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CFD AND HEAT TRANSFER MODELS OF BAKING BREAD IN A TUNNEL OVEN 

 

RAYMOND MATTHEW ADAMIC 

 

ABSTRACT 

The importance of efficiency in food processing cannot be overemphasized. It is 

important for an organization to remain consumer- and business-oriented in an 

increasingly competitive global market. This means producing goods that are popular, of 

high quality and low cost for the consumer.  

     This research involves studying existing methods of baking bread in a common type 

of industrial oven. - the single level bread baking tunnel oven.  Simulations of the oven 

operating conditions and the conditions of the food moving through the oven are 

performed and analyzed using COMSOL, an engineering modeling, design and 

simulation software. The simulation results are compared with results obtained using 

MATLAB (a high-level programming language), theoretical analyses and/or results from  

literature. 

     The most important results from this research are the attainment of the temperature 

distribution and moisture content of the bread, and the temperature and velocity flow 

fields within the oven. More specifically, similar values for the temperature rise of a 0.1 

m × 0.1 m × 1 m model dough/bread were attained for analytical results, MATLAB, 

COMSOL (using a volumetric heat source), and COMSOL (using heat fluxes from 

analytical calculation); these values are 41.1 K, 39.90 K, 41.45 K, and 41.46 K, 

respectively. Similarly, the temperature rise of the dough/bread from a 2-D COMSOL 



 

v 

 

model (using appropriate inputs for this and all models in this research) is found to be 

25.39 K, which has a percent difference of   - 44.4 % from the MATLAB result of 39.90 

K.  The moisture loss of the bread via analytical (and MATLAB) calculation is found to 

be 0.0423 kg water lost per hour, which is within the literature values of 0.030 and 

0.25488 kg water lost per hour. The velocity flow fields within the (open) oven for the 

dimensional free (natural) convection COMSOL simulation show a qualitatively correct 

rising of the air due to the buoyancy forces imposed by the heating elements. The flow 

fields within the (closed) oven for the nondimensional free convection COMSOL 

simulation show the qualitatively correct regions of cellular flow caused by the hot 

(heating element area) and cold regions of the domain.   
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CHAPTER I 

INTRODUCTION 

 

     In this chapter, an introduction of the research will be outlined. First, the purpose and 

motivation for the research will be described, then the description of the problem will be 

discussed. Since this research involves bread baking in an oven, the oven will described, 

followed by a description of the food (bread). Finally, a review of the literature will be 

discussed.
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1.1 Purpose and motivation 

     The purpose of this research is to simulate existing bread baking conditions (e.g. 

temperature, air velocity, moisture/humidity), and to provide a ready-made algorithm that 

the food processing industry can use to help optimize current baking procedures and 

build new processes for bread baking. 

     Using COMSOL (a multi-physics software) one can model the geometry and physical 

properties of the raw material that is either placed in a food container or directly on an 

oven conveyor belt. This can help the food baking industry simulate an actual food item- 

before, during, and after baking. 

     Similarly, COMSOL can be used to model the geometry and material of an actual 

oven. The oven may be any length, width, and height. The oven may be single or multi-

level, with or without a conveyor belt, etc. This capability can help designers produce, for 

example, an oven best suited to factory space constraints. 

     Because COMSOL has fluid flow/heat transfer/mass transfer interfaces, practically 

any oven operating conditions can be simulated. This can, for example, help engineers 

determine the optimal heating conditions for whatever food may be baked in the oven. 

These simulations can be used to determine if the food will be cooked enough (not 

undercooked) and not burned (not overcooked). These computational fluid dynamics 

(CFD) simulations can tell workers in the field if a proposed food/food container/oven 

combination will work in reality. The costs of current processes in the baking industry 

can be reduced by performing optimum CFD simulations on existing raw materials and 

equipment.  
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     Therefore, using COMSOL’s geometry and physics capabilities, an engineer in the 

food baking industry can study what has been done in this research, and customize this 

work to suit his/her technical goals. This implies that a worker in this field can look at the 

method (algorithm) of creating the food, container and oven models in COMSOL to 

enable him/her solve the technical problems of baking bread in industrial ovens. For 

example, an engineer may want to produce a new bread product, and possibly need to 

adjust oven operating conditions to bake this; a COMSOL analysis will help him with 

this situation.    

     Thus the motivation for this study is to show researchers in the bread baking industry 

that COMSOL can be used to effectively create virtual food, container, and oven 

components. Furthermore, these models can be employed to improve existing processes, 

and be used to create new processes and products. 

1.2 Description of problem 

     The problem involves the CFD simulation and analysis of baking bread moving on a 

conveyor belt through single-level tunnel oven. A one-level tunnel oven and the bread 

within the oven will be modeled using COMSOL; where possible, these models will be 

compared with corresponding MATLAB, analytical, and/or literature models. 

1.3 Description of oven 

     Tunnel ovens are the most commonly used type of ovens in the cereal foods (bread, 

cake, biscuits, etc.) baking industry; this is because of a tunnel oven’s high production 

capacity and minimal energy consumption (Baik et al., 2000 a). Schematics of two types 

of tunnel ovens – a gas fired band oven and an electric powered mold oven – are 

illustrated in Figure 1.1; from the schematics, one can see that these two types of tunnel 
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ovens have a number of features in common. The basic geometry of each oven is 

rectangular. The oven chamber may be from 1-30 meters in length, approximately 1 

meter wide, and about 0.2 meter tall; Figure 1.1 is used to arrive at approximate 

dimensions for the model ovens in this research. Each tunnel oven is divided into 

multiple zones, where the top and bottom heating elements (either gas or electric) can be 

adjusted to meet the heating requirements of the food being baked. For example, biscuit 

dough can be heated gradually so that crust formation does not occur prematurely (which 

may lead to a biscuit that is too small in volume). 
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Figure 1.1: Schematics of (a) gas fired band oven and (b) electric powered mold oven 

(Baik et al., 2000 a).  
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1.4 Description of food 

     For one loaf of French bread, the ingredients used are: 370 g of wheat flour, 200 g of 

water, 6 g of salt, 6 g of sugar, 6 g of oil, and 4.5 g of dry yeast (Thorvaldsson & 

Janestad, 1999). 

     The thermal properties of dough and bread (Zhou et al, 2007) are presented in Table 

1.1. It must be noted that the porosity (which can be 0.7, according to Thorvaldsson & 

Janestad, 1999) of bread affects its density: the higher the porosity, the lower the density.   

Table 1.1: Thermal properties of dough and bread (Zhou et al, 2007)  

Temperature (°C)  Density (kg/m
3
) Specific Heat 

(J kg
-1

 °C  
-1

) 

Thermal 

Conductivity 

(W m
-1 

°C
-1

)  

28 

(301.15 K) 

420 2883 0.20 

120 

(393.15 K) 

380 1470 0.07 

227 

(500.15 K) 

340 1470 0.07 

 

     The dimensions of the bread in this research are approximations of that used by Zhou 

et al (2007), unless otherwise stated. 
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1.5 Literature review 

      

     A review of the current literature provides information on the vast use of 

computational fluid dynamics in the food processing industry. Some examples from Sun 

(2007) of the use of CFD in this industry include simulations of refrigerated 

compartments that store food (Cortella, 2007), simulations that analyze machines that dry 

food (Mirade, 2007), and simulations that involve the thermal sterilization of food (Ghani 

& Farid, 2007). Another example of the extensive use of CFD in this industry involves 

some of the different methods of heating of food: frying (Wang & Sun, 2006), grilling 

(Weinhold, 2008), and baking (Mirade et al., 2004, Therdai et al., 2003, 2004 a,b). Since 

the proposed dissertation involves the CFD simulation of the baking of food in a certain 

type of oven, the research was focused on this major area. 

     Specifically, the literature review centered on experimental and CFD work involving 

the baking of cereal products (such as bread, cake, biscuits, and cookies) in single-level 

tunnel ovens. Piazza and Masi (1997) performed experiments on cookies baked in a 

tunnel oven, finding that the crispness (based on a human tester’s sensory perception) of 

a cookie is linearly related to its modulus of elasticity. Baik et al. (2000 a) studied the 

baking of cakes in a tunnel oven, focusing on the baking conditions (such as temperature, 

air velocity, and humidity). Later, Baik et al. (2000 b) focused their experimental 

research on the quality parameters (such as texture, pH, and surface color) of the cakes 

being baked in the tunnel oven. Broyart and Trystram (2003) used an artificial neural 

network to predict color and thickness of biscuits from the (experimentally obtained) 

input information of biscuit moisture content and temperature.  
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      In a CFD study, Mirade et al. (2004) used the software Fluent to characterize the air 

temperature and velocity profiles in a biscuit baking tunnel oven. 

     An aspect of this research effort is the motion of the containers of food within the 

oven. Hassanien et al. (1999) point out the example of the boundary layer along material 

handling conveyors. In their paper, they used a boundary condition that describes the 

velocity of the moving plate in the solution of the governing equations. 

     Similar to other engineering disciplines, there are both challenges and breakthroughs 

in the field of industrial food baking processes. The problems encountered by researchers 

in this field include the uncertainties in the physical properties of the baked food, and 

modeling the volumetric change (expansion) of the baking food. With respect to the 

uncertainties in the physical properties of the food being baked, Wong et al. (2006) 

pointed out the importance of the temperature variation of heat capacity, density and 

thermal conductivity of the bread dough and that density and heat capacity were most 

influential on the accuracy of the simulation results. The CFD software used in their 

research was unable to properly simulate density variation with temperature. 

     Concerning the volumetric change of the baking food, Mondal and Datta (2008) 

suggest that computational modeling of the deformation of the food in the oven would 

definitely be appropriate in past CFD simulations that did not include this change. 

Therdai et al (2004 a) found that sandwich bread height is 85 % that of the dough height.   

     The breakthroughs in CFD modeling in the food baking industry include high 

correlation of CFD simulations with experimental measurements, and improvements in 

CFD simulation techniques such as parallel processing. With respect to the correlation of 

CFD simulation with experiments, Marcotte (2007) found that the correlation between 
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their CFD and experimental results of the temperature distribution in an oven was 0.92, 

with an average relative error of 7 %.  

     Concerning CFD simulation improvements, it is known that a person using COMSOL 

on the Ohio Supercomputing Center’s (OSC) Glenn Cluster can use that software with 

parallel processing capability. A COMSOL mph (mutiphysics) file, thought previously to 

be unusable in parallel on the OSC system, was found by Larson (2010) to be usable in 

parallel on that system.  

     The uniqueness of this author’s research is the extensive use of analytical computation 

compared with COMSOL simulations to model radiation upon bread in an industrial food 

processing oven; thus far, the literature review has not yielded any similar simulations. 

Also, the current literature search has yielded no simulations of COMSOL being 

compared with extensive analytical computation to model bread moisture loss within 

food processing ovens. 
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CHAPTER II 

 

THEORETICAL FORMULATION 

 

     In this chapter, the physics relevant to food baking in a single-level tunnel oven will 

be examined. More specifically, the physics involved in bread baking will be outlined; 

this involves radiation within the oven, heat conduction within the bread and between the 

bread and its container (or the conveyor belt upon which the bread rests), oven natural 

(free) convection (both dimensional and nondimensional), oven forced convection, and 

moisture loss from the bread.   

     This chapter provides the equations that are used to effect the calculations in Chapter 

III, and that are the basis for the 2-D and 3-D COMSOL models in Chapters VI and VII, 

respectively. This chapter also presents the equations necessary for the MATLAB models 

in Chapter X. 
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2.1 Radiation theoretical formulation 

     The analytical and COMSOL radiation theoretical formulations are discussed in this 

section; the analytical calculations in Sections 3.1 are based on these formulations.  

 

2.1.1 Analytical radiation theoretical formulation 

     

     Radiation has been found to be the dominant mode of heat transfer in the tunnel oven 

simulated in this research (Chhanwal et al, 2010, Mirade et al, 2004); therefore radiation 

is the most extensively studied mode of heat transfer in the simulations.  

     The radiation problem of bread baking in an oven essentially is radiation exchange 

between diffuse, gray surfaces in an enclosure. The following methodology of radiation 

formulation (including equations and figures) is derived from Incropera and Dewitt 

(1990). A schematic of an enclosure is shown in Figure 2.1.Surfaces i and j are arbitrary 

surfaces. Here, surface i is receiving radiation in the form of irradiation Gi from surfaces 

1, 2, and j; radiation is leaving surface i in the form of radiosity Ji. The net radiation 

leaving surface i is qi .T, A, and ε are the temperatures, areas, and emissivities of the 

surfaces, respectively; the terms in this figure will be subsequently described. 
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Figure 2.1: Radiation exchange in an enclosure of diffuse, gray surfaces 

 

     Diffuse means that the radiation emitted, reflected and/or absorbed by a surface is 

independent of direction. A gray surface is one for which the emissivity and absorptivity 

are independent of wavelength for the spectral region under consideration. In order to 

arrive at a relation describing radiation exchange between surfaces in an enclosure, the 

net radiation from a single surface will first be described (see Figure 2.2). 

 

 

 

Ji 

 

qi 

 

Gi 

 

Ti, Ai, εi 

 

T1, A1, ε1 

 
Tj, Aj, εj 

 

T2, A2, ε2 

 



 

13 

 

 

 

 

 

 

 

 

 

Figure 2.2: Radiative balance according to Equation (2-1) 

 

     The net rate at which radiation leaves surface i involves the difference between 

surface i  radiosity Ji , and surface i irradiation Gi  :   

        

where Ai is the surface area of surface i, and Gi  is the radiation arriving at surface i from 

the other surfaces in the enclosure. 

     The surface radiosity is defined as follows:        

 

where Ei  is the emissive power of surface i and  is the reflectivity of surface i. 

     For an opaque, diffuse, gray surface: 

 

GiAi 

 

JiAi 
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where  is the absorptivity of surface i. An opaque surface is one in which no radiation 

is transmitted through the surface. 

     Multiplying Equation (2-3) by Gi  :  

 

     Substituting Equation (2-2) into Equation (2-1): 

 

     Substituting Equation (2-4) into Equation (2-5); (see Figure 2.3): 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Radiative balance according to Equation (2-6) 

 

     For an opaque, diffuse, gray, surface: 

 

where  is the total hemispherical emissivity of surface i.  is defined as: 

 

EiAi 

 

GiAi 

 

αiGiAi 

 

ρiGiAi 
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where Ebi  is the blackbody emissive power of surface i, and T denotes the temperature of 

the surface. A blackbody surface is a perfect emitter and absorber. The equation for Ebi  

is: 

 

where σ is the Stefan-Boltzman constant. 

 

     Substituting  Equations (2-8) and (2-7) into Equation (2-2): 

 

     Solving Equation (2-10) for Gi and substituting into Equation (2-1): 

 

     Rearranging terms on the right side of Equation (2-11): 

 

     In order to utilize Equation (2-12), the surface radiosity Ji  must be known. To 

determine this variable, it is necessary to consider the radiation exchange between the 

surfaces in the enclosure.  

     To compute the radiation exchange between any two surfaces (for example, surface i 

and surface j), the concept of a view factor must first be introduced. The view factor   

is the fraction of radiation leaving surface i that is intercepted by surface j. In this 

research a geometry the same and similar to that shown in Figure 2.4 is employed: 
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Figure 2.4: Parallel plates with midline connected by perpendicular line  

 

 

 

     Figure 2.4 shows a schematic of parallel plates with their midline connected by a 

perpendicular line. For the geometry shown in Figure 2.4 the view factor (from Table 

13.1 in Incropera & Dewitt, 1990) is as follows: 

 

 

where  Wi  =  wi/L  , Wj  =  wi/L , wi  is the width of surface i,  wj  is the width of surface j, 

and L is the perpendicular distance between the two surfaces.  Equation (2-13) is 

wi 

wj 

L 

Surface  i 

Surface  j 
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calculated from the view factor integral (a general expression for the view factor) in 

Incropera and Dewitt (1990). Later in this radiation theoretical formulation there will be 

needed a view factor summation rule for surfaces exchanging radiation in an N-sided 

enclosure (from Equation 13.4 in Incropera and Dewitt, 1990): 

 

      Referring back to Figure 2.1, the irradiation of surface i can be evaluated from the 

radiosities of all the surfaces in an enclosure. From the definition of the view factor, it 

follows that the total rate at which radiation reaches surface i from all other surfaces, 

including i (see Figure 2.1), is: 

 

     At this point another important view factor relation must be introduced. This relation 

is called the reciprocity relation, and is: 

 

 

 

where Ai   is the area of surface i, and  Aj   is the area of surface j, and  is the fraction of 

radiation reaching surface i from surface j. 

     Substituting Equation (2-16) into (2-15): 

 

     Dividing both sides of Equation (2-17) by Ai and substituting into Equation (2-1) for 

Gi : 
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     Substituting the summation rule, Equation (2-14), into Equation (2-18): 

 

     Therefore: 

 

     Combining Equations (2-12) and (2-20) results in: 

 

     Once the surface radiosity Ji is calculated from the Equation (2-21), the heat 

transferred to the material (container or dough/bread) can be determined from Equation 

(2-12), and the temperature rise of the material can then be determined from the heat 

diffusion equation. This will be discussed in the analytical conduction theoretical 

formulation section (Section 2.2.1). 

 

2.1.2 Radiation theoretical formulation in COMSOL 

     COMSOL uses equations very similar to those described earlier in the analytical 

theoretical formulation section. In order to model radiation exchange between surfaces it 

is necessary to use COMSOL’s Heat Transfer Module, which is an add-on to the 
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COMSOL Multiphysics software. This theoretical formulation is outlined in COMSOL 

(2010 c). 

     COMSOL’s Surface-to-Surface boundary condition feature handles surface to surface 

radiation with view factor calculation. The heat flux q on the Surface-to-Surface 

boundary is: 

 

where ε is the surface emissivity, G is the incoming heat flux, or irradiation, σ  is the 

Stefan-Boltmann constant, and T is the temperature of the boundary. G is calculated 

according to the following equation: 

 

where Gm is the mutual irradiation arriving from other boundaries in the model, Famb is 

the ambient view factor whose value is equal to fraction of the field of view that is not 

covered by other boundaries, and Tamb (ambient temperature) is the assumed far-away 

temperature in the directions included in Tamb.   

     The Surface-to-Surface Radiation implementation requires evaluation of Gm. The 

incident radiation at one point in the boundary is a function of the exiting radiation, or 

radiosity, J, at every other point in view. The radiosity, in turn, is a function of Gm, which 

results in an implicit radiation balance: 

 

     The view factor calculation in COMSOL for this research uses the Hemicube (see 

Figure 2.5) method, which can be thought of as rendering digital images of the model 

geometry in five different directions (in 3-D; in 2-D, only three directions are needed) 

and counting the pixels in each mesh element to determine its view factor. 
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Figure 2.5: A hemicube unfolded (from Hemicube (computer graphics), 2007) 

 

     The boundaries in the COMSOL model are assigned as follows: the faces of the 

heating elements facing the dough/bread are specified as having a constant temperature 

 

and the surfaces of the material and heating elements are each specified as having an 

appropriate emissivity ε. 

     The faces of the heating elements not facing the dough/bread may be specified as 

having a constant temperature, or as being insulated according to Equation (2-26): 

 

2.2 Conduction theoretical formulation  

     The analytical and COMSOL theoretical formulations are discussed in this section. 

 

 



 

21 

 

2.2.1 Analytical conduction theoretical formulation 

     In order to find out how much the material (in this research, the container or 

dough/bread) rises in temperature, the heat diffusion equation (Incropera & DeWitt, 

1990) is employed:  

 

where x,  y , and z  are the horizontal, vertical, and depth space coordinates in the 

Cartesian system, respectively, T is the variable temperature, k is the thermal conductivity 

of the material,  is the volume heat source,  is the density of the material, is the 

specific heat (at constant pressure) of the material, and t is the variable time. In order to 

solve this equation a number of assumptions are to be made (the validity of these 

assumptions will be shown in Tables 11.1 and 11.2). First, it is assumed that there is no 

variation in temperature in the x,  y , and z  directions; this causes the first three terms on 

the left side of Equation (2-27) to be equal to zero. This results in the following equation:  

 

     Since T  is now only a function of t, the  operator can be changed to .  

