel time distributions
(or even the tail portion of the distribution) aids the
estimation of the value of travel time reliability. The
proposed model provides the distribution of the travel
time regardless of the vulnerability of the corridors. With
this information, we can study the effect of incidents
on the value of travel time reliability according to
the expected utility. We supply example scenarios that
decision-makers can use to explore without the need
for extensive simulations of the effect perceived when
increasing the frequency of incidents or how the level of
deterioration α affects the perceived utility.

APPENDIX A
PROOF OF PROPOSITION 1

Proof. A first key observation is that the travel time of a
traveler is calculated differently depending on the traveler’s
arrival epoch. Let us call G1 as the event that an arrival happens
during an up period, and G2 as the event that an arrival happens
during a down period. In particular, by renewal arguments, it
holds that:

P
{
G1} =

r

f + r
, P

{
G2} =

f

f + r
. (5)

The Laplace transform of the conditional travel time can
be calculated separately for each one of these events. From
these, the Laplace transform of the unconditioned travel time
distribution can be calculated.
We start by studying the travel time of a travelers’ arrival
under G1. Consider a traveler arriving during an up period, and
denote the subsequent length of up and down periods as Ui and
Di, respectively, for i = 1, 2, 3, . . .. Let Su

j denote the jth up
period service time requirement, and similarly, let Sd

j denote
the jth down period service time requirement. Fig. 7 shows a
sample path of how the system could evolve. We assume the
traveler arrives at time zero, and we denote with the crosses
on the time-axis some possible departure times (realizations of
the travel time).
Define the following events:
• An, for n = 0, 1, 2, . . . denotes an event during which

exactly n complete up and down periods pass before
the travel time is completed during the (n + 1)-st up
period. The second cross in Fig. 7 is an example of event
A2. Notice that the occurrence of event An implies that
necessarily:

1) Su
i > Ui, for all i = 1, 2, . . . , n,

2) Sd
i > Di, for all i = 1, 2, . . . , n,
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Time
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E[Sd]

1
E[Su]

0
×

T
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Fig. 7: Sample Path of Service System for a Traveler Arrival
Under G1.

3) Su
n+1 < Un+1.

• En, for n = 0, 1, 2, . . . denotes an event during which
exactly n+1 complete up and n complete down periods
pass before the travel time is completed during the (n+
1)-st down period. The first cross in Fig. 7 is an example
of event E1. Here, necessarily:

1) Su
i > Ui, for all i = 1, 2, . . . , n+ 1,

2) Sd
i > Di, for all i = 1, 2, . . . , n,

3) Sd
n+1 < Dn+1.

Since clearly Su
i ’s, Sd

i ’s, Ui’s, and Di’s are all independent
and respectively identically distributed,

P
{
An|G1} = Pn{Su > U}Pn{Sd > D}P{Su < U},

(6)

P
{
En|G1} = Pn+1{Su > U}Pn{Sd > D}P{Sd < D}.

(7)

Notice that the probabilities defined in (6)-(7) were obtained by
simple enumeration of the number of system state transitions.
Similarly, the conditional travel time {T |G1} under each event
stated above is:

{T |G1} =

{∑n
i=1 (Ui +Di) + Su

n+1, event An,∑n+1
i=1 Ui +

∑n
i=1Di + Sd

n+1, event En,
∀n.

Let an indicator random variable under some event H is
defined as

1{H} =

{
1, event H,
0, otherwise.

Then, the conditional travel time Laplace transform is derived
as

E[e−sT1{An}|G1] = E[e−sT |An, G
1] · P{An|G1}

=
{(

E
[
e−sU |Su > U

]
P {Su > U}

)
(8)

·
(
E[e−sD|Sd > D]P

{
Sd > D

})}n

· E[e−sSu

|Su < U ]P{Su < U}, (9)

where s is a complex number with positive real part, U is an ex-
ponentially distributed up period random variable with param-
eter f , i.e., U ∼ Exp(f), D is also an exponentially distributed
random variable with parameter r, i.e., D ∼ Exp(r), Su

denotes the generally distributed service time random variable
under normal conditions with cumulative distribution function
denoted as FSu , and Sd denotes the generally distributed
service time random variable under deteriorated conditions
with cumulative distribution function denoted as FSd .