 

     Multiplying both sides of Equation 2-29 by : 

 

     Rearranging: 

 

     Multiplying both sides of Equation (2-31) by : 



 

22 

 

 

     Integrating, assuming     is constant (to simplify the calculation): 

 

 

where C is the constant of integration. Noting that at t =t0,  

 

     Rearranging: 

 

 

 

 

 

 

 

     Since  and : 
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     Multiplying both sides of Equation (2-40) by  , and rearranging, results in the 

following equation: 

 

 

 

where  is the temperature change of the container.  

     In order to apply Equation (2-41) to the material being heated by the oven heating 

elements in this research, the heat flux of the heating elements upon the material is 

originally assumed to be equivalent to the heat source term . 

2.2.2 Conduction theoretical formulation in COMSOL 

     COMSOL uses Equation (2-27) to calculate the temperature distribution in the 

material (container or dough/bread). 

2.2.3 Conduction theoretical formulation for MATLAB 

     This formulation (including equations and figures) is outlined in Holman (1990). At 

the boundary of a solid, a convection resistance to heat flow is usually involved. In 

general, each convective boundary condition must be handled separately, depending on 

the geometric shape under consideration. The case of a flat wall will be considered as an 

example. For the one-dimensional system shown in Figure 2.6 one can make an energy 

balance at the convection boundary such that 

 

where k is the thermal conductivity of the material, A is the area of the wall, T is 

temperature, x is the horizontal space coordinate, h is the convective heat transfer 
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coefficient, Tw is the temperature at the wall, and T∞ is the temperature of the 

surroundings. 

 

     The finite-difference approximation is given by 

 

  

where y is the vertical space coordinate (which cancels out here due to the 1-D 

assumption), 

or               

 

 

     To apply this condition, one should calculate the surface temperature Tm+1 at each time 

increment and then use this temperature in the nodal equations for the interior points of 

the solid. This is only an approximation because the heat capacity of the element of the 

wall at the boundary has been neglected. This approximation will work fairly well when a 

large number of increments in x are used because the portion of the heat capacity that is 

neglected is then small compared with the total. One may take the heat capacity into 

account in a general way by considering the two-dimensional wall of Figure 2-7 (where q 

is the heat transfer) exposed to a convective boundary condition.  A transient energy 

balance is made on the node (m, n) by setting the sum of the energy conducted and 

convected into the node equal to the increase in the internal energy of the node. This is 

shown as 
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where p is the current time step, ρ is the density of the material,  c is the specific heat of 

the material, and τ is the time increment. 

     If ∆x= ∆y, the relation for  becomes 

 

 where α is the thermal diffusivity of the material. 

     The corresponding one-dimensional relation is 

 

 

     The selection of the stabilization parameter (∆x)
2
/α ∆τ is not as simple as it is for the 

interior node points because the heat-transfer coefficient influences the choice. It is still 

possible to choose the value of this parameter so that the coefficient of   or  will 

be zero. The value for the one-dimensional case would be 

 

     To ensure convergence of the one-dimensional numerical solution, all selections of the 

parameter (∆x)
2
/α ∆τ must be restricted according to  
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Figure 2.6: Nomenclature for numerical solution of unsteady-state conduction problem 

with convection boundary condition  
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Figure 2.7: Nomenclature for nodal equation with convective boundary condition 

 

2.3  Free (natural) convection theoretical formulation 

     The dimensional and nondimensional free (natural) convection theoretical formulation 

in COMSOL, and analytical formulation of the free convection flow regime will now be 

described. 

2.3.1 Dimensional free (natural) convection theoretical formulation in COMSOL 

     This formulation is outlined in COMSOL (2010 b, e). The steady state Navier-Stokes 

equations (including the continuity equation) shown below govern the fluid flow within 

the room and oven enclosure:  

 

         

m-1,n 

m, n+1 

m, n 

m, n-1 

Surface 

T∞ 

∆y 

∆y 

∆x/2 

∆x 

q 



 

28 

 

where ρ is the density of the fluid, u is the velocity vector, p is the pressure, μ is the 

dynamic viscosity of the fluid, and F is the source term. The superscript “T” is the 

transpose of the vector.  

     The volume force F is set to: 

 

where  is the density of the unheated fluid and g is the acceleration due to gravity.  is 

calculated according to the Boussinesq approximation: 

 

where T is the variable temperature of the fluid and   is the temperature of the 

unheated fluid. The Boussinesq approximation is desirable because it allows one to solve 

for the compressibility of air as a function of temperature (as opposed to pressure) only.  

     The fluid flow boundary conditions are as follows: the walls of the heating elements 

and the oven are specified as no-slip meaning the fluid velocity vector is 0, or 

 

     The boundaries of the room are specified as open, and the equation for this condition 

is: 

 

where I is the identity matrix,  is the normal vector, and  is the normal stress. For this 

research, = 0, which means that there is nothing stopping the fluid from entering or 

exiting the boundary.  



 

29 

 

     The heat balance within the room and oven enclosure is obtained via the conduction-

convection equation:  

 

where Cp is the specific heat of the fluid at constant pressure, k is the thermal 

conductivity of the fluid, and T is the temperature of the fluid. 

     The boundary conditions for the heat transfer of the natural convection formulation 

will now be presented. For the heating elements, the boundaries are specified as having a 

constant temperature of T = T0. The boundaries of the oven walls are specified as 

insulated, meaning that there is no heat flux across the boundaries as shown in Equation 

(2-57): 

 

2.3.2 Nondimensional free (natural) convection theoretical formulation in COMSOL 

     This formulation is outlined in COMSOL (2010 e). The incompressible Navier-Stokes 

equations (including the continuity equation) shown below govern the fluid flow within 

the room and oven enclosure: 

 

         

where ρ is the density of the fluid, u is the velocity vector, p is the pressure, μ is the 

dynamic viscosity of the fluid, ρ0 is the reference density, g is gravity acceleration, β is 
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the coefficient of volumetric thermal expansion, T is temperature, and T0 is the reference 

temperature. In this model the Rayleigh number (Ra) is employed, and is defined as: 

 

where Cp  is the specific heat of the fluid, L is the length of a heating element, and k is the 

thermal conductivity. The Prandtl number (Pr) is also used in this model, and is defined 

as: 

 

     Specifying the body force in the y-direction for the momentum equation to Fy : 

 

and the fluid properties to Cp=Pr, and ρ=μ=k=1 produces a set of equations with 

nondimensional variables p, u, and T. Tc  is the low (cold) temperature. 

     As in Section 2.3.1, the fluid flow boundary conditions are that the walls of the 

heating elements and the oven are specified as no-slip; this means the fluid velocity 

vector is 0, or 

 

The boundaries of the room are also specified as no-slip (dissimilar to Section 2.3.1). 

     The heat balance within the room and oven enclosure is shown by the following 

equation:   
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     The boundary conditions for the heat transfer of the nondimensional natural 

convection formulation will now be presented. For the heating elements and oven walls, 

the boundaries are specified as each having a constant temperature of T = T0. The 

boundaries of the room are specified as insulated, meaning that there is no heat flux 

across the boundaries as shown in Equation (2-65): 

 

2.3.3 Analytical formulation of free convection flow regime  

     This formulation is outlined in Incropera and Dewitt (1990). In order to calculate 

whether the flow is laminar or turbulent, the Rayleigh number must be calculated. Here, 

we can use the same Rayleigh number calculation whether the top surface or bottom 

surface of a heating element is being considered.  The sides of the heating elements are 

0.01 m and are not considered to have a significant impact on the analysis at this point in 

the research. For a horizontal plate, the Rayleigh number is calculated as follows:  

 

where Ts  is the temperature of the heating element surface, T∞  is the temperature of the 

unheated fluid, and L is the characteristic length of the heating element surface. The 

variable g is the acceleration due to gravity, and the variables ,  , and  are the 

volumetric thermal expansion coefficient, kinematic viscosity, and thermal diffusivity of 

the fluid respectively. Here, all of the fluid properties are evaluated at the film 

temperature, given by: 
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     The variable β for ideal gases is defined as follows: 

 

     For this geometry (horizontal flat plate), L is defined as: 

 

where As  is the surface area of the plate, and P is the perimeter of the plate. At this point 

it must be stated that since this is a two-dimensional simulation, the depth of the plate 

must be specified: this (the third dimension) is 1 meter.  

2.4 Forced convection theoretical formulation  

     The theoretical formulation for forced convection in COMSOL, and the analytical 

formulation of the forced convection flow regime will now be discussed. 

2.4.1 Forced convection theoretical formulation in COMSOL 

     Forced convection is induced upon the food in the oven due to the suction of air 

through the exhaust chimneys. Forced convection is important to include in the research 

because it affects both heat transfer to the food, and moisture loss from the food.  

     This formulation is outlined in COMSOL (2010 b). The steady state Navier-Stokes 

equations (including the continuity equation) shown below govern the fluid flow within 

the oven:  
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     The boundary condition for the walls are specified as no slip, as shown in Equation (2-

72): 

 

     The exhaust stack is specified with a normal inflow velocity of –U0 as shown in 

Equation (2-73), meaning that fluid flow is exiting the oven: 

 

     The outlet boundaries are specified as having a pressure of p0, and no viscous stress: 

 

 

where  is the specified pressure. In this model when the outlet boundaries are as 

specified above, this is equivalent to flow being drawn (suction) from a large container. 

2.4.2 Analytical formulation of forced convection flow regime 

     This formulation is based on White (1986). In order to determine if the flow is laminar 

or turbulent, the Reynolds number Re  is calculated: 

 

where ρ is the density of the fluid, U is the velocity of the fluid, L is the characteristic 

length, and µ is the dynamic viscosity of the fluid. If Re is less than 2300, the flow is 

considered laminar; if Re is greater than 2300, flow is considered turbulent. However, the 

Reynolds number at which flow becomes turbulent can be delayed to much higher values 

for rounded entrances, smooth walls, and steady inlet streams. U is calculated by 

employing the conservation of mass equation:  
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where  and are the mass flow rates through the top and sides of the oven, (see 

Figure 6.15) respectively. This equation can be expanded as: 

 

where ρ is the density of the fluid and A is the area of the cross section of the duct. Since 

air is considered to be incompressible and the openings of the duct are of equal area, 

Equation (2-78) reduces to:  

 

     Solving for Uside : 

 

which means that the free stream air velocity through the sides of the oven are half of the 

free stream air velocity through the top of the oven. 

     In this research L is calculated as follows: 

 

where Dh is the hydraulic diameter of the non-circular duct, A is the cross-sectional area, 

and P is the perimeter.  

2.5 Moisture theoretical formulation 

     The analytical and COMSOL theoretical formulations are described in this section. 
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2.5.1 Analytical moisture theoretical formulation 

     The moisture theoretical formulation (including all equations and figures, except 

where noted) is derived from Geankoplis (2003). In this research, it is feasible to 

calculate the loss of moisture from the bread using a constant drying rate analysis. This 

means that the rate at which the bread loses moisture to the oven air does not change with 

time. According to Baik et al (2000 b), for cookie baking in a continuous oven the 

constant rate drying period occupies about 40 % of the baking time. Figure 2.8 shows a 

typical drying rate curve for constant drying conditions (RC is shown in Equation (2-

109)), and more specifically, the rate of drying curve as rate versus free moisture content. 

The free moisture is the moisture that can be removed by drying under the given percent 

relative humidity. In this figure the initial free moisture content is shown as Point A. 

When the bread at room temperature enters the hot oven there is an initial drying period 

when the drying rate is increasing (from Point A to B); this period is often small and can 

be neglected in most circumstances. From Point B to C is known as the constant rate 

drying period, and from Point C to D, the linear falling rate drying period. The falling 

rate drying period signifies the time when the drying rate is decreasing with time. From 

Point D to E is the nonlinear drying rate period; the falling rate periods will not be 

covered in this research, due to the fact they must be determined from data that has been 

produced experimentally.  
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Figure 2.8: Typical drying rate curve for constant drying conditions: rate of drying curve 

as rate versus free moisture content  
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     In Figure 2-9 a solid material (in this research, bread) is being dried by a stream of air 

as shown: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9:  Heat and mass transfer in drying a solid from the top surface 

 

     The total rate of heat transfer to the drying surface is: 
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where qC is the convective heat transfer from the gas at temperature T to the solid surface 

at  TS, qR  is the radiant heat transfer from the radiating surface at  TR to the solid surface, 

and qK is the rate of heat conduction from the bottom. The rate of convective heat transfer 

is as follows:  

 

where A is the exposed surface area and  is the convective heat transfer coefficient. For 

air flowing parallel to the drying surface, the leading edge of the surface can cause 

turbulence. The following equation can be used to calculate  when the air temperature 

range is 45-150°C and the air velocity range is 0.61-7.6 m/s: 

 

where G is the air mass velocity, and is calculated as: 

 

where 

 

where H is the specific humidity (also known as the humidity ratio) of the gas stream, 

and  is: 

 

where T is the temperature of the gas stream. The coefficients in Equation (2-87) are 

derived from the ideal gas equation at standard temperature and pressure, using the 

molecular weights of air and water. 

    The radiant heat transfer is calculated as: 
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where  

 

 

     The derivation of Equation (2-89) will now be shown. For a small object (in this 

research, bread) in a large enclosure (in this research, the oven), the radiation to the small 

object is:   

 

where A1 is the area of the small object, ε is the emissivity of the object, σ is the Stefan-

Boltzman constant, T1 is the temperature of the object, and T2 is the temperature of the 

enclosure. A radiation heat transfer coefficient  can be defined as: 

 

     where  is the heat transfer rate by radiation. 

     Equating Equations (2-90) and (2-91), and solving for  results in Equation (2-92): 

 

 

     Substituting the Stefan-Boltzman constant into Equation (2-92) yields Equation (2-

93):   

 

     For the heat transfer by conduction from the bottom, the heat transfer is first by 

convection from the gas to the metal (in this research, the bread container and/or 
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conveyor belt), then by conduction though the metal, and finally conduction through the 

solid. The heat transfer by conduction is:    

 

where  is the overall heat transfer coefficient and is calculated as: 

 

where  is the convective heat transfer coefficient,  is the thickness of the metal,  

is the thermal conductivity of the metal,  is the thickness of the solid, and  is the 

thermal conductivity of the solid. 

     The equation for the rate of mass transfer is: 

 

where  is the flux of chemical A (water, in this research),  is the mass transfer 

coefficient,  is the molecular weight of chemical A,  is the molecular weight of 

chemical B (air, in this case),  is the saturation humidity, and H is the humidity.  is 

defined as: 

 

where  is the mass transfer coefficient with respect to mole fraction, and  is the log 

mean inert mole fraction of chemical B. For a dilute mixture of chemical A in chemical B, 

, and then  . 

     Equation   is derived by looking at the concept of wet bulb temperature. The 

method used to measure wet bulb temperature is illustrated in Figure 2.10, where a 
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thermometer is covered by a wick. The wick is kept wet with water and immersed in a 

flowing stream of air-water vapor having a temperature T  (dry bulb temperature) and 

humidity H. At steady-state, water is evaporating from the wick to the gas stream.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10: Measurement of wet bulb temperature 

      

     A heat balance on the wick can be made. The amount of heat lost by vaporization is: 

 

where  is the molecular weight of the water,  is the flux of water evaporating, A is 

the surface area, and  is the latent heat of vaporization at TW. The flux  is: 
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where   and  are defined as before,  is the mole fraction of water vapor in the 

gas at the surface, and y is the mole fraction in the gas. As stated before, for dilute 

mixtures,  , and then . The relation between H and y is:  

 

where  is the molecular weight of air and  is the molecular weight of water. Since 

H is small, as an approximation: 

 

     Substituting Equation (2-101) into Equation (2-99): 

 

 

     Substituting Equation (2-103) into (2-98): 

 

     The rate of convective heat transfer from the gas stream at T to the wick at TW is: 

 

where h is the heat transfer coefficient.  
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     Equating Equation (2-104) to Equation (2-105) and rearranging:  

 

     The ratio  is known as the psychrometric ratio, and has been experimentally 

determined for water vapor-air mixtures to be approximately 0.96 to 1.005. The value of 

 can then be approximated to be equal to cS , which is the humid heat of an air-

water vapor mixture, and is the amount of heat required to raise the temperature of 1 kg 

dry air plus the water vapor present by 1K or 1°C . Essentially, this means that the 

adiabatic saturation lines on a humidity chart (see Figure 3.5) can also be used for wet 

bulb lines with reasonable accuracy. cS is assumed constant over the temperature ranges 

encountered at 1.005 kJ/kg dry air · K and 1.88 kJ/kg water vapor. Therefore cS  is 

defined as follows: 

 

     Referring back to Figure 2.9, and rewriting Equation (2-98) in terms of the surface: 

 

     Combining Equations (2-82), (2-83), (2-88), (2-94), (2-96), and (2-108): 

 

where  is the rate of drying in the constant drying period. This period occurs when 

there is a sufficient amount of water on the surface of the solid. Equation (2-109) gives 

the surface temperature TS greater than the wet bulb temperature TW.  The above equation 

can be rearranged to facilitate trial and error solution as follows: 
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2.5.2 Moisture theoretical formulation in COMSOL  

     This theoretical formulation is outlined in COMSOL (2008). Moisture loss with heat 

transfer and convection from the dough/bread in this research is governed by Equation 

(2-111), which is Fick’s law of diffusion, and Equation (2-112), which is the heat 

equation. These two equations are shown below: 

 

where c is the concentration of the species, t is time in seconds, and D is the diffusion 

coefficient.  

 

where ρ is the density of the solid, Cp is the heat capacity of the solid, k is the thermal 

conductivity of the solid, and  T is the temperature of the solid. 

     The boundary conditions for the diffusion are shown as Equations (2-113) and (2-

114): 

 

where  is the vector normal to the boundary surface. This equation specifies that there is 

no mass transfer across the boundary. 
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where  is the mass transfer coefficient, and  is the outside air (bulk) moisture 

concentration. This boundary condition describes the fact that there is mass (water) being 

transferred across the boundary.  

     The boundary conditions for the heat equation are Equations (2-115) and (2-116): 

 

The above equation specifies that there is no heat transfer across the boundary; that is, the 

boundary is adiabatic. 

 

where  is the heat transfer coefficient,  is the oven air temperature,  is the 

moisture diffusion coefficient, and   is the latent heat of vaporization of the water. The 

above equation describes the fact that there is a heat flux out of the dough/bread due to a 

vaporization of water from the surface.  

     The diffusion coefficient D and the mass transfer coefficient  are calculated 

according to Equations (2-117) and (2-118):  

 

where  is the moisture conductivity, ρ is the density of the dough/bread, and  is the 

specific moisture capacity.  

 

where  is the mass transfer coefficient in mass units. 
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     The moisture loss without heat transfer and convection in the dough/bread is governed 

by Equation (2-111) only. The boundaries of everything but the dough bread are specified 

as having no flux, which is Equation (2-113). 
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CHAPTER III 

ANALYTICAL CALCULATIONS  

 

     In this chapter numerical values will be substituted into the equations of the theoretical 

formulations from Chapter II, yielding analytical results. First, the radiation calculations 

are performed, followed by the conduction calculations. The natural (free) and forced 

convection regimes relevant to this research are then calculated, followed by the 

analytical calculations of moisture loss from the dough/bread. 
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3.1 Radiation analytical calculations 

     In this section, numerical values will be used in the governing equations from Section 

2.1.1, yielding numerical results. 

3.1.1 Distantly-spaced heating elements with container 

 

     An analytical solution was completed that corresponds to the COMSOL model shown 

in Section 6.1.1. In order to effect an analytical solution that corresponds to the 

COMSOL solution, a geometry appropriate to the COMSOL solution had to be found; 

this geometry is shown in Figure 2.4. This geometry is used in the analytical solution 

below. 

     For this analysis it is assumed that the container surface (which will be called Surface 

2) is opaque, diffuse, and gray, and that the heater surface (which will be called Surface 

1) and surroundings (which will be called Surface 3) are blackbody surfaces.  

     First, the values to calculate the view factor between the two surfaces can be 

substituted into Equation (2-13).  The surfaces can be related to the COMSOL model 

(Section 6.1.1) as follows (see Figure 3.1): Surface i corresponds to Surface 2, which is 

the container surface; Surface j corresponds to Surface 1, which is the heating element 

surface.      

 

 

 

 

     The values in Equation (3-1) can be explained as follows (see Figure 6.1: Radiation 

effect on surface of container: COMSOL geometry): the numerator is w2 = 0.1 m, which 

is the width of the container; the denominator is L, which is the perpendicular distance 

between the surface of the container and the surface of the heating element.  L   is equal 
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to the vertical distance between the centers of the heating element and container, minus 

the vertical distance between the center and surface of the container, minus the vertical 

distance between the center and surface of the heating element.  

 

 

 

 

     The values in Equation (3-2) are determined similarly to Equation (3-1); only the 

numerator is different: the numerator is w1 = 1 m, which is the width of the heating 

element.  

     Substituting the values W1 and W2 into Equation (2-13): 

 

 

 

 

The above view factor  is necessary to calculate the radiation reaching Surface 2 (the 

container surface) from Surface 1 (the heating element surface). Later in this analytical 

section we will need the view factor  , which is the fraction of radiation leaving 

surface 2 (the container surface) that is intercepted by surface 3 (the surroundings). In 

order to calculate  , we use the view factor summation rule for surfaces exchanging 

radiation in an N-sided enclosure (Equation 2-14): 

 

For the current enclosure problem: 
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     In Equation (3-4),  and  have been previously explained;  is the fraction of 

radiation leaving surface 2 (the container surface) that is intercepted by surface 2 (the 

container surface). Since surface 2 is not convex,   = 0. Substituting the known view 

factors into Equation (3-4):   

 

 
 

 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Surfaces 1 (heating element), 2 (container), 3 (surroundings) 
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     Now we are ready to apply the foregoing analysis to find the amount of radiation that 

surface 2 (the container surface) intercepts. This will allow us to calculate the amount of 

energy the container material absorbs, which will then enable us to determine the 

temperature rise in the container material. The amount of energy the container material 

absorbs is given by applying Equation (2-12) to Surface 2 (the container surface): 

 

 

 

     In order to find J2, we must apply equation (2-21) to Surface 2: 

 

 

 

 

     The temperatures of Surface 1 (the heating element surface), Surface 2 (the container 

surface) and Surface 3 (the surroundings) are obtained from the COMSOL simulation 

specifications in Section 6.1.1. These temperatures are specified for Surfaces 1, 2, and 3 

as 533.15 K, 293.15 K (an initial value of room temperature, 20 °C), and 293.15 K (room 

temperature, 20 °C), respectively. The value of 533.15 K corresponds to value of 260 °C, 

which is equivalent to 500 °F (the temperature of a food baking oven in a retail 

establishment, from the author’s observation). Similarly, the area of Surface 2 (the only 

area needed at this point in the calculation) is obtained from Section 6.1.1: the x 

dimension of the container surface is 0.1 m, and a depth for the area of the surface had to 

be specified (chosen to be 1 meter). 
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        Applying Equation (2-9) to Surfaces 3 (the surroundings) and 1 (the heating 

element), assuming that each surface is a blackbody: 

 

 

 

 

 

 

    Applying Equation (2-9) to Surface 2 (the container): 

 

 

 

     Substituting values (here the emissivity is 0.1 from Section 6.1.1, and the dimensions 

are from Figure 6-1) into Equation (3-8): 

 

 

 

 

 

     Substituting values into Equation (3-7): 

 

 

 

 

    In Equation (3-14), since the equation originally assumed the energy to be leaving as 

positive, the negative sign indicates that the energy (31.1 W) is being absorbed by the 

container surface.  
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3.1.2 Closely-spaced heating elements with dough/bread 

     As a result of performing a COMSOL simulation that had the heating elements closer 

to the dough/bread (see Section 6.1.3), it is seen from the results that the sides of the 

dough/bread are being heated more. This created the belief that the view factor had 

significantly changed, therefore a new view factor had to be found. Ultimately, the goal is 

to find the heat transferred to the dough/bread from the heating elements; this analysis 

starts with Equation (2-21): 

 

 

     An appropriate enclosure must be applied to the geometry shown in Figure 6.4 in 

order to find the necessary view factors. This problem is divided into two enclosure 

problems: the first enclosure problem (see Figure 3.2) is used to find the radiation heat 

transfer between the sides of the food and the other surfaces, and the second enclosure 

problem (see Figure 3.3) is used to find the radiation heat transfer between the top and 

bottom of the food and the other surfaces.  For the first enclosure problem, Equation (2-

21) is as follows: 
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Figure 3.2: First enclosure problem of closely-spaced heating element simulation 

 

 

     The view factors that need to be found are F21, F23 and F24 (F22 =0 because Surface 2 

is not concave). The view factor  F23 can be found using Equation (2-13): 

 

 

     Specifying Equation (2-13) for F23: 
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     L  is the distance between Surface 2 and Surface 3, which is the distance from the end 

of the heating elements to the surface of the food, minus half the horizontal thickness of 

the food:   

 

     Following the same method of solution as Section 3.1.1:  

 

 

 

 

 

 

 

 

 

     F21 and F24 can be found from the following application of the summation rule: 

 

     This equation can be simplified by noticing that F21 = F24  (because the fraction of 

radiation from Surface 2 to Surface1 is the same as that from Surface 2 to Surface 4): 
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     Applying Equation (2-9) to Surface 2 (the food): 

 

 

 

 

     In order to find J2, we must apply equation (2-21) to Surface 2 (using inputs from 

Section 6.1.3): 

 

 



 

57 

 

 

 

 

 

 

 

 

     Substituting values (the emissivity is from Geankoplis, 2003) into Equation (2-12), 

with respect to Surface 2: 

 

 

 

 

 

 

     The minus sign in front of the 267.6 W signifies that the energy is being absorbed by 

the dough/bread. Since there are two such first enclosures, the total amount of energy 

being absorbed by the dough/bread (at all times) is: 

 

 

      Now the second enclosure problem must be analyzed to find the energy the 

dough/bread receives from that enclosure.  
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Figure 3.3: Second enclosure problem of closely-spaced heating element simulation 

 

     For the second enclosure problem, Equation (2-21) is as follows: 

 

 

 

     The view factors that need to be found are F21, F23. The view factor  F21 can be found 

using Equation (2-13):   
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     L is the distance from Surface 1 to Surface 2, which is the vertical distance between 

the centers of the heating element and dough/bread, minus the vertical distance between 

the center and surface of the dough/bread, minus the vertical distance between the center 

and surface of the heating element.  
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     F23 can be found from the following summation rule: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

61 

 

 

 

 

 

     The minus sign in front of the 369.3 W signifies that the energy is being absorbed by 

the food. Since there are two such second enclosures, the total amount of energy being 

absorbed by the food is: 

 

3.2 Conduction analytical calculations 

     The conduction analytical calculations will be performed in this section. 

3.2.1 Distantly-spaced heating elements with container 

Table 3.1: Properties of material, radiation effect on surface of container, analytical 

solution   

  

 

Thermal 

conductivity 

(W/(m·C)) 

Density 

(kg/m
3
) 

Heat Capacity 

at constant 

pressure 

(J/(kg·C)) 

52 7800 465 

 

 

 

     Table 3.1 shows the properties of the material (steel) used in the analytical solution of 

the radiation effect on the surface of container. These properties are obtained from 

Incropera and Dewitt (1990). 

     On the left side of Equation (2-41), the energy is enumerated by realizing that for 

3600 seconds (see Table 8.1) in the transient simulation, there are two heating elements 

(see Figure 6.1: Radiation effect on surface of container: COMSOL geometry) that are 
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heating the container material at the rate of 31.1 J/s per heating element. The container 

material has a volume (see Figure 6.1) of (0.1 m height)(0.1 m width)(1m depth). The 1 

m depth is arbitrarily chosen because the COMSOL geometry is two dimensional, and it 

is assumed that whatever happens in those two dimensions, happens at any depth. The 

right side of Equation (2-41) is enumerated by multiplying the density of the container 

with the specific heat and temperature difference. Substituting the appropriate values into 

Equation (2-41):  

 

 

 

 

 

 

 

 

     Equation (3-52) will be compared with the results of the corresponding COMSOL 

simulation in Section 8.1.1. 

3.2.2 Closely-spaced heating elements with dough/bread 

     Substituting values of energy from Section 3.1.2, geometric dimensions from Figure 

6.4, time from Section 8.1.3, and thermal properties from Table 6.3 into Equation (2-41): 
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     Equation (3-54) will be compared with the results of the two-dimensional COMSOL 

simulation in Section 8.1.3, the results of the three-dimensional COMSOL simulations in 

Sections 9.1 and 9.2, and the MATLAB simulation in Section 10.3.1. 

3.2.3 Calculations for MATLAB 

     The equations in this section are based upon the equations in Section 2.2.3, with the 

exception that radiation replaces convection. These calculations are outlined in Holman 

(1990).  

     The dough/bread is divided into five nodes as shown in Figure 3.4. The width of the 

dough/bread is 0.10 m (from Figure 6.4), and a heating element (radiation source) is at 

533.15 K (as in Section 3.1.2). The oven temperature is calculated from the average of 

heating element temperature and room temperature.  

                                                                                             Radiation source at 533.15 K 

 

 

 

 

 

 

 

 

                                          Oven at T∞ = 413.15 K (from (533.15 K +293.15 K)/2)  

 

 

Figure 3.4: Nodal system 

 

qrad 

1 2 3 4 5 

0.10 m 

0.025 m 

(typ.) 
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     For node 1 the transient energy equation is 

 

 

 

 

 

     Similarly, for node 5   

 

 

 

 

     Equations (3-55) and (3-56) may be written as  

 

 

 

 

 

 

 

 

 

 

 

 

 

where C1 = C5 = ρc∆x/2. C1 and C5 are found as follows (using dough/bread property 

values from Table 6.3): 

 

 

 

 

 

     For the other three nodes the expressions are: 
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where C2 = C3 = C4 = 2C1 =2C5  =ρc∆x  (due to the fact that each interior node has a heat 

capacity twice that of each exterior node (Holman, 1990))  . C2 , C3 and C4 are found as 

follows: 

 

 

 

     To determine the transient response, a suitable value of  is chosen, and one 

“marches” through the calculations. The stability criterion is chosen so that the last term 

in each equation is not negative. For (3-60), (3-61), and (3-62), the maximum allowable 

time increment is (using dough/bread properties from Table 6.3): 

 

 

     For Equation (3-58) the worst (most restrictive) case is at the start when 

. Therefore: 
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     For node 1 (Equation (3-57)) the most restrictive condition occurs when 

 ; 

therefore: 

 
 

 

 

 
 

     Node 5 is therefore the most restrictive and ∆τ must be chosen so that  ∆τ < 457.82 s. 

∆τ is chosen to be 10 s. 

     The equations and input values in this section were directly coded into a MATLAB 

program, which is shown in Appendix D.  

3.3 Convection analytical calculations 

     The natural and forced convection analytical calculations will be performed in this 

section. 

W/(m
2
·K

4
) 

K K K K 
W/(m·K) 

m 

kg/(s
2
·K) 



 

67 

 

3.3.1 Natural convection analytical calculations 

     Substituting the appropriate values from Table 6.9, Figure 6.11, and Figure 6.12 into 

Equations (2-67), (2-68), and (2-69): 

 

 

 

 

 

 

     From Table A.4 of Incropera and Dewitt (1990), ν ,  α 

.  

     Substituting the above values into Equation (2-66): 

 

 

 

     This flow is considered laminar (Incropera & DeWitt, 1990). It is then appropriate to 

use the laminar flow application in the corresponding natural convection COMSOL 

simulations. 
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3.3.2 Forced convection analytical calculations 

     Using values from Figures 6.14 and 6.15:  

 

 

 

 

 

     Substituting the values from Section 6.2.3 into Equation (2-76) yields: 

 

     This Reynolds number is greater than 2300, but the forced convection COMSOL 

model was created using the laminar flow application. The results show laminar flow, so 

the assumption of non-turbulent flow is valid. 

3.4 Moisture analytical calculations 

     The values relevant to this research will be substituted into the equations of the 

corresponding theoretical formulation (Section 2.5.1). The goal here is to find the drying 

rate , which is the amount of water in kg that has evaporated from the dough/bread per 

m
2
 per unit time (chosen to be one hour). The starting point is Equation (2-109), and this 

equation can be solved by using Equation (2-110). At this point the values for Equation 

(2-110) will be found. 
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     H is the humidity, and H = 0.050 kg H2O / kg dry air (from Baik et al, 2000 a). T = 

120 °C because the range of the available data on the psychrometric chart used restricted 

T to no higher than this value.  

     HS is the saturation humidity and involves knowing or guessing TS , which is the 

surface temperature. Since TS is not known at this time, it must be guessed. At this time, a 

value for the surface temperature of the solid will be estimated (the actual psychrometric 

chart, not shown, is used from Geankoplis, 2003). TS will be above the wet bulb 

temperature TW. TW is determined as follows (see Figure 3.4 for a corresponding, but not 

the current, analysis): first, from the temperature of the air-water vapor stream, which is 

assumed to be 120°C, the humidity chart is followed vertically until one reaches the H = 

0.05 kg water vapor/kg dry air. Then, one follows the diagonal line until hitting the 100% 

percentage humidity curve. Then one follows the vertical line down until hitting the 

temperature horizontal line again. This is the dew point temperature TW, which is about 

49 degrees Celsius. Since TS will be above wet bulb temperature according to Equation 

(2-105), estimate  TS  to be 55°C. 

     To find HS, use the humidity chart (the actual psychrometric chart, not shown, is  used 

from Geankoplis, 2003) , follow (see Figure 3.5 for a corresponding, but not the current, 

analysis) the  TS temperature of 55 °C vertically to 100 % humidity, then follow 

horizontally until hit humidity on vertical axis. this is HS, = 0.115 kg water vapor/kg dry 

air. 
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Figure 3.5 Psychrometric chart (from Ogawa, 2007) 

 

 

     λS  is the latent heat corresponding to the surface temperature TS  . From the guessed  

TS  of 55° C, find  from the steam tables of Geankoplis (2003). The  is calculated as 

2600.9 kJ/kg -  230.20 kJ/kg= 2370.7 kJ/kg. 

 

Table 3.2: Excerpt of steam table (from Geankoplis, 2003)  

Temperature (°C) Vapor Pressure (kPa) Enthalpy 

(kJ/kg) 

 

55 

 

15.758  

Liquid Sat’d 

Vapor 

230.23 2600.9 

 

T 

Tw 

H 

HS 

adia. 

sat. 

line 
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     The ratio  is approximately: 

 

 

     UK is found by the following equation: 

 

     hC is the convective heat transfer coefficient and is determined from the following 

equation: 

 

where:  

 

where v is the velocity of the air flow and is  0.61  m/s. This value is obtained from the 

observation that air velocities in similar tunnel ovens are less than 0.61 m/s (Baik et al, 

2000 a), but the equations in Geankoplis (2003) are not valid below 0.61 m/s. 

 

where 
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     The remaining values for Equation (2-95) are found (if possible) from corresponding 

models or simulations. Use   kM =    52 (W/m C) for steel, as in Table 3.1; use  as 2 

mm, which corresponds to an appropriate thickness of a container (Geankoplis, 2003), 

use  = 0.10 m, from Figure 6.4; and use  =  from Table 6.3. 

 

 

 

 

 

     In order to find hR, a value for TR is specified as 260 °C+273.15 K = 533.15 K (as in 

Section 3.1.2), the emissivity of the dough bread is 0.9 (also from Section 3.1.2), and the 



 

73 

 

guessed temperature of the surface is translated into Kelvin; substituting in Equation (2-

93): 

 

 

 

 

 

 

     Substituting the acquired values into Equation (2-105):  

 

 

                                                                                                                          

     This gives a  =156.2 °C; substituting into Equation (2-109) to obtain the drying rate  

: 
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     Given the calculated   = 156.2 °C, then the initial guess for  = 55°C was too low 

an estimate; say new guess for  = 90 °C, use this new    to find the new HS. Use the 

new  to find the new λS from steam tables as 2660.1 kJ/kg  – 376.92 kJ/kg =  2283.18  

kJ/kg ; continue as shown in the previous analysis. Then substitute the new acquired 

values back into Equation (2-105) to get a new value for , then into Equation (2-104) to 

get a new . This process is continued until the desired accuracy is obtained. 

     In order to compare the calculated  = 2.115 kg/(hr·m
2
) with  literature values, the 

compared values must be dimensionally consistent; the values will be chosen to have the 

units of (kg water lost)/hour, which will mean the kilograms of water lost by a loaf of 

dough/bread per hour. First converting the calculated value to (kg water lost)/hour 

requires knowing the surface area of the top of the dough/bread, which is determined to 
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be (0.1 m)(0.2 m). The 0.1 m is obtained from Figure 6.1; the 0.2 m is obtained from an 

approximation of the length of an ordinary small loaf of store-bought bread.  

 

 

 

     From Baik et al (2000 b), for  bread baking in an electric batch oven at 200 degrees C, 

the drying rate ranged from 2.78 ×10
-5

 kg water /(kg dry solid · second) to  2.36 ×10 
-4

  kg 

water / (kg dry solid · second). Converting these literature values to kg water lost/hour 

requires the following steps, shown below.  

      

 

 

 

 

     To convert the results of Equations (3-93) and (3-94) to kg water lost/hour, it is 

necessary to know how many kilograms of dry solid are in a loaf of bread. The water 

content in dough/bread is approximately 40 % by weight (Czuchajowska et al, 1988, 

Thorvaldsson & Janestad, 1999). This means that for 1 kg of dough/bread, 0.4 kg of it 
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will be water; therefore 0.6 kg is dry solid. Using a value of 0.5 kg for an ordinary loaf of 

bread: 0.2 kg is water, and 0.3 kg is dry solid.  

 

 

 

 

 

     These analytical and literature values will be compared with the results of the 

COMSOL and MATLAB simulations of Sections 8.3 and 10.3.3, respectively. 
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CHAPTER IV 

 

DESCRIPTION OF CLEVELAND STATE UNIVERSITY AND OHIO 

SUPERCOMPUTER CENTER COMPUTING RESOURCES  

 

     This work was effectively performed at Cleveland State University, using a Dell 

Vostro 410 Central Processing Unit, and a ViewSonic Profession Series P810 Monitor. 

The Dell Vostro 410 has an Intel ® Core ™ 2 Quad CPU Q 6600 @ 2.40 GHz, with 3.00 

GB of RAM. 

     The Ohio Supercomputer Center (OSC) provides supercomputing resources to a 

diverse state and national community, including education, academic research, industry, 

and state government (Ohio Supercomputer Center, 2011).     
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4.1 Preparation of computer for communication with OSC server 

     The software COMSOL is accessed via an internet-enabled personal computer; if the 

personal computer is Windows-based, then certain software must be downloaded in order 

to communicate with the OSC computer, which is Linux-based (Ohio Supercomputer 

Center, 2010 a). 

4.2 Parallel processing 

     Figure 4.2 shows a batch script that is required to run a simulation in parallel on the 

OSC computer. This batch script is created by typing “emacs 

December_15_2011_3D_radiation_on_dough_bread_close_heating_elements_defined_si

de_boundaries.job “ at the “$” prompt. “emacs” is a text editor; an explanation of the 

information contained in Figure 4.2 can be found in Larson (2010). 

     Figure 4.3 shows the text of a submission of a batch job to the OSC computer. 

Information about this procedure can be found in Ohio Supercomputer Center (2012 a). 

     Figure 4.4 shows monitoring the status of the submitted job through the command 

“qstat”. Information about this command can be found in Ohio Supercomputer Center 

(2012 b). 

     Figure 4.5 shows an email stating the job has completed. Information about this type 

of email can be found in Ohio Supercomputer Center (2010 b). 
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#PBS -N 

December_15_2011_3D_radiation_on_dough_bread_close_heating_

elements_defined_side_boundaries 

#PBS -l walltime=00:15:00 

#PBS -l nodes=2:ppn=1 

#PBS -j oe 

#PBS -m b 

#PBS -m e 

# The following lines set up the COMSOL environment 

module load comsol40a 

# Move to the directory where the job was submitted 

cd $PBS_WORKDIR 

cp    

December_15_2011_3D_radiation_on_dough_bread_close_heating_

elements_defined_side_boundaries.mph $TMPDIR 

cd $TMPDIR 

# Run COMSOL 

comsol batch -inputfile  

December_15_2011_3D_radiation_on_dough_bread_close_heating_

elements_defined_side_boundaries.mph 

-outputfile  

December_15_2011_3D_radiation_on_dough_bread_close_heating_

elements_defined_side_boundaries_results.mph 

# 

#Now, copy data back once the simulation has completed 

pbsdcp * $PBS_O_WORKDIR 

 

Figure 4.1: Batch script for parallel processing  
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 -bash-3.2$ cd /nfs/05/cls0140/Fall_2011_COMSOL_files 

 

 -bash-3.2$ qsub         
December_15_2011_3D_radiation_on_dough_bread_close_heating_elements_def
ined_side_boundaries.job 

6752562.opt-batch.osc.edu 

 

Figure 4.2: Submit of batch job to OSC computer 

 

 -bash-3.2$ 

 -bash-3.2$: qstat: 

 . 