Laplace transform of the up period for uptimes lasting less than
the service requirement is derived below as

E[e−sU |Su > U ]P{Su > U} = E[e−sU1{Su > U}

=

∫ ∞
x=0

∫ x

y=0

e−syfe−fydy dFSu(x)

=
f

s+ f
[1− LSu(s+ f)].

The last equality follows directly from the properties of Laplace
transforms or by application of integration by parts to the
integral term. Similarly, the following holds

E[e−sD|Sd > D]P{Sd > D} = r

s+ r
[1− LSd(s+ r)],

E[e−sSu

|Su < U ]P{Su < U} = LSu(s+ f),

from where (9) becomes:

E[e−sT1{An}|G1] =

{
f

s+ f
[1− LSu(s+ f)]

}n

·
{

r

s+ r
[1− LSd(s+ r)]

}n

· LSu(s+ f). (10)

For the case En, similar to the case An, we have:

E[e−sT1{En}|G1] = E[e−sT |En, G
1] · P{En|G1}

=
(
E[e−sU |Su > U ]P{Su > U}

)n+1

·
(
E[e−sD|Sd > D]P{Sd > D}

)n
·
(
E[e−sSd

|Sd < D]P{Sd < D}
)
,

where the last term is,

E[e−sSd

|Sd < D]P{Sd < D} = E[e−sSd

1{Sd < D}]

=

∫ ∞
t=0

∫ t

x=0

e−sxdFSd(x)re
rtdt

=

∫ ∞
x=0

∫ ∞
t=x

re−rtdte−sxdFSd(x) = LSd(s+ r),

giving,

E[e−sT1{En}|G1] =

{
f

s+ f
[1− LSu(s+ f)]

}n+1

·
{

r

s+ r
[1− LSd(s+ r)]

}n

· LSd(s+ r). (11)

Then, from (10), we obtain the Laplace transform of the
conditional travel time, given that the traveler arrives during
an up period as shown in (12).

E
[
e−sT |G1

]
=

∞∑
n=0

E[e−sT1{An}|G1]

+

∞∑
n=0

E[e−sT1{En}|G1] =
1

1− V (s){
LSu(s+ f) +

f

s+ f
· [1− LSu(s+ f)] · LSd(s+ r)

}
,

(12)

where

V (s) =

[
f

s+ f
[1− LSu(s+ f)]

] [
r

s+ r
[1− LSd(s+ r)]

]
.
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Consider now a traveler under G2, that is who arrives during
a down period. Fig. 8 shows a sample path of a run for the
system for a traveler arriving during a down period.

Time

Service Time

1
E[Sd]

1
E[Su]

0
×

T

D1 U1 D2

Fig. 8: Sample Path of Service System for a Traveler Arrival
Under G2.

Let again An and En denote the similar events under G1

but interchanging up and down periods. Hence, for example,
under An, there are exactly n down and up periods before the
travel time is completed during (n + 1)-st downtime. Then,
the conditional travel time given that a traveler arrives during
a down period is:

{T |G2} =

{∑n
i=1Di +

∑n
i=1 Ui + Sd

n+1, event An,∀n,∑n+1
i=1 Di +

∑n
i=1 Ui + Su

n+1, event En, ∀n.
(13)

We write the Laplace transform of the conditional travel time
under each event as,

E[e−sT1{An}|G2] =

{
r

s+ r
[1− LSd(s+ r)]

}n

·
{

f

s+ f
[1− LSu(s+ f)]

}n

· LSd(s+ r), (14)

E[e−sT1{En}|G2] =

{
r

s+ r
[1− LSd(s+ r)]

}n+1

·
{

f

s+ f
(1− LSu(s+ f))

}n

· LSu(s+ f). (15)

From there, we obtain the Laplace transform of the conditional
travel times as,

E[e−sT |G2] =
1

1− V (s)

·
{
LSd(s+ r) +

r

s+ r
· [1− LSd(s+ r)] · LSu(s+ f)

}
.

(16)

Finally, by combining the conditional travel times (12) and
(16) using the corresponding probabilities P{G1} and P{G2},
the unconditional travel time Laplace transform is obtained as
shown in proposition 1. Taking the first derivative of E[e−sT ]
in Eq. 1 with respect to s and then evaluating at s = 0 provides
the negative of the mean travel time as given in equation 2.
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