 . 

 6752562.opt-batch         … de_boundaries cls0140                0 R parallel 

              

Figure 4.3: Status of batch job 

 

 

PBS Job Id: 6752562.opt-batch.osc.edu 

Job Name:       

December_15_2011_3D_radiation_on_dough_bread_close_heating_elements_def

ined_side_boundaries 

Exec host:  opt2342/0+opt2041/0 

Execution terminated 

Exit_status=271 

resources_used.cput=01:15:27 

resources_used.mem=5345240kb 

resources_used.vmem=6942740kb 

resources_used.walltime=00:15:09 

 

 

 

 

  Figure 4.4: Email sent to user upon completion of simulation
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4.3 Transfer of files between local computer and OSC computer 

     In this research work, a software called WinSCP is employed to transfer files between 

the personal local computer and the OSC computer. Information about this software can 

be found in Tatum (2011).  
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CHAPTER V 

DESCRIPTION OF COMSOL CODE 

 

     In this chapter, the COMSOL code relevant to this research will be briefly described. 

The description is from COMSOL (2010 b,c). The purpose of this chapter is to 

familiarize the reader with the COMSOL software, so that the COMSOL models and 

simulations in later chapters will be more readily understandable.  
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5.1 Geometry 

     Usually the space dimension (0-D, 1-D, 2-D, or 3-D) is specified first in the building 

of a COMSOL model, and the geometry is specified after the physics and study type 

(stationary, time dependent, etc) are chosen. 

5.2 Stationary or transient analysis 

     In this research, the stationary and transient study types are used for the oven and 

container/dough/bread simulations, respectively. 

5.3 Physics 

     The physics used in the COMSOL models and simulations will be discussed in this 

section. 

5.3.1 Radiation     

     In order to model radiation exchange between surfaces it is necessary to use 

COMSOL’s Heat Transfer Module, which is an add-on to the COMSOL Multiphysics 

software.  

5.3.2 Heat Transfer in Solids  

     The Heat Transfer in Solids node is a subnode of the Heat Transfer interface, and this 

models the conduction of heat within the container and dough/bread in this research. 

5.3.3 Heat Transfer in Fluids 

     The Heat Transfer in Fluids node is a subnode of the Heat Transfer interface, and this 

models the heat transfer in the nondimensional natural convection model in this research.   

5.3.4 Non-Isothermal Flow 

     The Non-Isothermal Flow Interface automatically couples the heat transfer and 

laminar flow in the dimensional natural convection model in this research. 
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5.3.5 Laminar Flow 

     The Laminar Flow interface calculates the fluid flow in the forced convection 

simulation in this research. 

5.3.6 Mass transfer 

     The models in this research that involve mass transfer require the Transport of Diluted 

Species interface (a Chemical Species Transport interface) in COMSOL’s base license. 

5.4 Solving 

     COMSOL uses the finite element method to solve the models created by the user. This 

method is discussed next. 

5.4.1 Finite element method 

     This section describes how the finite element method approximates a partial 

differential equation problem with a problem that has a finite number of unknowns, 

which is a discretization of the original problem. 

     The starting point in the finite element method is the partition of the geometry into 

mesh elements, which are small units of a simple shape. Once the mesh has been created, 

approximations to the dependent variables can be introduced. For this discussion, one can 

start with the case of a single dependent variable u. The idea is to approximate u with a 

function that one can describe with a finite number of parameters called degrees of 

freedom. Inserting this approximation into the weak form of the equation generates a 

system of equations for the degrees of freedom. 

     One can start with a simple example: linear elements in one dimension (1-D). Assume 

that the mesh consists of only two mesh intervals: 0 < x < 1 and 1< x < 2. Linear elements 

means that on each mesh interval the continuous function is linear (affine); therefore, the 
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only fact one needs to know in order to characterize u uniquely is its values at the node 

points x1 = 0, x2 = 1, x3 = 2. Identify these as U1 = u (0), U2 = u (1), U3 = u (2); these are 

the degrees of freedom. 

     One can then write 

 

where φi (x) are certain piecewise linear functions. Specifically, φi (x) is the function that 

is linear on each mesh interval, and equals 1 at the i 
th

 node point, and equals 0 at the 

other node points.  For example: 

 

 

 

 

 

The φi (x) are called the basis functions. The set of functions u(x) is a linear function 

space called the finite element space. 

     The preceding examples are special cases of the Lagrange element. Consider a 

positive integer k, the order of the Lagrange element. The functions u in this finite 

element space are piecewise polynomials of degree k ; in other words, on each mesh 

element u  is a polynomial of degree k. To describe such a function it is sufficient to give 

its values in the Lagrange points of order k. These are the points whose local (element) 

coordinates are integer multiples of 1/k. For a triangular mesh in 2-D with k = 2, this 

means that there are node points at the corners and side midpoints of all mesh triangles. 

For each of these node points pi, there exists a degree of freedom Ui  = u(pi) and a basis 
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function φi . The restriction of the basis function φi  to a mesh element is a polynomial of 

degree (at most) k in the local coordinates such that φi = 1 at node i, and φi = 0 at all other 

nodes. Therefore the basis functions are continuous and: 

 

 

     The next step in the finite element method is the discretization of the partial 

differential equation that describes the physics of the COMSOL simulation; a 2-D 

stationary problem will be considered for simplicity. The starting point is the weak 

formulation of the problem. First is the discretization of the constraints: 

 

 

 

where R
(n)

 is the Euclidean n-space, and Ω, B, and P are the are domain, boundary, and 

point. The weak equation is then discretized. The weak equation is the differential 

equation (such as the Navier-Stokes equation) that is rewritten without derivatives of the 

unknown function, usually by multiplying by an arbitrary “test function” (here the basis 

function), and then integrating (Amit, 2012). A discretization of the stationary problem is 

then: 
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where L is the residual vector, U is the solution vector, Λ is the Lagrange multiplier 

vector, NF is the constraint force Jacobian matrix, and M is the constraint residual; Λ and 

U are then solved for. 

 

5.5 Postprocessing  

     After the solver has arrived at solution to the problem, the results are then visualized 

through Surface plots (showing temperature distributions, for example) and Arrow 

Surface plots (showing velocity distributions, for example). 

 

5.5.1 Line Integration, Surface integration, Volume Integration 

     The different types of Integrations are used in this research to find an average value 

over 1-D (Line), 2-D (Surface) and 3-D (Volume) domains. In this research, the 

Integrations are used to find average temperatures, concentrations, and velocity 

magnitudes. 

5.5.2 Cut Point 2D 

     The Cut Point 2D is a subnode that is added under the Data Sets node when 

information is needed at a point in the geometry; in this research, the temperature at the 

center of the dough/bread as a function of time is required.  

5.5.3 Cut Line 2D  

     The Cut Line 2D is a subnode that is added under the Data Sets node when 

information is needed along an arbitrary line in the geometry; in this research, the 

temperatures along a central vertical line through the container material and dough/bread 

are needed.  
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CHAPTER VI 

COMSOL MODELS, TWO-DIMENSIONAL 

 

     This chapter presents the two-dimensional COMSOL models created in this research. 

 

6.1 Radiation COMSOL models 

     One of the first oven and food models was derived from a model that involved the 

effect of radiation on a block of steel. This block of steel is referred to as the container 

material. Researchers often use a model material (steel instead of dough/bread, in this 

research) to gain confidence in their use of CFD packages (Denys et al, 2007). Later, the 

idea of modeling the food within the container was abandoned, keeping only the 

modeling of the food.  

6.1.1 Distantly-spaced heating elements, steel container 

      A COMSOL simulation was performed that corresponds to the analytical calculations 

in Section 3.1.1. Figure 6.1 shows the COMSOL geometry of this model. 
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Figure 6.1: Radiation effect on surface of container material, COMSOL geometry 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 m (typ.) 

Container height: 

0.1 m; width: 0.1 

m 

Center of container to 

edge of heating element: 

0.5 m (typ.) 

Center of heating 

element to center of 

container:  0.5 m 

(typ.)  

Heating element 

height (thickness): 

0.01 m (typ.) 
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Figure 6.2: Radiation effect on surface of container, COMSOL domains 

 

     Figure 6.2 shows the COMSOL domains used in the model of the radiation effect on 

the surface of the container. The mesh used is COMSOL’s initial mesh (not refined). The 

base COMSOL Multiphysics license and Heat Transfer Module are used in this model. 

 

 

 

 

 

Domain 2 

Domain 3 

Domain 1 
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Table 6.1: Domain material properties and initial conditions, radiation effect on surface 

of container, COMSOL model 

 

 

Thermal 

conductivity 

(W/(m·C)) 

Density 

(kg/m
3
) 

Heat 

Capacity at 

constant 

pressure 

(J/(kg·C)) 

Initial 

Temperature 

 

(K) 

Initial 

Surface 

Radiosity 

(default) 

(W/m
2
) 

52 7800 465 293.15 0 

 

 

 

 

 

     Domains 1, 2, and 3 have the properties and initial conditions listed in the Table 6.1; 

 

the properties are from Table 3.1, and the initial temperature is room temperature. 
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Figure 6.3: Radiation effect on surface of container, COMSOL boundary conditions 

 

     Figure 6.3 shows the boundary conditions used in the COMSOL model of the 

radiation effect on the surface of the container. The boundaries 1, 2, 3, 4, 5, 6, 11, and 12 

are all fixed at a temperature of 533.15 K. The emissivity of steel can range from 0.1 

(polished sheet) to 0.8 (sheet with rough oxide layer) (Siegel & Howell, 1981), and these 

two emissivities were individually modeled. 

Boundary 6 

Boundary 12 

Boundary 5 

Boundary 4 

Boundary 9 

Boundary 10 

Boundary 8 

Boundary 7 

Boundary 3 

Boundary 11 

Boundary 2 

Boundary 1 
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6.1.2 Distantly-spaced heating elements, food with constant properties 

     The first attempt at modeling food within an oven considered taking an average each 

of the following thermal properties: conductivity, specific heat, and density. Using the 

data in Table 1.1, these averages are as follows: average thermal conductivity is 0.1133 

W m
-1 

°C
-1

, average specific heat is 1941 (J kg
-1

 °C  
-1

), average density is 380 (kg/m
3
). 

The COMSOL Multiphysics license and Heat Transfer Module are employed in this 

model.  

 

Table 6.2: Domains 1 and 2 material properties and initial conditions, radiation effect on 

dough/bread, COMSOL model 

 

 

Thermal 

conductivity 

(W/(m·C)) 

Density 

(kg/m
3
) 

Heat 

Capacity at 

constant 

pressure 

(J/(kg·C)) 

Initial 

Temperature 

 

(K) 

Initial 

Surface 

Radiosity 

(default) 

(W/m
2
) 

52 7800 465 293.15 0 

 

 

     Domains 1 and 2 have the properties (from Table 3.1) and initial conditions listed in 

Table 6.2. These domains have the same geometry and location as shown in Figures 6.1 

and 6.2. The default mesh is used for these domains.  

Table 6.3: Domain 3 material properties and initial conditions, radiation effect 

on dough/bread, COMSOL model 

Thermal 

conductivity 

(W/(m·C)) 

Density 

(kg/m
3
) 

Heat 

Capacity at 

constant 

pressure 

(J/(kg·C)) 

Initial 

Temperature 

 

(K) 

Initial 

Surface 

Radiosity 

(default) 

(W/m
2
) 

0.1133 380 1941 293.15 0 
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     Domain 3 has the properties and initial conditions listed in Table 6.4. This domain has 

the same geometry and location as shown in Figures 6.1 and 6.2. This domain mesh is 

refined twice (using COMSOL’s default mesh refinement parameters). 

 

Table 6.4 Boundary conditions, radiation effect on dough/bread, COMSOL model  

 

Emissivity of  

Boundaries 

1,2,3,4,5,11, 

12 

Emissivity of  

Boundaries 

7,8,9,10 

Temperature 

of 

Boundaries 

1,2,3,4,5,11, 

12 

1 0.9 533.15 K 

 

     The boundary conditions for the Radiation Effect on Dough/Bread COMSOL model 

are shown in Table 6.4; the boundaries have the same locations as shown in Figure 6.3. 

The boundary parameters correspond to those given in Section 3.1.2. When the model 

was changed to that of 240 seconds (instead of 3600 seconds), only the heating element 

boundaries facing the dough/bread had an emissivity of 1; the rest of the heating element 

boundaries were insulated. 
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6.1.3 Closely-spaced heating elements, food with constant properties 

 

Figure 6.4: Radiation effect on dough/bread for closely-spaced heating elements, 

COMSOL geometry 

 

     Figure 6.4 shows the COMSOL geometry for the radiation effect on the dough/bread 

for the closely-spaced heating elements. All of the boundary conditions, domain 

Distance from end of 

heating element to 

side of dough/bread 

= 0.45 m (typ.) 

 

Heating element 

height (thickness): 

0.01 m (typ.) 

Center of heating 

element to center of 

container:  0.14 m 

(typ.)  
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properties, initial conditions, and the rest of the geometry are the same as in Section 

6.1.2. This model used the COMSOL Multiphysics license and Heat Transfer Module.  

 

Figure 6.5: Radiation effect on dough/bread for closely-spaced heating elements, 

COMSOL mesh 

 

     Figure 6.5 shows the COMSOL mesh for the radiation effect on the dough/bread for 

the closely-spaced heating elements. The mesh for the dough/bread was refined twice. 
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Figure 6.6 Radiation effect on dough/bread, with defined side boundaries geometry 

     Figure 6.6 shows the geometry for the radiation effect on dough/bread with defined 

side boundaries model. This geometry is the same as Figure 6.4 except for the addition of 

the rectangles associated with Domains 1 and 5; these two domains have widths and 

heights of  0.01m and 0.26 m, respectively, and each domain is horizontally positioned 

0.505 m to the left and right, respectively, from (0,0). This model uses COMSOL’s 

Multiphysics license and Heat Transfer Module. Domains 1, 2, 3, and 5 use the default 

mesh defined by COMSOL; Domain 4’s mesh is refined twice. Domains 1, 2, 3, and 5 

have the specifications of Table 6.2; Domain 4 has the specifications of Table 6.3. The 

boundaries of Domains 1 and 5 are specified as having a constant temperature of 293.15 

Domain 4 Domain 3 

Domain 5 

Domain 2 

Domain 1 
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K (room temperature); the boundaries of Domains 2 and 3 are 533.15 K. The emissivities 

of the boundaries of Domains 1, 2, 3, and 5 are 1. 

     Lastly, a model that involved the heating elements impinging radiation upon 

dough/bread of various heights was effected. This model is the same as in Section 6.1.2 

(without defined side boundaries, and at 240 seconds), except the dough/bread height is 

specified as 2 inches, 4 inches, then 6 inches. 

6.1.4 Distantly-spaced heating elements, food with varying properties 

     The next step is to model the food with properties that vary with temperature (but not 

moisture). This model is similar to Zhou and Therdai (2007), who modeled the 

dough/bread with only temperature-dependent properties; their justification is that the 

moisture content difference in dough versus crumb is not significant, and that bread is 

significantly more crumb than crust. They therefore did not model the dough/bread as 

having moisture-dependent properties.  First, a curve is fitted to the density data in Table 

1.1 via quadratic regression to yield the Equation (6-1): 

 

 

 

     Figure 6.7 shows a graph of the dough/bread density versus temperature, along with a 

polynomial fitted to the data. 
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Figure 6.7: Dough/bread density versus temperature 

 

 

 

     This model (and the other models involving temperature-varying properties) uses the 

COMSOL Multiphysics License in conjunction with the Heat Transfer Module. All of the 

models involving temperature-varying properties use the default mesh for all domains. 

The geometry for the models are the same as in Figure 6.1, the boundaries have the same 

locations as shown in Figure 6.3, and the boundary specifications are the same as in 

Table 6.4. The domain numbering is the same as in Figure 6.2. Table 6.5 shows the 

Domains 1 and 2 (both domains of the heating elements) material properties (from Table 

y = - 0.647 x + 587
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3.1) and initial conditions for all of the models having dough/bread temperature-varying 

properties. The initial conditions were chosen to match predicted final values in order to 

promote convergence; The initial temperature is from Section 3.1.1, and the initial 

surface radiosity is from Equation (3-10). Table 6.6 shows the Domain 3 (dough/bread 

domain) material properties (from Table 6.3, except density) and initial conditions for the 

temperature-varying density model. The initial temperature is room temperature, and the 

initial surface radiosity is chosen to match the predicted final value to promote 

convergence; this value is calculated from Appendix C. 

Table 6.5: Domains 1 and 2 material properties and initial conditions, radiation effect on 

dough/bread with temperature-varying density, COMSOL model 

 

 

Thermal 

conductivity 

(W/(m·C)) 

Density 

(kg/m
3
) 

Heat 

Capacity at 

constant 

pressure 

(J/(kg·C)) 

Initial 

Temperature 

 

(K) 

Initial 

Surface 

Radiosity 

(W/m
2
) 

52 7800 465 533.15 4581.2 

 

 

 

 

Table 6.6: Domain 3 material properties and initial conditions, radiation effect 

on dough/bread with temperature-varying density, COMSOL model 

 

 

Thermal 

conductivity 

(W/(m·C)) 

Density 

(kg/m
3
) 

Heat 

Capacity at 

constant 

pressure 

(J/(kg·C)) 

Initial 

Temperature 

 

(K) 

Initial 

Surface 

Radiosity 

(W/m
2
) 

0.1133 Equation (6-1) 1941 293.15 729.3 
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     Next, a curve is fitted to the specific heat data in Table 1.1 via quadratic regression to 

yield Equation (6-2): 

 

 

     Figure 6.8 shows a graph of the dough/bread specific heat versus temperature, along 

with a polynomial fitted to the data. 
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Figure 6.8: Dough/bread specific heat versus temperature 
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     Table 6.7 displays the Domain 3 (dough/bread domain) material properties and initial 

conditions for the temperature-varying specific heat model. This table is filled similar to 

the Table 6.6. 

 

Table 6.7: Domain 3 material properties and initial conditions, radiation effect 

on dough/bread with temperature-varying specific heat, COMSOL model 

 

 

 

Thermal 

conductivity 

(W/(m·C)) 

Density 

(kg/m
3
) 

Heat 

Capacity at 

constant 

pressure 

(J/(kg·C)) 

Initial 

Temperature 

 

(K) 

Initial 

Surface 

Radiosity 

(W/m
2
) 

0.1133 380 Equation 

(6-2) 

293.15 729.3 

 

 

     The committee stated that it would be appropriate to model the dough/bread as having 

a thermal conductivity that varied with temperature. A member of the committee believed 

that thermal conductivity would decrease during the baking process, due to the fact that 

there is loss of water from the dough. This is believed to be at least partly the case.  

     A graph was made of the dough/bread thermal conductivity using Table 1.1; a curve 

was fitted to the graph, thereby giving an equation for thermal conductivity as a function 

of temperature. This equation was incorporated into the material properties of the 

dough/bread COMSOL model.  
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     Fitting a curve to the data for conductivity yields the Equation (6-3): 

 

 

     Figure 6.9 shows a graph of dough/bread conductivity versus temperature, along with 

a polynomial fitted to the data. 

 

 

 

 

 

Figure 6.9: Dough/bread thermal conductivity versus temperature  
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     At this point, a COMSOL model was completed in which dough/bread thermal 

conductivity varies with temperature. Domain 3 has the properties and initial conditions 

listed in Table 6.8; this table is created similar to Table 6.6. 

 

 

 

 

Table 6.8: Domain 3 material properties and initial conditions, radiation effect 

on dough/bread with temperature-varying thermal conductivity, COMSOL model 

 

Thermal 

conductivity 

(W/(m·C)) 

Density 

(kg/m
3
) 

Heat 

Capacity at 

constant 

pressure 

(J/(kg·C)) 

Initial 

Temperature 

 

(K) 

Initial 

Surface 

Radiosity 

(W/m
2
) 

Equation (6-3) 380 1941 293.15 729.3 

 

 

 

6.2 Convection COMSOL model 

     According to Mirade et al (2004), for biscuit baking in band ovens, the total heat 

transfer is 37 % by convection. Both free (natural) and forced convection are examined in 

the research. 

 

6.2.1 Dimensional free (natural) convection 

     Figure 6.10 shows the COMSOL geometry of a room, and an oven with heating 

elements. This model used the COMSOL Multiphysics license, and the Heat Transfer 

Module; the initial COMSOL mesh (unrefined) was employed. 
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Figure 6.10: Oven with heating elements inside room, COMSOL model 
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heating 
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Figure 6.11: Oven with heating elements inside room, COMSOL geometry 

 

 

     Figure 6.11 shows the geometry of the room, oven, and heating elements. The 

horizontal center point of all the rectangles shown is at x= 0. 

 

 

 

2 m 

 

1 m 

1.5 m (typ.) 0.01 

m 

(typ.) 

0.8 m (typ.) 

centerline 0.3 m (typ.) 

centerline 0.1 m (typ.) 
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Figure 6.12: Oven with heating elements inside room, COMSOL boundary conditions 

and domain 

 

 

     Figure 6.12 shows the boundary conditions and domain of the room, and oven with 

heating elements. 

Domain 1 

All 8 boundaries (4 

times 2 rectangles) at 

533.15 K 

All 4 boundaries of 

this rectangle are 

open 
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Table 6.9: Domain 1 material properties and initial condition, room and oven with 

heating elements, COMSOL model   

 

 

Thermal 

conductivity 

(W/(m·C)) 

Density 

(kg/m
3
) 

Heat 

Capacity at 

constant 

pressure 

(J/(kg·C)) 

Initial 

Temperature 

 

(K) 

Ratio of 

Specific 

Heats 

Dynamic 

Viscosity 

(Pa·s) 

27e-03 Initially 1.21, 

then rho 

1006 293.15 1.4 1.81E-05 

 

 

 

 

 

 

     Table 6.9 shows the properties and initial condition (room temperature) of the fluid 

used in the COMSOL simulation of room and oven with heating elements. The thermal 

and physical properties are from Incropera and Dewitt (1990), and the fluid property is 

from White (1986). The nonisothermal flow application is employed. 

 

6.2.2 Nondimensional free (natural) convection  

     This model’s oven and room definitions are as shown in Figure 6.10. The geometry of 

the nondimensional model are also the same as the dimensional model, and are shown in 

Figure 6.11. This model uses COMSOL’s Multiphysics license, with a default mesh. 



 

110 

 

 

Figure 6.13: Nondimensional, oven with heating elements inside room, COMSOL 

boundary conditions and domain 

 

 

 

Table 6.10: Domain 1 laminar flow material properties and initial condition, room and 

oven with heating elements, nondimensional COMSOL model   

 

 

Density 

(kg/m
3
) 

Dynamic 

Viscosity 

(Pa·s) 

Initial 

Velocity 

field 

Initial 

Pressure 

(no units) 

Rayleigh 

number 

 

1 

 

1 

 

0 

 

0 

1, 1E1, 

1E2, 1E3, 

1E4,1E5 

 

Domain 1 

All 8 boundaries (4 

times 2 rectangles) at 

Th =1 (no units) 

All 8 boundaries (4 

times 2 rectangles) at 

Tc =0 (no units) All 4 boundaries of 

this rectangle are 

“closed” 
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     Table 6.10 shows the domain 1 laminar flow material properties and initial condition 

for the room and oven with heating elements for the nondimensional COMSOL model. 

Table 6.11 shows the domain 1 heat transfer material properties and initial condition for 

the room and oven with heating elements for the nondimensional COMSOL model. The 

values for both of these tables are obtained from COMSOL (2010 e). 

 

 

 

Table 6.11 Domain 1 heat transfer material properties and initial conditions, room and 

oven with heating elements, nondimensional COMSOL model  

 

 

 

 

Absolute 

pressure  

(no units) 

Thermal 

conductivity 

(W/(m·C)) 

Heat Capacity 

at constant 

pressure 

(J/(kg·K)) 

Ratio of 

Specific Heats 

Initial 

Temperature 

 

(no units) 

0 1 Pr = 0.71 1 0 

 

 

 

 6.2.3 Forced convection  

 

     A COMSOL geometry of an oven with exhaust stack is shown in Figure 6.14. This 

model uses COMSOL’s Multiphysics license, with a default mesh. 
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Figure 6.14: Oven with exhaust stack, COMSOL geometry  

 

 

 

 

 

 

 

 

 

 

 

 

     Figure 6.15 shows the boundary conditions and domain of the COMSOL model of an 

oven with exhaust stack; the boundary conditions are obtained from Baik et al (2000 a).  

0.1 m 
0.2 m 

(typ.) 

0.1 m 

(typ.) 

0.5 m 
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Figure 6.15: Oven with exhaust stack, COMSOL boundary conditions and domain 

 

 

 

 

Table 6.12: Domain 1 material properties, oven with exhaust stack, COMSOL model 

 

 

Density (kg/m
3
) Dynamic viscosity 

(Pa·s) 

1 1E-05 

 

 

 

 

Inlet velocity=1 m/s 

(top of oven, exhaust) 

 

 

Outlet 

(side of oven) 

 

Domain 1 

Outlet 

(side of oven) 
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     Table 6.12 shows the properties of the fluid used in the COMSOL model of an oven 

with an exhaust stack. These properties are similar to, but not exactly the same as that of 

air from White (1986). The initial pressure is set to 0 Pa, which is the default value in 

COMSOL. 

6.3 Moisture COMSOL models   

     The moisture COMSOL models (with, and without heat transfer and convection) are 

presented in this section. 

6.3.1 Moisture loss without heat transfer and convection 

     The committee suggested doing as moisture analysis on the dough/bread; Figure 6.16 

shows a COMSOL model (including the domains) started to that effect. The geometry of 

the oven, heating elements, and room are the same as in Figure 6.11. The geometry of the 

dough is the same as the container geometry in Figure 6.1. The base COMSOL 

Multiphysics license is employed; the Transport of Dilute Species application is used. 

The mesh is default (not refined).  

     The water content in dough/bread is approximately 40 % by weight (Czuchajowska et 

al, 1988, Thorvaldsson & Janestad, 1999). This means that for 100 kg of dough/bread, 40 

kg of it will be water. COMSOL’s default units for c (concentration) are mol/m
3
, so the 

conversion is calculated as follows: 

 

 



 

115 

 

     Table 6.13 shows the domain initial concentration and diffusion coefficients for the 

COMSOL model without heat transfer and convection. The diffusion coefficient is 

obtained from a similar diffusion coefficient in Table 6.14.  

Table 6.13: Domain initial concentration and diffusion coefficients  

Domain Initial concentration 

(mol/m
3
) 

Diffusion coefficient (m
2
/s) 

1 0 (default) , then  

6 8437.4 (from Eqn. 6-4)  , then  

 

 

 

Figure 6.16: Oven with dough/bread within heating elements inside room, COMSOL 

model 

 

 

Domain 1 

Domain 6 
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6.3.2 Moisture loss with heat transfer and convection 

     Figure 6.17 shows the geometry for the moisture loss with heat transfer and 

convection; this 2-D geometry is 0.1 m by 0.1 m. The base COMSOL Multiphysics 

license is used; the Transport of Dilute Species and Heat Transfer Applications are 

employed. The mesh used is default (not refined).  

 

 

 

Figure 6.17: COMSOL moisture with heat transfer and convection, mesh 
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     Table 6.14 shows the properties, expressions, values, and descriptions of the 

dough/bread for the moisture loss initial COMSOL model. The oven air temperature is 

obtained from Section 3.4 (to correspond to the analytical calculation), the initial dough 

temperature is at room temperature, the density of the dough is from Table 6.3, the heat 

transfer coefficient is from the addition of Equations (3-82) and (3-87); the initial dough 

moisture concentration, air moisture concentration, specific moisture capacity, moisture 

conductivity, mass transfer coefficient in mass units, surface moisture diffusivity, and 

latent heat of vaporization are from Chen et al (1999). 
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Table 6.14: Properties, expressions, values and descriptions of dough/bread for moisture 

loss initial COMSOL model 

 

Property expression value description 

T_air 120[degC] 393.2 K Oven air 

temperature 

T0 20[degC] 293.2 K Initial dough 

temperature 

rho_d 380[kg/m^3] 380 kg/m
3
 density of dough 

h_T 28[W/(m^2*s)] 28 W/(m
2
 ·K) heat transfer 

coefficient 

c0 0.78*rho_d 296.4 kg/m
3
 initial dough 

moisture 

concentration  

c_b 0.02*rho_d 7.6 kg/m
3
 air moisture 

concentration 

C_m 0.003  0.003 specific moisture 

capacity (kg 

moisture/kg dough 

bread) 

k_m 1.29e-09[kg/(m*s)] 1.29E-09 kg/(m*s) moisture 

conductivity 

h_m 1.67e-06[kg/m^2*s] 1.67E-06 kg/(m
2
*s) mass transfer 

coefficient in mass 

units 

D k_m/(rho_d*C_m) 1.132E-9 m
2
/s diffusion coefficient 

k_c h_m/(rho_d*C_m) 1.465E-6 m/s mass transfer 

coefficient 

D_m 5e-10[m^2/s] 5.0E-10 m
2
/s surface moisture 

diffusivity 

lda 2.3e06 J/kg 2300000 J/kg latent heat of 

vaporization 

 

 

     Later in this research, better values for the dough/bread moisture loss model were 

obtained. Table 6.15 shows the properties, expressions, values, and descriptions of the 

dough/bread for the moisture loss final COMSOL model. The oven air temperature, the 

initial dough temperature, the density of the dough, and the heat transfer coefficient are 
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the same as in Table 6.14; air moisture concentration is from Equation (6-5); the initial 

dough moisture concentration, specific moisture capacity, moisture conductivity, mass 

transfer coefficient in mass units, surface moisture diffusivity and latent heat of 

vaporization are from Mondal et al (2010). 
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Table 6.15:  Properties, expressions, values and descriptions of dough/bread for moisture 

loss final COMSOL model 

 

Property Expression Value Description 

T_air 120  °C 393.2 K oven air 

temperature 

T0 20 °C 293.2 K initial 

dough/bread 

temperature 

rho_d 
  

dough/bread 

density 

h_T 
  

heat transfer 

coefficient 

c0  0.574* rho_d  

 

initial dough 

moisture 

concentration 

c_b    

 

air moisture 

concentration 

C_m 0.7373  0.7373 specific 

moisture 

capacity (kg 

moisture/kg 

dough bread) 

k_m 
 

 

 
Moisture 

conductivity 

hm 
  

mass transfer 

coefficient in 

mass units 

D k_m/( rho_d* C_m) 
 

diffusion 

coefficient  

k_c h_m/( rho_d* C_m)  mass transfer 

coefficient 

D_m 
  

surface 

moisture 

diffusivity 

lda 
  

latent heat of 

vaporization 
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    To find out if the value of air moisture concentration in Table 6.15 (which is the 

humidity (0.05 kg H2O/kg dry air) from Section 3.4) is similar to Mondal et al (2010), a 

calculation is effected. From “Air- Density and Specific Weight” (2012), At 100 degrees 

C, density of air is 0.9461 kg/m
3
; at 200 degrees C, density of air is 0.7461 kg/m

3
. By 

interpolation density of air at 120 degrees C is 0.906 kg/m
3

. 

 

 

     Therefore, one can compare 0.034 kg/m
3
 to 0.0453 kg/m

3
, and see that they are 

similar.  
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CHAPTER VII  

COMSOL MODELS, THREE-DIMENSIONAL 

 

     In this chapter, the three dimensional COMSOL models will be shown. First the 

dough/bread model with a volumetric heat source is shown, followed by a model of the 

dough/bread with heat fluxes imposed upon it. Finally, the 3-D model of the radiation 

effect upon the dough/bread with closely-spaced heating elements is presented. The 

results of the simulation of these models will be shown in Chapter  IX. 
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7.1  Dough/bread as volumetric heat source 

     As a result of the MATLAB simulation in Section 10.3.1 closely correlating with the 

analytical simulation of Section 3.2.2, a simulation (that had a mesh refined twice) in 

COMSOL that corresponded to those two simulations was completed. The domain initial 

conditions are the same as in Table 6.3. This model uses only the base COMSOL 

Multiphysics license. Figure 7.1 shows the geometry of the COMSOL simulation; Table 

11.4 shows the similarity of results of these four simulations.    

 

Figure 7.1: Dough/bread as volumetric heat source, COMSOL geometry 

 

 

 

0.1 m 

1 m 

0.1 m 
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     The volumetric heat source is calculated by using the values from Section 3.1.2 as 

follows: 

 

 

All of the six boundaries are chosen to be insulated. 

 

 

 

7.2 Dough/bread with heat fluxes 

     Because of the discrepancy of the simulations that modeled the dough/bread as a 

volumetric heat source and the 2-D simulations that model radiative heat flux upon the 

dough/bread, a three dimensional simulation of dough/bread with boundary conditions of 

heat fluxes was completed. Figure 7.2 shows this three dimensional simulation; the heat 

fluxes are obtained from Section 3.1.2. This model uses only the base COMSOL 

Multiphysics license. The domain initial conditions are the same as in Table 6.3. The 

mesh was refined twice. The geometry is the same as Figure 7.1. 

 

 

 

 



 

125 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2: Dough/bread with heat fluxes, COMSOL model  
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7.3 Radiation upon dough/bread using closely-spaced heating elements 

     This model uses COMSOL’s Multiphysics license and Heat Transfer Module. The 

mesh of all domains is default (not refined). At first, models with a 1 meter depth for the 

dough/bread and heating elements (with and without side boundaries) were created. 

Figure 7.3 shows the model without side boundaries and Figure 7.4 shows the model with 

side boundaries. Only the simulation of the model with side boundaries was first 

attempted on the OSC computer interactively; the computer ran out of memory for this 

serial computation. Therefore, the model had to be simulated in parallel on the OSC 

computer; Figure 7.5 shows the output file for this simulation. More information about 

this type of file can be found in Ohio Supercomputer Center (2010 b) (when running this 

model interactively, this file can be found in the log tab under the progress tab in the 

COMSOL Graphical User Interface (GUI) Results window). This simulation had a 

requested wall time of only 15 minutes, so after that time had elapsed, the job was 

terminated (before the solution was found).  In order to run a similar 3-D model 

interactively on the OSC computer, the side boundaries were eliminated, and the depth of 

the model was reduced to 10 cm; this is shown in Figure 7.6. The rest of the geometry of 

this model is the same as Figure 6.4. 
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Figure 7.3: Radiation upon dough/bread using closely-spaced heating elements, 

COMSOL geometry 
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Figure 7.4: Radiation upon dough/bread using closely-spaced heating elements and side 

boundaries, COMSOL geometry 
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******************************************* 

********COMSOL progress output file******** 

******************************************* 

Mon Dec 19 16:31:53 EST 2011 

Running: Study 1 

---------- Current Progress: 100 % 

Memory: 307/307 1532/1532 

           Current Progress:   0 % 

Memory: 333/333 1597/1597 

---------- Current Progress: 100 % 

Memory: 348/348 1605/1605 

Time-dependent solver (Generalized-alpha) 

Number of degrees of freedom solved for: 53479. 

           Current Progress:   0 % 

Memory: 398/398 1827/1827 

Symmetric matrices found. 

Symmetric matrices found. 

Format not changed since SOR line uses nonsymmetric storage. 

Nonsymmetric matrix found. 

Step        Time    Stepsize      Res  Jac  Sol Order Tfail NLfail LinIt   

LinErr   LinRes 

Error estimate for segregated groups: 

Error estimate for segregated groups: 

Error estimate for segregated groups: 

Error estimate for segregated groups: 

Error estimate for segregated groups: 

Error estimate for segregated groups: 

Error estimate for segregated groups: 

Error estimate for segregated groups: 

   0           0             out   16    6   16                  0 

                   Group #1:        8    3    8                        8  

0.00087  2.2e-06 

                   Group #2:        8    3    8                        8  3.8e-

13  9.5e-16 

Error estimate for segregated groups: 

Error estimate for segregated groups: 

   1        0.24        0.24       20    8   20     2     0      0 

                   Group #1:       10    4   10                       10  

0.00087  2.2e-06 

                   Group #2:       10    4   10                       10  2.9e-

13  7.4e-16 

Error estimate for segregated groups: 

Error estimate for segregated groups: 

   2        0.72        0.48       24   10   24     2     0      0 

                   Group #1:       12    5   12                       12  

0.00087  2.2e-06 

                   Group #2:       12    5   12                       12  1.8e-

13  4.5e-16 

Error estimate for segregated groups: 

=>> PBS: job killed: walltime 909 exceeded limit 900 

 

Figure 7.5: Radiation upon dough/bread using closely-spaced heating elements and side    

          boundaries, output file 
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Figure 7.6: Radiation upon dough/bread using closely-spaced reduced width heating 

elements, COMSOL geometry and boundaries 

 

Table 7.1: Boundary conditions, 3-D radiation effect on dough/bread, COMSOL model  

 

Emissivity 

of  

Boundaries 

4,7 

Emissivity of  

Boundaries 

11,13,14,16 

Temperature 

of 

Boundaries 

4,7 

Condition of 

Boundaries 

1,2,3,5,6,8,9,10,17,18 

(default) 

Condition of 

Boundaries 

12,15 

 

 

1 

 

 

0.9 

 

 

533.15 K 

 

 

insulated 

1
st
 model: 

298.825K; 

2
nd

 model: 

ε = 0; 

3
rd

 model: 

ε = 0; 

4
th

 model: 

ε = 0.9 

 

1 

2 
3 

(underneath) 

4 

5 

6 

7 

(under-

neath) 

8 

9 

(back) 

10 

(back) 

11 
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     The boundary conditions for the 3-D radiation effect on dough/bread COMSOL model 

are shown in Table 7.1. The emissivities and/or temperatures of  boundaries 4, 7, 11, 13, 

14 and 16 correspond to values in Section 3.1.2. The condition of boundaries 1, 2, 3, 5, 6, 

8, 9, 10, 17, 18 are attempted to be modeled as in reality. The conditions of the 

boundaries 12 and 15 were attempted to be modeled as in reality, or as in Section 6.1.3.   

 

 

Figure 7.7: Radiation upon dough/bread using closely-spaced reduced width heating 

elements, COMSOL geometry “ZX” view showing domains 

 

     Domain 3 has the specifications of Table 6.3. Domains 1 and 2 were not specified.  

 

 

 

 

 

Domain 1 

Domain 3 

Domain 2 



 

132 

 

 

CHAPTER VIII  

COMSOL SIMULATIONS, TWO-DIMENSIONAL RESULTS AND DISCUSSIONS  

 

     The results and discussions for the two-dimensional COMSOL simulations are 

presented in this chapter; these simulations correspond to the COMSOL models in 

Chapter VI. 
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8.1 Radiation and conduction COMSOL simulations 

     In this section, the radiation and conduction COMSOL simulations are presented. 

8.1.1 Distantly-spaced heating elements, steel container 

 

 

Figure 8.1: Radiation effect on surface of container, COMSOL solution 

     Figure 8.1 shows the radiation effect on the container for a COMSOL solution after 

3600 seconds. A surface integration on the dough/bread domain yielded a value of 2.9785 

m
2
·K, which when divided by the area of the surface (0.1 m)

2
 yields an average surface 

temperature of 297.85 K. This shows an increase in temperature from the initial 

temperature calculated as: 297.85 K-293.15 = 4.70 K.  

Time = 3600 seconds;      

Surface: Temperature [K] 
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Table 8.1: Results of radiation effect on surface of containers, COMSOL solution   

 

 

Emissivity of 

Container Surface 

Type of Simulation Temperature of 

Container (K) 

0.1 Stationary  458.1 

Transient (3600 s) 297.85 

0.8 Stationary 458.5 

Transient (3600 s) 329.9 

 

     Looking at Table 8.1, one can see that for a container surface emissivity of 0.1, the 

stationary simulation yielded a greater “Temperature of Container” (458.1 K) than the 

corresponding transient simulation (297.85 K). It might be determined from this 

observation that this simulation takes longer than 3600 seconds to reach steady state.  A 

similar observation can be made for the simulation where the emissivity of the container 

surface is 0.8: for the stationary case, the “Temperature of Container” was 458.5 K, 

whereas the “Temperature of Container” was 329.9 K for the transient case. This means 

that the steady-state simulation takes longer than 3600 seconds to be reached.  

     As expected, the “Temperature of Container” was greater for the surface emissivity of 

0.8 (versus the surface emissivity of 0.1) for each of the stationary and transient 

simulations. When the container surface emissivity was 0.8 for the stationary case, the 

“Temperature of Container” was 458.5 K (versus 458.1 for the emissivity of 0.1); the 

“Temperatures of Container” for the transient case were 329.9 K and 297.85 K for the 

surface emissivities of 0.8 and 0.1, respectively.  These results are expected since the 

greater the emissivity of the container surface, the greater the absorptivity of the surface;  
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the greater the absorptivity of the surface, the more radiant energy will be absorbed by 

that surface. This is due to Kirchoff’s law (Incropera & DeWitt, 1990) which states that 

the emissivity of a surface is equal to its absorptivity if the surface emission or irradiation 

is diffuse. 

 

8.1.2 Distantly-spaced heating elements, food with constant properties 

 

 

 

Figure 8.2: Radiation effect on dough/bread, COMSOL solution at 3600 seconds 

 

 

Time = 3600 seconds;      

Surface: Temperature [K] 
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      Figure 8.2 shows the radiation effect on the dough/bread for a COMSOL solution 

after 3600 seconds. A surface integration on the dough/bread domain yielded a value of 

3.7436 m
2
·K, which when divided by the area of the surface (0.1 m)

2
 yields an average 

surface temperature of 374.36 K. This shows an increase in temperature from the initial 

temperature calculated as:  374.36 K – 293.15 K = 81.21 K. 

 

 

 

 

 

 

 
 

 

 

 

Figure 8.3 Temperature versus y, COMSOL solutions at 3600 and 7200 seconds 
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     Figure 8.3 shows the graph of temperature versus y (at x = 0) of dough/bread and steel 

for the COMSOL solutions at 3600 and 7200 seconds. Looking at the 3600 second 

simulations first, the higher temperature at the bottom and top of the dough/bread with 

respect to the bottom and top of the steel is thought to be due to the fact that the surface 

of the dough/bread has a higher emissivity than the steel. Although the emissivity of each 

material is slightly different, it is believed that the more uniform plot (less variation of 

temperature versus y) for steel is due to steel’s higher thermal diffusivity with respect to 

dough/bread. The thermal diffusivity is a measure of how fast heat travels through a 

material, and is defined (Incropera & Dewitt, 1990) as follows: 

 

where k is the thermal conductivity of the material, Cp is the specific heat of the material, 

and ρ is the density of the material. For dough/bread (using values from Table 6.3), the 

thermal diffusivity is: 

 

and for steel (using values from Table 3.1), the thermal diffusivity is: 

 

     Comparing the thermal diffusivities of steel versus dough/bread: 
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     The thermal diffusivity of steel is 93.1 times greater than the thermal diffusivity of 

dough/bread. Now looking the 7200 second simulations, it can be seen that all locations 

of the dough/bread and steel have risen in temperature; this means that at 3600 seconds, 

neither the dough/bread nor the steel has reached steady state. 

     It must be stated that when the steel is graphed by itself, the temperature profile shows 

a prominent U-shape; this is due to the fact that the temperatures range (for the 7200 

second simulation, for example) from 363.13 K at the bottom , to 362.15 K in the middle, 

then back to 363.13 K at the top. 

      

 



 

139 

 

 

 

Figure 8.4: Radiation effect on dough/bread: COMSOL solution at 240 seconds 

 

     Figure 8.4 shows the COMSOL solution at 240 seconds for the radiation effect on 

dough/bread. A surface integration performed on the dough/bread domain yielded 3.0819 

m
2
·K , which when divided by the area of the surface (0.1 m)

2
 yields an average 

temperature of 308.19 K. This shows an increase in temperature from the initial 

temperature calculated as 308.19K – 293.15 K = 15.04 K.  

 

 

 

Time = 240 seconds;      

Surface: Temperature [K] 
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8.1.3 Closely-spaced heating elements, food with constant properties 

 

 

Figure 8.5: Radiation effect on dough/bread for closely-spaced heating elements, 

COMSOL solution at 240 seconds 

 

     Figure 8.5 shows the heating elements placed 14 cm above and below the center of the 

food. A surface integration performed on the dough/bread domain yielded 3.1854 m
2
·K, 

which when divided by the area of the surface (0.1 m)
2
 yields an average temperature of 

318.54 K. This shows an increase in temperature from the initial temperature calculated 

as 318.54 K – 293.15 K = 25.39 K. The increase in temperature here is higher than the 

corresponding COMSOL simulation with distantly-spaced heating elements (Section 

8.1.2), which is expected (see Table 8.2). This temperature increase is lower than the 

Time = 240 seconds;      

Surface: Temperature [K] 
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volumetric analytical simulation (Section 3.2.2), and the volumetric MATLAB 

simulation (Section 10.3.1); this is also expected, since those analytical and MATLAB 

simulations have a volumetric heat source, whereas this COMSOL simulation has 

radiation impinging upon the surface of the dough/bread. 

Table 8.2 Comparison of distantly- and closely-spaced heating elements, COMSOL 

simulations 

 

Dough/bread simulation 

with heating elements 

Temperature rise of 

dough/bread (K) 

Percent difference (see 

Eqn (11-1)) from 

Distantly-Spaced 

Distantly-spaced 15.04 - - 

Closely-spaced 25.39  51.29 

 

     Later, because of the discrepancy between the temperature rise (25.39 K)  determined 

by COMSOL in this section and the temperature rise (41.46 K) calculated by the 

COMSOL simulation in Section 9.2 (using heat fluxes calculated from Section 3.1.2), an 

investigation was undertaken to find the radiative heat fluxes calculated by COMSOL for 

the results of Figure 8.5.   
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Figure 8.6: Radiation effect on dough/bread for closely-spaced heating elements, 

radiative heat fluxes at steady state   

 

 

          The heat fluxes in Figure 8.6 were determined using the stationary simulation. The 

first step in correlating the heat fluxes (W/m) in Figure 8.6 with the heat fluxes (W/m
2
) in 

Section 3.1.2 is to make all the heat fluxes dimensionally consistent. For example, if the 

radiative heat flux is -13.9652  W/m, and the x-length of the surface is 0.1 m, then the 

total radiative heat on the length is -1.39652 W. From Section 3.1.2,  conversely, if the 

radiative heat on a surface is -267.6 W and the surface area is 0.1 m
2
, then the total 

radiative heat flux on the surface is -2676 W/m
2
.  

      

Time = Steady State;      

Surface: Temperature [K] 

 

 -13.9652 W/m 

-13.9649 W/m 

+12.3655 W/m 

+12.3673 W/m 
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     At this point it was decided to do a two-dimensional simulation with defined side 

boundaries (see Figure 6.6), as well as a three-dimensional simulation of the dough/bread 

with closely-spaced heating elements (see Section 7.3). 

 

Figure 8.7 Radiation effect on dough/bread for closely-spaced heating elements, defined 

side boundaries, at 240 seconds 

 

     A surface integration performed on the unrefined dough/bread domain yielded 3.1642 

m
2
·K, which when divided by the area of the surface (0.1 m)

2
 yields an average 

temperature of 316.42 K. This shows an increase in temperature from the initial 

temperature calculated as 316.42 K – 293.15 K = 23.27 K. This result is somewhat less 

than is the temperature increase earlier (25.39 K) in Section 8.1.3 (where the side 

Time = 240 seconds;      

Surface: Temperature [K] 
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boundaries of the oven where not defined). A mesh refinement (twice) on the 

dough/bread domain showed a temperature increase of 24.03 K (Figure 8.7).  

     Table 8.3 shows a comparison of the temperature rise of the COMSOL radiation effect 

on dough/bread for closely-spaced heating elements with and without defined side 

boundaries. The simulation with defined side boundaries resulted in a temperature rise 

slightly lower than the simulation without side boundaries. This comparison shows that 

specifying a value for Tamb alone produces slightly different results than explicitly 

modeling side boundaries and specifying a value for Tamb. Having side boundaries may 

result in a model where the colder surfaces are computationally closer to the dough/bread 

than the “far-away” (the term used in the documentation of COMSOL, 2010 c) 

temperature of Tamb. 

Table 8.3: Comparison of temperature rise of COMSOL radiation effect on dough/bread 

for closely spaced heating elements, with and without defined side boundaries 

 

Simulation Temperature Rise % difference with respect to 

without side boundaries  

without side boundaries 25.39 K - - 

defined side boundaries 24.03 K -5.50 

 

     Finally, a simulation was completed that calculated the temperature rise of the dough 

bread as a function of dough/bread height. As expected, the taller the dough/bread, the 

less the temperature rise.  

Table 8.4: Comparison of different dough/bread height, COMSOL simulations  

Dough/Bread height Temperature rise 

2”=0.0508 m 38.39 K 

4”=0.1016 m 25.17 K 

6”=0.1524 m 20.64 K 
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8.1.4 Distantly-spaced heating elements, food with varying properties 

                                        

 

 

Figure 8.8: Dough/bread with temperature-varying thermal conductivity, COMSOL 

solution at 180 seconds 

 

     Figure 8.8 shows the temperature profile of the dough/bread at 180 seconds (3 

minutes). A surface integration performed on the dough/bread domain yielded 3.0223 

m
2
·K, which when divided by the area of the surface (0.1 m)

2
 yields an average 

temperature of 302.23 K. This shows an increase in temperature from the initial 

temperature calculated as 302.23 – 293.15 K = 9.08 K. 

 

Time = 180 seconds;      

Surface: Temperature [K] 
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Figure 8.9: Dough/bread with temperature-varying thermal conductivity, COMSOL 

solution at 360 seconds 

 

     Figure 8.9 shows the temperature profile of the dough/bread at 360 seconds (6 

minutes). A surface integration performed on the dough/bread domain yielded 3.1124 

m
2
·K, which when divided by the area of the surface (0.1 m)

2
 yields an average 

temperature of 311.24 K. This shows an increase in temperature from the initial 

temperature calculated as 311.24 – 293.15 K = 18.09 K. 

 

Time = 360 seconds;      

Surface: Temperature [K] 
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Figure 8.10: Dough/bread with temperature-varying thermal conductivity, COMSOL 

solution at 600 seconds 

 

     Figure 8.10 shows the temperature profile of the dough/bread at 600 seconds (10 

minutes). A surface integration performed on the dough/bread domain yielded 3.2397 

m
2
·K, which when divided by the area of the surface (0.1 m)

2
 yields an average 

temperature of 323.97 K. This shows an increase in temperature from the initial 

temperature calculated as 323.97 – 293.15 K = 30.82 K. 

 

 

 

Time = 600 seconds;      

Surface: Temperature [K] 
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     Figure 8.11 shows a graph of temperature versus time at the center of the dough bread 

for when the properties of the dough/bread are constant, versus temperature-varying 

properties. It can be seen from this figure that specifying constant properties for the 

dough/bread results in a different temperature profile at the center of the dough/bread 

over time versus the temperature-dependent properties; but also, varying thermal 

conductivity, density and specific heat with temperature results in different profiles 

among themselves. 

      For the constant property simulation, the temperature of the center of the dough/bread 

first decreases, then increases; this is thought to be due to the fact that the initial 

radiosities of all the surfaces (dough/bread and heating elements) are specified as zero, 

and all of the domains (dough/bread and heating elements) initial temperatures are 

specified as 293.15 K. In other words, it takes some time for the dough/bread to start 

having realistic values for its increase in temperature as the simulation converges. 

     For the temperature-varying density simulation, the temperature at the center of the 

dough/bread first decreases in temperature, then increases. The reason for this is thought 

to be because as can be seen from Figure 8.12, the density first rises with respect to time, 

then decreases with respect to time; therefore, the initial temperature drop of the 

dough/bread is due to the higher density, and the temperature rise is due to the decreasing 

density. For the temperature-varying property simulations, the initial radiosities of all 

surfaces were calculated as 729.3 W/m
2
, as shown in Appendix C. This calculation was 

made before the analytical simulation was performed for this model, so the values (such 

as view factors) for closest model to it (distantly-spaced heating elements) were used. 

Also in contrast to the constant-property simulation, the initial temperature of the heating 
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elements for the temperature-varying models is 533.15 K.  The initial conditions were 

changed with respect to the temperature constant property simulation, due to the 

increased nonlinearity of the temperature-dependent property simulations; it is known 

that the closer the initial conditions are to the final solution, the better the convergence 

(COMSOL, 2010 b). From Figure 8.11, the temperature of the dough/bread for the 

density-varying simulation is in general less than the constant property simulation, which 

is expected due to the fact that the density of the bread in the density-varying simulation 

is always higher (roughly 423 kg/m
3  

on the average) than the constant property 

simulation density (380 kg/m
3
). A higher density means more energy is required to heat 

the dough/bread (shown in Wong et al, 2006), which is the same as stating that a higher-

density dough/bread has a lower temperature for a given amount of energy. 

     For the simulation where the specific heat varies with temperature, the curve is 

qualitatively similar to the constant properties simulation curve. The temperature at the 

center of the dough/bread for the temperature-varying specific heat simulation is mostly 

below the curve for the constant property simulation. This is expected as the specific heat 

(an average of roughly 3030 J/kg·K, as seen in Figure 8.13) in the temperature-varying 

simulation is always more than the that (1941 J/kg·K) of the constant property simulation; 

more energy is required to heat the dough/bread with a higher specific heat, as shown in 

Wong et al (2006).   

     For the temperature-varying thermal conductivity simulation, the temperature at the 

center of the dough/bread was at first higher than the constant property simulation, then 

fell below the constant property simulation. The fact that the temperature is initially 

higher for the conductivity-varying simulation is expected due to the fact that the thermal 
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conductivity (roughly an average of 0.4665 W/m·C, as seen in Figure 8.14) for this 

simulation is always higher than the thermal conductivity (0.1133 W/m·C) of the 

constant-property simulation; the heat will travel faster to the interior of the dough/bread 

for a higher thermal conductivity as shown in Wong et al (2006). The fact that the 

temperature for the thermal conductivity-varying simulation fell below the temperature of 

the constant property simulation is not expected; it is possible that if the simulation was 

extended for a greater time period, the temperature of the dough bread for the 

temperature-varying conductivity simulation might become greater than the constant 

property simulation later in time (instead of only at the beginning). But it is also expected 

that when the thermal conductivity of the dough/bread (for the temperature-varying 

simulation) falls below the thermal conductivity of the dough/bread for the constant 

property simulation, the temperature of the dough bread with the temperature-dependent 

conductivity will fall below the temperature of constant property dough/bread. Also, 

there are different ways to model the dough/bread as having such a temperature-varying 

property, such as having a variable of thermal conductivity in a more global node, instead 

of within the material node. The way the temperature of the dough/bread increases in 

time in Figure 8.11 qualitatively follows the graph of Figure 8.14 (values change, then 

level, then change). In summary, Figure 8.11 proves that the settings in the physical 

properties can significantly affect the simulated temperature profiles, as stated in Wong et 

al (2006).  
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Figure 8.11: Temperature versus time at center of dough/bread, radiation effect on 

dough/bread with temperature-varying properties versus constant properties, COMSOL 
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Figure 8.12: Density of dough/bread at point (0,0) versus time 
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Figure 8.13: Specific heat of dough/bread at point (0,0) versus time 
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Figure 8.14: Thermal conductivity of dough/bread at point (0,0) versus time 

 

8.2 Convection COMSOL simulations 

 

     The free and forced convection COMSOL simulations are presented in this section. 
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8.2.1 Dimensional free (natural) convection 

 

 

 

 

Figure 8.15: Oven with heating elements inside room, COMSOL solution 

 

     Figure 8.15 shows the room with open boundaries, and the oven with heating elements 

(solution). The air heated by the elements rises to the top of the oven, then out of the oven 

to the room. This solution did not converge, and the cause of this must be determined; the 

pressure was set to 1 atm initially and afterwards, and this may be a partial contributor to 

the lack of convergence. 

Surface: Temperature [K];  Arrows: 

Velocity field [normalized] 
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8.2.2 Nondimensional free (natural) convection 

 

 

Figure 8.16: Temperature and velocity fields, nondimensional free convection COMSOL 

simulation, Ra=1  

 

 

     Figure 8.16 shows the temperature and velocity fields for the nondimensional free 

convection COMSOL simulation when the Raleigh number is equal to one. It can be seen 

from this figure that there are two distinct regions of cellular fluid flow: at the right side 

of the oven, there is a region of clockwise cellular flow, and at the left side of the oven, a 

region of counterclockwise cellular flow. These cellular flows are expected, given the 

locations of the hot and cold areas of the temperature distribution.  Compared to the 

dimensional free convection simulation the nondimensional simulation converged, and 

Surface: Temperature [K]; Arrows: 

Velocity field  



 

157 

 

given the inputs of each model, the temperature and velocity distributions are 

qualitatively as expected. Both the dimensional are nondimensional simulations are 

laminar (see Section 3.3.1). 

 

Figure 8.17: Temperature and velocity fields, nondimensional free convection COMSOL 

simulation, Ra=1e5  

 

     Figure 8.17 shows the temperature and velocity fields of the nondimensional free 

convection COMSOL simulation when Rayleigh number is equal to 1e05. Here the shape 

of the temperature distribution in the vicinity of the heating elements is more of a 

“butterfly” shape, compared to the when the Rayleigh number is equal to one, where the 

temperature distribution is more of an “oval” shape. This is expected since the higher the 

Rayleigh number the more disordered will be the temperature distribution and fluid flow.  

Surface: Temperature [K]; Arrows: 

Velocity field  
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     Table 8.4 shows the dimensionless temperatures and velocity magnitudes versus 

Rayleigh numbers for the nondimensional free convection simulations. As expected 

(COMSOL 2010, e) with increasing the Rayleigh number, temperature increases, 

resulting in increased velocity magnitudes. The first three entries in the T column are all 

the same with the shown number of significant digits; it is possible that with a greater 

number of significant digits, the numbers may be different. 

 

 

Table 8.5 Dimensionless temperatures and velocity magnitudes versus Rayleigh number  

Rayleigh Number (Ra) Temperature  Velocity magnitude 

1 0.4e522 5.0236×10
-4 

1e1 0.4522 0.005 

1e2 0.4522 0.0502 

1e3 0.4523 0.5019 

1e4 0.4556 4.7042 

1e5 0.4842 24.3723 
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8.2.3 Forced Convection 

 

 

 

 

 

 

 
 

Figure 8.18: Oven with exhaust stack, COMSOL solution 

 

 

 

     Figure 8.18 shows the COMSOL solution of the oven with exhaust stack. This 

simulation did converge.  

8.3 Moisture COMSOL simulations 

     The moisture COMSOL simulations are presented in this section. 

Surface: Velocity field [m/s]; 

Arrow: Velocity field  
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8.3.1 Moisture loss without heat transfer and convection 

 

 

 

Figure 8.19: Oven with dough/bread within heating elements inside room, COMSOL 

solution  

 

     Figure 8.19 shows the COMSOL result of the oven with dough/bread within heating 

elements inside the room. It appears as though the moisture is leaving the dough/bread, 

and diffusing to the room; this can be seen by observing that the moisture concentration 

is decreasing within the bread, and increasing in the room. A surface integration on the 

dough bread domain at 3600 seconds resulted in a value of 55.6752 mol/m; this value 

Time = 3600 seconds; Surface: 

Concentration [mol/m^3] 
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divided by the area of the domain (0.1 m)
2
 =5567.52 (mol/m

3
). The loss of moisture from 

the dough bread is calculated as follows: 

 

 

     Now find kg water lost per m
3
. 

 

 

 

     For a diffusion coefficient of  m
2
/s, a surface integration on the dough/bread 

domain yielded a value of  5567.53 (mol/m
3
). This result is used to calculate the moisture 

loss of the dough/bread as above. Table 8.5 shows the results of the two simulations; as 

expected, a lower diffusion coefficient resulted in a lower moisture loss from the 

dough/bread. 

Table 8.6: COMSOL moisture simulations without convection and without heat transfer 

Diffusion coefficient (m
2
/s) kg water lost /hour 

 0.1034018 

 0.1034014 
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8.3.2 Moisture loss with heat transfer and convection 

 

 

 

Figure 8.20: Moisture concentration at 60 seconds, COMSOL, using values from Table 

6.14 

 

     The water loss per hour for Figure 8.20 is calculated as follows: at time 0, the 

moisture concentration in the dough is 296.4 kg/m
3
. At time 60 seconds, the moisture 

concentration in the dough is 296.15 kg/m
3
. The amount of water lost from the 

dough/bread is:   

 

Time = 60 seconds; Surface: 

Concentration [kg/m^3] 
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     The amount of water lost from the dough bread is (using dimensions from this section 

and Section 3.4): 

 

 

  

 

 

 

     Table 8.6 shows the results of changes made in the transition from the initial to final 

COMSOL moisture simulation. When the initial moisture content of the dough/bread (c0) 

was changed from 0.78*rho_d to 0.57437*rho_d, the moisture loss decreased; this is 

expected because the difference between the initial moisture content of the dough/bread 

and the moisture content of the air decreased. When the moisture concentration of the air 

(c_b) was decreased, the moisture loss of the dough/bread increased; this is expected 

because the difference between the moisture content of the air and the initial moisture 

content of the dough/bread increased. When the specific moisture capacity of the 

dough/bread (C_m) was increased, the moisture loss decreased; this is expected because 

it is believed that specific moisture capacity in similar to the specific heat capacity of a 
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substance. The amount of energy required to increase the temperature of a substance is 

directly related to the magnitude of its specific heat, and this is analogous to the amount 

of energy required to reduce the moisture content of a substance being directly related to 

its specific moisture capacity. When the moisture conductivity (k_m) was increased, the 

moisture loss of the dough/bread did not appear to change; this is somewhat unexpected 

because it is thought that the moisture would travel faster to the surface, therefore 

increasing moisture loss. However, increasing k_m resulted in a more uniform moisture 

distribution throughout the dough/bread: for k_m= 1.29e-09[kg/(m*s)] the low and high 

moisture concentrations in the dough bread were 214.37 and 219.4 kg/m
3
, respectively, 

whereas for k_m= 1.53e-06 [kg/(m*s)]  the low and high moisture concentrations in the 

dough/bread were 217.1 and 218.27 kg/m
3

, respectively. This is expected, and is 

analogous to the graph shown in Figure 8.3, where the steel being of higher (thermal) 

conductivity than dough/bread shows a more uniform temperature distribution. Finally, 

when the mass transfer coefficient in mass units (h_m) was increased, the moisture loss 

of the dough/bread increased; this is expected since the mass transfer coefficient is 

directly related to the moisture loss from the dough bread.  
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Table 8.7: Initial to final COMSOL moisture simulation     

 

Previous 

Value 

 

 

Final Value 

 

Previous Moisture 

Loss 

 

 

Final Moisture Loss 

 

 

% 

differ-

ence 

from 

previous 

value 

c0: 

0.78*rho_d 

0.57437*rho_d 0.03 0.0216 -32.56 

c_b: 

0.02*rho_d  

 

1.192e-04* 

rho_d 

0.0216 0.0228 5.40 

C_m: 0.003 0.7373 0.0228 0.0001 -198.25 

k_m: 

1.29e-09 

[kg/(m*s)] 

1.53e-06 

[kg/(m*s)] 

0.0001 0.0001 0 

h_m: 

1.67e-06 

[kg/m^2*s] 

5.09e-04 

[kg/m^2*s] 

 

0.0001 0.01342 197.04 
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Figure 8.21: Moisture concentration at 3600 seconds, COMSOL, using values from Table 

6.15 

 

 

     Following the same procedure for Figure 8.21 as for Figure 8.20: 

 

 

 

 

 

 

 

Time = 3600 seconds; Surface: 

Concentration [kg/m^3] 
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CHAPTER IX  

COMSOL SIMULATIONS, THREE-DIMENSIONAL RESULTS AND DISCUSSIONS  

 

     This chapter shows the three-dimensional results corresponding to the COMSOL 

models in Chapter VII. 
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9.1  Dough/bread as volumetric heat source 

 

 

Figure 9.1: Dough/bread as volumetric heat source, COMSOL solution at 240 seconds 

 

          Figure 9.1 shows the temperature profile of the dough/bread at 240 seconds (4 

minutes). A volume integration performed on the dough/bread domain yielded 3.346 

m
3
·K, which when divided by the volume (1 m)(0.1 m)

2
 yields an average temperature of 

334.6 K. This shows an increase in temperature from the initial temperature calculated as 

334.6 – 293.15 K = 41.45 K.  

 

Time = 240 seconds;         

Surface: Temperature [K] 
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9.2 Dough/bread with heat fluxes 

 

 

 

 

Figure 9.2: Dough/bread with heat fluxes, COMSOL solution 

 

          Figure 9.2 shows the temperature profile of the dough/bread at 240 seconds (4 

minutes). A volume integration performed on the dough/bread domain yielded 3.3461 

m
3
·K, which when divided by the volume (1 m)(0.1 m)

2
 yields an average temperature of 

Time = 240 seconds;        

Volume: Temperature [K] 
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334.61 K. This shows an increase in temperature from the initial temperature calculated 

as 334.61 – 293.15 K = 41.46 K.  

 

 

Figure 9.3: Mesh elements y>0.05 m 

     Figure 9.3 shows the dough/bread having the mesh elements for y values greater than 

0.5 m. This is one way of looking at the inside and outside of the dough/bread 

simultaneously. 

 

 

 

 

Time = 240 seconds; Volume: 

Temperature [K] 
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9.3 Radiation upon dough/bread using closely-spaced heating elements 

 

 

Figure 9.4: 3-D radiation upon dough/bread, closely-spaced heating elements, COMSOL 

solution at 240 seconds, 1
st
 simulation 

 

Time = 240 seconds; Surface: 

Temperature [K] 
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          Figure 9.4 shows the temperature profile of the dough/bread at 240 seconds (4 

minutes). A volume integration performed on the dough/bread domain yielded 0.3045 

m
3
·K, which when divided by the volume (0.1 m)

3
 yields an average temperature of 304.5 

K. This shows an increase in temperature from the initial temperature calculated as 304.5 

– 293.15 K = 11.35 K. This simulation’s average (between intial and final) temperature is 

used to arrive at an input temperature for the side boundaries 12 and 15. Table 9.1 was 

constructed by running a simulation with a certain temperature for boundaries 12 and 15, 

then calculating the average temperature of the dough/bread domain over 240 seconds. 

The temperature of boundaries 12 and 15 were then adjusted to be closer to the previous 

average temperature, until the dough/bread average temperature was the same as the 

inputted temperatures for boundaries 12 and 15.  

Table 9.1: Convergence of boundary temperature with average temperature   

 

Initial 

Temperature 

Boundary 

Temperature 

(B.T.) 

Final 

Temperature 

Average 

(between initial 

and final) 

Temperature 

(A.T.) 

% 

difference 

between 

B.T. and 

A.T 

293.15 K 413.15 K 326.1 K 309.625 K 28.65 

293.15 K 313.15 K 307.3 K 300.225 K 4.21 

293.15 K 300.15 K 304.8 K 298.975 K 0.392 

293.15 K 298.975 K 304.6 K 298.875 K 0.0335 

293.15 K 298.875 K 304.5 K 298.825 K 0.0167 

293.15 K 298.825 K 304.5 K 298.825 K 0 
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Figure 9.5: 3-D radiation upon dough/bread, closely-spaced heating elements, COMSOL 

solution at 240 seconds, 2
nd

 simulation 

 

 

     Figure 9.5 shows the temperature profile of the dough/bread at 240 seconds (4 

minutes). This simulation uses an emissivity of zero for side boundaries, and an ambient 

temperature of  293.15 K.  A volume integration performed on the dough/bread domain 

yielded 0.3053 m
3
·K, which when divided by the volume (0.1 m)

3
 yields an average 

temperature of 305.3 K. This shows an increase in temperature from the initial 

temperature calculated as 305.3 – 293.15 K = 12.15 K.  

 

Time = 240 seconds;          

Surface: Temperature [K] 
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Figure 9.6: 3-D radiation upon dough/bread, closely-spaced heating elements, COMSOL 

solution at 240 seconds, 3
rd

 simulation 

 

     Figure 9.6 shows the temperature profile of the dough/bread at 240 seconds (4 

minutes). This simulation uses an emissivity of zero for side boundaries, and an ambient 

temperature of 533.15 K.  A volume integration performed on the dough/bread domain 

yielded 0.3281 m
3
·K, which when divided by the volume (0.1 m)

3
 yields an average 

temperature of 328.1 K. This shows an increase in temperature from the initial 

temperature calculated as 328.1 – 293.15 K = 34.95 K.  

Time = 240 seconds;         

Surface: Temperature [K] 
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Figure 9.7: 3-D radiation upon dough/bread, closely-spaced heating elements, COMSOL 

solution at 240 seconds, 4
th

 simulation 

 

     Figure 9.7 shows the temperature profile of the dough/bread at 240 seconds (4 

minutes). This simulation uses an emissivity of 0.9 for side boundaries, and an ambient 

temperature of 533.15 K. A volume integration performed on the dough/bread domain 

yielded 0.3421 m
3
·K, which when divided by the volume (0.1 m)

3
 yields an average 

temperature of 342.1 K. This shows an increase in temperature from the initial 

temperature calculated as 342.1 – 293.15 K = 48.95 K.  

Time = 240 seconds;         

Surface: Temperature [K] 
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CHAPTER X 

DESCRIPTION OF MATLAB CODE, MATLAB MODELS, AND MATLAB 

SIMULATIONS  

 

10.1 Description of MATLAB code 

     MATLAB is a high-level language and interactive environment that may enable one 

to perform computationally intensive tasks easier than with traditional programming 

languages such as C, C++, and FORTRAN (“MATLAB-the Language of Technical 

Computing”, 2011). One example where using MATLAB is more efficient in this 

research is the “solve” function, which automatically solves for the desired variable in a 

given equation (see Appendix C). 
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10.2 MATLAB models 

     The MATLAB models are discussed in this section. These are the inputs for the 

corresponding simulations. 

10.2.1 Radiation (with conduction) MATLAB models 

     A MATLAB model (transient) is coded that corresponds to the analytical calculations 

(stationary) in Sections 3.1.2 and 3.2.2. The code for this model in shown in Appendix A. 

10.2.2 Conduction MATLAB models 

     A MATLAB model is coded that corresponds to the analytical calculations in Section 

3.2.3. The program is shown in Appendix D. 

10.2.3 Moisture MATLAB models 

     A MATLAB model is coded that corresponds to the analytical calculations in Section 

3.4. This program is shown in Appendix F. 

10.3 MATLAB simulations 

     This section describes the MATLAB simulations corresponding to the MATLAB 

models. The simulations are the outputs of the programs. 

10.3.1 Radiation (with conduction) MATLAB simulations 

     A simulation was performed that modeled a transient analysis of the closely-spaced 

heating elements heating food with constant properties. The MATLAB output is given in 

Appendix “B”. This simulation was performed after it was found that there was a 

significant discrepancy in the results of the corresponding analytical (Section 3.2.2) and 

COMSOL (Section 8.1.3, without side boundaries) simulations. As shown before, the 

analytical simulation showed a change in food temperature 41.4 K whereas the COMSOL 

simulation showed a food temperature change of 25.39 K. The MATLAB simulation 
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showed a food temperature change of 39.90 K, which shows that the analytical 

simulation may be similar in physics to the MATLAB simulation. 

10.3.2 Conduction MATLAB simulations 

     The conduction MATLAB output is shown in Appendix E. This simulation shows a 

temperature increase of the dough/bread to be 22.73 K. 

10.3.3 Moisture MATLAB simulations 

     The moisture MATLAB output is shown in Appendix G. This simulation shows a 

drying rate of 2.1150 kg/(hour *m^2), which is exactly the same as in Section 3.4. 
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CHAPTER XI 

COMPARISONS, RECOMMENDATIONS AND CONCLUSIONS  

 

11.1 Comparisons 

     Comparisons between the radiation and conduction simulations, and then the moisture 

simulations, are discussed in this section. 

11.1.1 Radiation and conduction simulations 

     Figure 8.1 in Section 8.1.1 is compared to the results from the analytical simulation in 

Sections 3.1.1 and 3.2.1. The analytical simulation shows a temperature increase of 6.2 

K, whereas the COMSOL simulation shows a temperature increase of 4.70 K. 

     The results shown in Table 11.1 are compared using a percent difference. The percent 

difference is the difference between two values divided by the average of the two values. 

The equation for this research is shown as follows: 
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Table 11.1: Results from section 8.1.1 versus sections 3.1.1 and 3.2.1, radiation effect 

upon container material 

 

Section(s) Temperature Increase (K) % difference with respect 

to 

Analytical 

3.1.1 and 3.2.1 

(Analytical) 

6.2 - - 

8.1.1 (COMSOL) 4.70 -27.52 % 
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     The  = 6.2 K  corresponds to the emissivity of 0.1, for the 3600 second simulation 

in Table 8.1 in the COMSOL simulation (where   =297.85 K-293.15 = 4.70 K). The 

value for the analytical solution is greater due to the fact of the (steady-state) assumption 

that the container remains at 293.15 K during the entire simulation, so it gains more 

radiation (heat) from the heated plate (which is fixed at 533.15 K), and loses less 

radiation (heat) to the environment (which is fixed at 293.15 K). Or, one could say that 

with respect to the COMSOL simulation, the temperature differential between the 

container material and the heating elements decreases with time (resulting in less heat 

transfer from the heating elements to the container surface), and the temperature 

differential between the container surface and the surroundings increases with time 

(resulting in more heat transfer from the container material to the surroundings). Probably 

another reason that the  for the analytical simulation is greater than for the COMSOL 

simulation is that for the analytical simulation, the heat source is assumed to be from 

within the entire container (volumetric), whereas for the COMSOL simulation the heat 

source is actually only from the heating elements radiating heat upon the upper and lower 

surfaces of the container material.  
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     Table 11.2 shows the results of the volumetric MATLAB, 1-D MATLAB, and 

Analytical Simulations versus the COMSOL simulation. All of the simulations in this 

table are compared to the MATLAB simulation of Section 10.3.1. It is apparent that the 

MATLAB simulation of Section 10.3.1 and the Analytical simulation of Section 3.2.2 are 

calculating similar physical phenomena. The COMSOL simulation of Section 8.1.3, 

however, shows a much lower temperature increase for the dough bread than those first 

two simulations in the table.  From Figure 8.6, it can be seen that the amount of radiative 

heat flux upon the dough/ bread in the COMSOL simulation is much less than that 

calculated in the Analytical simulation. For the COMSOL simulation, the steady-state 

radiative heat flux upon the dough bread is: 

 

                              

 

For the Analytical simulation the steady-state radiative heat flux upon the dough/bread is: 

 

 

 

 

     The fact that less radiative heat flux (energy) is impinging upon the dough/bread in the 

COMSOL simulation compared to the Analytical simulation may be a clue as to why the 

temperature is less in the COMSOL simulation (though the Analytical simulation has a 3-

D dough/bread). The value for the temperature increase in the 1-D MATLAB simulation 

is significantly less the value for the volumetric MATLAB simulation. This may be partly 

due to the fact that the 1-D MATLAB simulation only models one heating element 
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impinging upon the dough/bread, although the other side of the dough bread is being 

heated by the oven air (the average of room temperature and heating element 

temperature).  The dough/bread temperature rise in the MATLAB 1-D simulation is 

slightly less than the 2-D COMSOL simulation, and this is due at least to the same 

reasons that the MATLAB 1-D simulation is lower than the volumetric MATLAB 

simulation. 

 

 

 

 

 

Table 11.2 Results of volumetric MATLAB and analytical simulations versus surface 

COMSOL and MATLAB 1-D simulations, for dough/bread  

 

Simulation Temperature rise 

(stationary or transient) 

% difference with respect 

to Volumetric MATLAB 

Volumetric MATLAB 

(Section 10.3.1) 

39.90 K 

(transient) 

-- 

Volumetric Analytical 

(Section 3.2.2) 

41.4 K 

(stationary) 

3.70 % 

 

2-D COMSOL  (Section 

8.1.3) 

25.39 K 

(transient) 

-44.4 % 

MATLAB 1-D (Section 

10.3.2) 

22.73 K 

(transient) 

 -54.8 % 
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     Table 11.3 shows a comparison between the 2-D and 3-D COMSOL simulations for 

the radiation effect on dough/bread. One of the challenges of the 3-D model is to specify 

an appropriate boundary condition for the faces (named 12 and 15) of the dough/bread 

that do not “see” the heating elements (the faces that do not exchange heat with the 

heating elements). The boundary conditions on these faces may be specified to 

correspond to the 2-D model or reality, or both. For the 1
st
 3-D COMSOL simulation 

(Figure 9.4), the temperature rise is seen to be less than the 2-D COMSOL simulation 

(Figure 8.5). For the 2
nd

 3-D COMSOL simulation (Figure 9.5), it is seen that the 

temperature rise is closer than the 1
st
 simulation in magnitude to the 2-D simulation; this 

shows that changing the side boundaries 12 and 15 to an emissivity of zero rather than at 

an average temperature of 298.25 K better corresponds to the 2-D simulation. 

     For the 3
rd

 3-D COMSOL simulation (Figure 9.6) the temperature rise is greater than 

the preceding simulations in the table (due to the increase in Tamb), as expected. Changing 

the emissivity to 0.9 in the 4
th

 3-D simulation results in a greater temperature rise than the 

3
rd

 simulation; this suggests that specifying an emissivity for the 2
nd

 3-D simulation 

(Figure 9.5) might result in a greater temperature increase within the simulation, leading 

to a value closer to the 2-D COMSOL simulation.  
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Table 11.3: Comparison between 2-D and 1
st
, 2

nd
, 3

rd
 and 4

th
 3-D COMSOL simulations, 

radiation effect on dough/bread  

 

Simulation Temperature rise 

 

% difference with respect 

to Figure 8.5 (Section 

8.1.3) 

Figure 8.5 (Section 8.1.3) 

 

25.39 K -- 

Figure 9.4 (Section 9.3): 

Sides 12 and 15 T = 

298.825 K; Tamb = 293.15 

K   

 

11.35 K 

 

- 76.4 % 

Figure 9.5 (Section 9.3): 

Sides 12 and 15 ε = 0; 

Tamb = 293.15 K   

 

12.15 K 

 

- 69.1 % 

Figure 9.6 (Section 9.3): 

Sides 12 and 15 ε = 0; 

Tamb = 533.15 K   

 

34.95 K 

 

 31.7 % 

Figure 9.7 (Section 9.3): 

Sides 12 and 15 ε = 0.9; 

Tamb = 533.15 K   

 

48.95 K 

 

63.4 % 

 

 

 

 

     Looking at Table 11.4, one can see the comparison of the volumetric heat source 

results for the MATLAB, Analytical, and COMSOL simulations, along with the 

COMSOL 3-D heat flux simulation. It is apparent from this table that the same (or very 

nearly the same) phenomena are being simulated. Essentially, whether the energy is being 

generated within the dough/bread or is impinging upon it, the temperature rise of the 

dough/bread is very similar.    
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Table 11.4: Comparison of volumetric heat source results for MATLAB, analytical, and 

COMSOL simulations, along with COMSOL 3-D heat flux simulation    

 

Simulation Temperature rise 

(stationary or transient) 

% difference with respect 

to MATLAB 

MATLAB (Section 

10.3.1) 

39.90  K 

(transient) 

-- 

Analytical (Section 3.2.2) 41.4 K 

(stationary) 

3.70 % 

COMSOL (Section 9.1) 41.45 K 

(transient) 

3.82 % 

COMSOL (Section 9.2) 41.46 K  

(transient) 

3.84 % 

 

 

 

 

 

 

 

11.1.2 Moisture simulations 

    Table 11.5 shows the moisture model comparisons (with the literature values) for the 

analytical (and MATLAB) and COSMOL simulations. The analytical (and MATLAB) 

simulations yielded a moisture loss that is within the range of the literature values. The 
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analytical (and MATLAB) simulations show a value of 0.0423 kg water lost per hour, 

which is closer to the low value shown in Baik et al (2000, b); this is thought to be 

possibly because the analytical (and MATLAB) simulations only model one heating 

element. Undoubtedly, modeling more than one heating element analytically and in 

MATLAB would cause a greater loss of moisture from the dough/bread. The COMSOL 

simulation with convection and heat transfer resulted in a value that was less than the low 

value of Baik et al (2000 b), and this might be due to any number of reasons. Baik et al 

(2000 b) cited another work by Hasatani et al (1991), and the article by Hasatani et al 

(1991) was not available on the internet, nor available to be borrowed. The work in 

Hasatani et al (1991) is only known to have the inputs of a temperature of 200°C in an 

electric batch oven, but the size of the bread in that article is not known, nor the exact 

physical properties, etc.; so the similarity of the COMSOL simulation with the results of 

Hasatani et al (1991) is not expected to be exact. The value for the heat transfer 

coefficient in the COMSOL simulation was based on the analytical simulation, so a 

higher heat transfer coefficient would probably lead to a higher moisture loss from the 

dough/bread. The properties in the COMSOL simulation do not depend on temperature, 

and temperature-dependent properties can improve the accuracy of this type of simulation 

(Haiqing et al, 1999). Finally, the mesh of the COMSOL simulation was rather coarse, 

and a refinement in the mesh might improve the accuracy of the results. 

     The COMSOL simulation without convection and without heat transfer yielded a 

value that is in between the low and high values from Baik et al (2000 b). It is expected 

that this COMSOL simulation value (0.103 kg water lost/hour) is less than the high value 

from Baik et al (2000 b), because the COMSOL simulation has no heat transfer, whereas 
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the value from Baik et al (2000 b) undoubtedly has heat transfer. This simulation is 

thought to be higher than the COMSOL (with convection and heat transfer) and the 

Analytical and MATLAB simulations because the dough/bread is losing moisture from 

all four sides (it is not in a container), whereas the other simulations involve a container. 

 

 

Table 11.5: Moisture model comparisons  

Simulation or Literature kg water lost /hour % difference with respect 

to (w.r.t.) Baik et al (2000, 

b) low value or high value 

Baik et al (2000, b), low 

value 

0.030 0 (w.r.t.) low value 

-- 

Baik et al (2000, b), high 

value 

0.25488 0 (w.r.t) high value 

-- 

Analytical (and 

MATLAB) 

0.0423 34.02 (w.r.t) low value 

Analytical (and 

MATLAB) 

0.0423  -143.065 (w.r.t) high 

value 

COMSOL (with 

convection and heat 

transfer) 

0.01342 -76.37(w.r.t.) low value 

COMSOL (no convection 

and no heat transfer) 

0.103 -84.88 (w.r.t.) high value 
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11.2   Recommendations  

     In this research, a number of recommendations can be made with respect to the 

various relevant physics.  

11.2.1 Radiation and conduction recommendations 

     To advance the content of this research, workers in this field may want to calculate the 

view factor for the three-dimensional geometry of Figure 7.6 (Howell, 2012). This can be 

done as a step toward comparing the COMSOL 3-D radiation models with analytical 

solutions. 

     Participating media may be added to the radiation heat transfer models in COMSOL, 

thereby creating a more complete simulation of the oven; the participating media in this 

case is the humid air. 

     In the case of the 1-D MATLAB conduction model (which has radiation boundary 

conditions), the implicit method may be used instead of the explicit method. The implicit 

method is in general unconditionally stable, and may be more accurate, although possibly 

harder to code. The increase in coding difficulty is due to the method’s requirement to 

solve simultaneous equations. 

11.2.2 Convection recommendations  

     In the future, researchers may wish to model air curtains at the ends of a tunnel oven 

in order to minimize heat loss from the oven. An air curtain is a stream of air, usually 

blowing down from an overhead compartment; its purpose is to reduce heat transfer 

between hot and cold environments. 
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11.3 Conclusions 

     In this research a bread-baking oven, and the dough/bread within it, are successfully 

modeled and simulated. The bread baking process is proven to involve the physics of 

radiation, conduction, convection (both free and forced), and mass transfer (with respect 

to both the dough/bread and oven). This is a complex process that always warrants 

further improvements, and computational fluid dynamics can be the most effective 

method of modeling and simulating this process. However, researchers must always 

check their inputs and results with appropriate sources. 
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APPENDIX A (MATLAB program, transient radiation simulation)  

 

% This MATLAB program calculates the temperature rise of the food 
% due to the radiation exchange in an enclosure. This is a transient 
% analysis. 

 
% smdeltat is the sum of the change in temperatures. 

 
smdeltat = 0; 

 
% t2 is the initial temperature of Surface 2, which is the surface of 

the  
% food. 

 
t2 = 293.15; 

 
% lla is the distance between Surface 2 and Surface 3, which is the 
% surface of the surroundings; this is for the first enclosure  
% problem (denoted by letter "a"). 

 
lla = .5-.5*.1; 

 
% w2a is the width of Surface 2. 

 
w2a = .1; 

 
% w3a is the width of Surface 3. 

 
w3a = .28-.5*.01-.5*.01; 

 
ww3a = w3a/lla; 

 
ww2a = w2a/lla; 

 
% f23a is the view factor between Surfaces 2 and 3 in the first 
% enclosure problem. 

 
f23a = (((ww2a+ww3a)^2+4)^(.5)-((ww3a-ww2a)^2+4)^(.5))/(2*ww2a); 

 
% f21a is the view factor between Surfaces 2 and 1 in the first 
% enclosure problem; Surface 1 is part of the top heating element.  

 
f21a = (1-f23a)/2; 

 
% f24a is the view factor between Surfaces 2 and 4 in the first 
% enclosure problem; Surface 4 is part of the bottom heating 
% element. 

 
f24a = f21a; 



 

197 

 

 
% The "for" loop calculates the radiosity of Surface 2 in the first 
% enclosure problem, then the heat transferred to Surface 2 in the 
% first enclosure problem; it then calculates the radiosity of  
% Surface 2 in the second enclosure problem, then the heat transferred 
% to Surface 2 in the second enclosure problem. The change in 

temperature 
% of Surface 2 is then calculated, and this change is added to the  
% preceding temperature of Surface 2. The increase in temperature is 
% then added to the previous increase in temperature, to eventually 
% arrive at a total sum increase in temperature. This loop runs from 1 
% second to 240 seconds. 

 
for time = 1: 1 : 240  

 
% eb2 is the blackbody emmissive power of Surface 2.     

 
eb2 = (5.67e-8)*(t2^4); 

 

 
% j3 is the emmissive power of Surface 3, which is equal to that  
% Surface's blackbody emissive power. 

 
j3= (5.67e-8)*(293.15^4); 

 
% j1 is the emissive power of Surface 1, which is equal to that 
% Surfaces' blackbody emissive power. 

 

 
j1= ( 5.67e-8)*(533.15^4); 

 
% j4 is the emissive power of Surface 4. 

 
j4 = j1; 

 
% e2 is the emissivity of Surface 2. 

 
e2 = .9; 

 
% a2 is the area of Surface 2. 

 
a2 = .1*1; 

 
% j2a is the radiosity of Surface 2 for the current time step in the 
% first enclosure problem. 

 
j2a= -(e2*(eb2-f21a*j1-f23a*j3-

f24a*j4)+f21a*j1+f23a*j3+f24a*j4)/(e2*(f21a+f23a+f24a-1)-f21a-f23a-

f24a); 
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% halfq2a is half of the heat transferred to Surface 2 from the  
% other surfaces in the first enclosure problem; the "half" stems 
% from the fact that there are two such first enclosures. 

 

 
halfq2a = -(eb2-j2a)/((1-e2)/(e2*a2)); 

 
% ---------------------------------------------------------------------

---- 

 
% Now look at the second enclosure problem, denoted by "b" in its 
% respective variables. 

 

 
% 11b is the distance between Surface 1 (the heating element surface) 
% and Surface 2 (the food surface) in the second enclosure problem. 

 
llb = .14-.05-.005; 

 
% w2b is the width of Surface 2 in the second enclosure problem.  

 
w2b = .1; 

 
ww2b = w2b/llb; 

 
% w1b is the width of Surface 1 in the second enclosure problem.  

 
w1b = 1; 

 
ww1b = w1b/llb; 

 
% f21b is the view factor between Surfaces 1 and 2 in the second 
% enclosure problem. 

 

 
f21b = (((ww2b+ww1b)^2+4)^(.5)-((ww1b-ww2b)^2+4)^(.5))/(2*ww2b); 

 
% f23b is the view factor between Surfaces 2 and 3 in the second 
% enclosure problem. 

 
f23b = 1-f21b; 

 
% j2b is the radiosity of surface 2 for the current time step in the 
% second enclosure problem. 

 
j2b = -(e2*(eb2-f21b*j1-f23b*j3)+f21b*j1+f23b*j3)/(e2*(f21b+f23b-1)-

f21b-f23b); 
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% halfq2b is half of the heat transferred to Surface 2 from the  
% other surfaces in the second enclosure problem; the "half" stems 
% from the fact that there are two such second enclosures. 

 
halfq2b = -(eb2-j2b)/((1-e2)/(e2*a2)); 

 
% end sub-analysis of second enclosure problem 

 
% ---------------------------------------------------------------------

---- 

 

 
% deltat is the change in temperature of Surface 2; this corresponds  
% to Equation (3-53). 

 
deltat = 1*(halfq2b*2+halfq2a*2)/(380*.1*.1*1941); 

 

 
% Display the time (in seconds) in the MATLAB Command Window. 

 
disp ('For time (in seconds)') 
disp (time) 

 
% The value of the temperature of Surface 2 is updated in the next 

line. 

 
t2 = t2+deltat; 

 
% Display the change in temperature (in Kelvin) of Surface 2 for the  
% current time step in the MATLAB Command Window. 

 
disp ('deltat (in Kelvin) is') 
disp (deltat) 

 
% The value of the sum of the changes in temperature of Surface 2 is 
% updated in the next line. 

 

 
smdeltat = deltat + smdeltat; 

 
% Display the latest sum of changes in temperature (in Kelvin) of 

Surface 2  
% in the MATLAB Command Window. 

 

 
disp ('sumdeltat (in Kelvin) is') 
disp (smdeltat) 

 

 
% End the "for" loop 
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end 
% End of MATLAB Program  
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APPENDIX B (MATLAB output, transient radiation simulation) 

(note: the nomenclature for this output is shown in APPENDIX A) 

For time (in seconds) 

     1 

 

deltat (in Kelvin) is 

    0.1727 

 

sumdeltat (in Kelvin) is 

    0.1727 

. 

. 

. 

For time (in seconds) 

   240 

 

deltat (in Kelvin) is 

    0.1591 

 

sumdeltat (in Kelvin) is 

   39.8967 

 

>> 
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APPENDIX C (MATLAB program and output, radiosity calculation) 

 

This MATLAB program calculates the initial radiosity for the models in 

Tables 6.6, 6.7, and 6.8. This program uses Equation (2-21) with view 

factors, temperatures, and dimensions from Section 3.1.1, but with an 

emissivity from Section 3.1.2.   

syms j2; 

 

solve ('(418.7-j2)/((1-0.9)/(0.9*0.1*1))=(j2-4581.2)/(1/0.07461)+(j2-

418.7)/(1/0.02539)', 'j2') 

  

  

 

>> August_22_2011_Solve_for_Radiosity 

  

ans = 

  

729.264125 
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APPENDIX D (MATLAB program, conduction model) 

 

 

 
% This MATLAB program calculates the temperature distribution 
% in the dough/bread when radiation is present from a heating element. 
% Heat travels through the dough/bread by conduction. 
% This simulation is based on this dissertation's Section 3.2.3  
% This is a one-dimensional numerical method, based on Holman (1990). 

 
% t1p through t5p are the first the initial temperatures (in K) of the  
% nodes one though five, then the previous temperatures of the nodes  
% during the simulation. These nodes correspond to discrete locations 
% within the dough/bread. 
t1p=20+273.15; 
t2p=20+273.15; 
t3p=20+273.15; 
t4p=20+273.15; 
t5p=20+273.15; 

 
% tsur is the temperature of the surroundings (the oven), in K 
tsur=140+273.15; 

 
% trad is the temperature of the heating element, in K 
trad=260+273.15; 

 
% sigma is the Stefan-Boltzmann constant, in W/((m^2)*(K^4)) 
sigma=5.67e-08; 

 
% rho is the density of the dough/bread, in kg/m^3 
rho=380; 

 
% cp is the heat capacity at constant pressure of the dough/bread, 
% in J/(kg*K) 
cp=1941; 

 
% deltax is the distance between nodes, in m 
deltax=0.025; 

 
% deltatau is the time step, in s 
deltatau=10; 

 
% time is the current time 
time=10; 

 
% k is the thermal conductivity of the dough/bread, in W/(m*K) 
k=0.1133; 

 

 
cc1=rho*cp*deltax/2; 
cc5=rho*cp*deltax/2; 
cc2=rho*cp*deltax; 
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cc3=rho*cp*deltax; 
cc4=rho*cp*deltax; 

 
% epsilon is the emissivity of the dough/bread 
epsilon=0.9; 

 
% in the while loop, the succeeding values (t1pplus1, etc.) of the 

% temperatures of the 
% five nodes are calculated. The nodes' values are updated, and the 
% time is increased by 10 seconds. The simulation runs for a  
% computational time of 240 seconds. 
while time < 250 

 
t1pplus1=deltatau/cc1*(sigma*epsilon*(tsur^2+t1p^2)*(tsur+t1p)* 

tsur+k/deltax*t2p)+(1-

deltatau/cc1*(sigma*epsilon*(tsur^2+t1p^2)*(tsur+t1p)+k/deltax))*t1p; 

    

t5pplus1=deltatau/cc5*(sigma*epsilon*(trad^2+t5p^2)*(trad+t5p)*trad+k/d

eltax*t4p)+(1-

deltatau/cc5*(sigma*epsilon*(trad^2+t5p^2)*(trad+t5p)+k/deltax))*t5p; 
     

t2pplus1=deltatau/cc2*(k/deltax)*(t1p+t3p)+ 

(1-2*deltatau/cc2*(k/deltax))*t2p; 

 
t3pplus1=deltatau/cc3*(k/deltax)*(t2p+t4p)+ 

(1-2*deltatau/cc2*(k/deltax))*t3p; 
    

 t4pplus1=deltatau/cc4*(k/deltax)*(t3p+t5p)+ 

(1-2*deltatau/cc3*(k/deltax))*t4p; 

 

 
disp('For time (in seconds) is') 
disp(time) 
disp('t1pplus1 (in Kelvin) is') 
disp(t1pplus1) 
disp('t2pplus1 (in Kelvin) is') 
disp(t2pplus1) 
disp('t3pplus1 (in Kelvin) is') 
disp(t3pplus1) 
disp('t4pplus1 (in Kelvin) is') 
disp(t4pplus1) 
disp('t5pplus1 (in Kelvin) is') 
disp(t5pplus1) 

 
    t1p=t1pplus1; 
    t2p=t2pplus1; 
    t3p=t3pplus1; 
    t4p=t4pplus1; 
    t5p=t5pplus1; 

 
time=time+deltatau; 
end 

 
% the average of the final temperatures of the nodes is calculated 
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% as average_tplus1, in K 
average_tplus1=(t1pplus1+t2pplus1+t3pplus1+t4pplus1+t5pplus1)/5; 
disp('average tplus1 (in Kelvin) is') 
disp(average_tplus1) 

 

 
% the difference between the initial and average final temperature of  

% the dough/bread is calculated as change_tplus1, in K 
change_tplus1=average_tplus1-293.15; 
disp('change in temperature plus1 (in Kelvin) is') 
disp(change_tplus1) 
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APPENDIX E (MATLAB output, conduction simulation) 

>> Conduction_program_July_15_2012 

For time (in seconds) is 

    10 

 

t1pplus1 (in Kelvin) is 

  294.3539 

 

t2pplus1 (in Kelvin) is 

  293.1500 

 

t3pplus1 (in Kelvin) is 

  293.1500 

 

t4pplus1 (in Kelvin) is 

  293.1500 

 

t5pplus1 (in Kelvin) is 

  297.2133 

 

. 

. 

. 

For time (in seconds) is 

   240 
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t1pplus1 (in Kelvin) is 

  318.6887 

 

t2pplus1 (in Kelvin) is 

  293.8790 

 

t3pplus1 (in Kelvin) is 

  293.2077 

 

t4pplus1 (in Kelvin) is 

  295.5911 

 

t5pplus1 (in Kelvin) is 

  378.0162 

 

average tplus1 (in Kelvin) is 

  315.8765 

 

change in temperature plus1 (in Kelvin) is 

   22.7265 

 

>> 
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APPENDIX F (MATLAB program, moisture model) 

 
% This program calculates the rate of drying in the constant-rate 
% period when convection, radiation, and conduction heat 
% transfer are present.  

 

 
% t is the temperature of the air stream in degrees Celsius 
t=120; 

 
% tr is the temperature of the heating element in degrees Celsius 
tr=260; 

 
% tsguess is the guess of the surface temperature in degrees Celsius 
tsguess=55; 

 
disp (t) 

 
% hs is the saturation humidity (dimensionless) 
hs=0.115; 

 
% h is the humidity (dimensionless) 
h=0.05; 

 
% lambdas is the latent heat of vaporization at the saturation  
% temperature, in J/kg 
lambdas=2370700; 

 
% cs is the humid heat of the air-water vapor mixture,  
% in J/kg dry air * K 
cs=(1.005+1.88*h)*1000; 
disp(cs); 

 
% vel is the air stream velocity, in m/s 
vel=0.61; 

 
% vh is the humid volume of the air-water vapor mixture, 
% in m^3/kg dry air 
vh=(0.00283+0.00456*h)*(t+273.15); 

 
% rho is the density of the air and water vapor mixture 
rho=1+h/vh; 

 
% g is the mass velocity of the air-water vapor stream, 
% in kg/h * m^2 
g=vel*rho*3600; 

 
% hc is the convective heat transfer coefficient, in W/ (m^2 * C), 
% or W/ (m^2 * K) 
hc=0.0204*g^0.8; 
disp(hc); 
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% zm is the metal thickness in meters 
zm=0.002; 

 
% km is the thermal conductivity of the metal in W/(m * K)  
km=52; 

 
% zs is the solid thickness in meters 
zs=0.10; 

 
% ks is the thermal conductivity of the solid in W/(m * K)  
ks=0.1133; 

 
% uk is the overall heat transfer coefficient, in W/m^2 * K 
uk=1/(1/hc+zm/km+zs/ks); 

 
% emissivity is the emissivity (dimensionless) of the surface of the 

solid 
emissivity=0.9; 

 
% hr is the radiation heat transfer coefficient, in W/(m^2 * K) 
hr=emissivity*5.676*(((tr+273.15)/100)^4.... 
-((tsguess+273.15)/100)^4).... 
/(tr+273.15-(tsguess+273.15)); 
disp(hr); 

 
% ts is the saturation temperature, in degrees Celsius 
ts=(cs*(hc*t+hr*tr+t*uk)... 
+(h-hs)*hc*lambdas)/(cs*(hc+hr+uk)); 
disp(ts); 

 
% rc is the rate of drying, in kg/h * m^2 
rc=((hc+uk)*(t-ts)+hr*(tr-ts))*3600/lambdas; 
disp(rc); 
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APPENDIX G (MATLAB output, moisture simulation) 

(note: the nomenclature for this output is shown in APPENDIX F) 

 

 

>> February_09_2012_moisture_analysis 

    120 (this is the temperature of air stream in degrees C) 

 

          1099 (this is the humid heat of the air-water vapor mixture, in J/kg dry air *C) 

 

    9.9333 (this is the convective heat transfer coefficient, in W/m^2 *C) 

 

   17.2444 (this is the radiation heat transfer coefficient, in W/m^2 *C) 

 

  156.2279 (this is the saturation temperature in degrees C) 

 

    2.1150 (this is the rate of drying, in kg/(hour *m^2) 

 

 

>> 
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