1,3-Bis(9-ethylcarbazol-3-yl)propane

Erol Asker
Balıkesir University, Balıkesir, Turkey

John Masnovi
Cleveland State University, j.masnovi@csuohio.edu

Follow this and additional works at: https://engagedscholarship.csuohio.edu/scichem_facpub

Part of the Organic Chemistry Commons

How does access to this work benefit you? Let us know!

Recommended Citation

This Article is brought to you for free and open access by the Chemistry Department at EngagedScholarship@CSU. It has been accepted for inclusion in Chemistry Faculty Publications by an authorized administrator of EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.
1,3-Bis(9-ethylcarbazol-3-yl)propane

In the title compound, C_{31}H_{30}N_{2}, \pi-\pi overlap is absent in the region where carbazole groups of two adjacent molecules are inclined toward each other. The ethyl groups which protrude from the plane of the carbazole groups and the alkylene chain connecting the two carbazole groups are responsible for the poor molecular stacking.

Comment

Poly(N-vinylcarbazole) (PVK) is among the most studied semiconducting polymers due to its commercial applications in electrophotography (Piechowski & Sanetra, 1984; Loh et al., 1991; Rocquin & Chevrot, 1997; Li et al., 1998). Poly(3-vinylcarbazole) (P3VK), another carbazole-containing photoconducting polymer that has been applied to electrophotography, is a structural isomer of PVK (Sliva, 1978; Shiraiishi et al., 1995). In an effort to understand the photophysical and chemical properties of PVK, some of its dimeric model compounds have been prepared and their single-crystal X-ray studies have been reported (Chen et al., 1992). We report here the crystal structure of the title compound, (I), as a model of P3VK.

The carbazole skeletons in (I) (Fig. 1) are essentially planar to within 0.056 (4) \AA. The geometric parameters in (I) (Table 1) are very similar and do not vary from the standard values for the carbazole groups of related compounds (Baker et al., 1991; Nesterov et al., 2002; Aravindan et al., 2003). The torsion angles C8A–N–C10–C11 \{84.1 (7)\} and C8A’–N’–C10’–C11’ \{90.1 (6)\} indicate that the orientations of both of the N-ethyl substituents are almost perpendicular to the carbazole planes. The carbazole groups exhibit a gauche–anti conformation along the C12–C13–C12’ methylene chain.

The crystal packing diagram (Fig. 2) indicates that only van der Waals forces contribute to the crystal packing. The N-alkyl groups and the methylene chain connecting the two carbazole groups are thought to be responsible for any possible \pi-\pi interaction which is essential for good photoconduction in polyvinylcarbazoles.
Experimental

Multistep synthesis of the title compound, (I), involves Friedel–Crafts acylation, aldol condensation, carbonyl reduction and catalytic hydrogenation reactions. 3-Acetyl-9-ethylcarbazole was prepared via Friedel–Crafts acylation of 9-ethylcarbazole with acetyl chloride, according to the literature procedure of Lopatinska & Sirotkina (1964). C–C bond formation was achieved via a base-catalyzed aldol condensation of this ketone with 9-ethylcarbazole-3-carbaldehyde. A solution of 3-acetyl-9-ethylcarbazole (3.55 g, 0.015 mol) and 9-ethylcarbazole-3-carbaldehyde (3.35 g, 0.015 mol) in dry dimethylformamide (30 ml) was prepared in an oven-dried 100 ml three-necked flask. To this, finely powdered sodium methoxide was added portionwise in an ice bath under a nitrogen flow. The reaction mixture was stirred for 18 h at room temperature and was then diluted with methanol (50 ml) to give a yellow precipitate. The precipitate was separated from the reaction mixture by filtration and washed with water and air-dried. Column chromatography on basic alumina using dichloromethane/hexane as the eluting solvents gave 4.1 g (62% yield) of 1,3-bis(9-ethylcarbazol-3-yl)propan-1-one as yellow needles after recrystallization from dichloromethane (m.p. 507 K).

1,3-Bis(9-ethylcarbazol-3-yl)propan-1-one was prepared via catalytic hydrogenation of 1,3-bis(9-ethylcarbazol-3-yl)propan-1-one. In a 100 ml flask, 1.3-bis(9-ethylcarbazol-3-yl)propan-1-one (2.0 g, 4.52 mmol) was dissolved in tetrahydrofuran (40 ml). To this, 10% Pd/C (200 mg) was added and stirred under an H2 atmosphere until 100 ml of H2 was consumed (about 2 h). The contents of the flask were filtered and the solvent was removed in vacuo. Column chromatography on basic alumina using dichloromethane/hexane as the eluting solvents gave 1.85 g (92.1%) of 1,3-bis(9-ethylcarbazol-3-yl)propan-1-one as fine light-yellow crystals (m.p. 421–422 K).

In the final step, the carbonyl group of 1,3-bis(9-ethylcarbazol-3-yl)propan-1-one was reduced with lithium aluminium hydride (LAH)/AlCl3. In an oven-dried 100 ml three-necked round-bottomed flask equipped with a magnetic stirrer bar and a reflux condenser was prepared a mixture of 1,3-bis(9-ethylcarbazol-3-yl)propan-1-one (1.5 g, 3.4 mmol), aluminium chloride (1.0 g), and anhydrous diethyl ether (30 ml). To this, LAH (0.20 g) was added portionwise over 30 min via an addition funnel at 273 K and under a nitrogen flow. After the addition was complete, the reaction mixture was heated under reflux for 2 h. The mixture was cooled to room temperature and the reaction was quenched carefully with dropwise addition of water (10 ml). The resulting mixture was extracted with diethyl ether (40 ml), the solvent was removed under reduced pressure, and the resultant beige solid was dried over calcium sulfate. The crude product was column chromatographed using alumina (80–200 mesh, activity III) and dichloromethane/n-hexane as the eluting solvents to give 1.22 g (84.0%) of (I) as colorless prisms after recrystallization from CH2Cl2/n-hexane (m.p. 384–385 K). 1H NMR (300 MHz, CDCl3): δ 8.10 (d, 7.49 Hz, 2H), 7.95 (s, 2H), 7.51–7.15 (m, 10H), 4.37 (q, 7.31 Hz, 4H), 2.91 (t, 7.31 Hz, 4H), 2.18 (quintet, 7.31 Hz, 2H), 1.44 (t, 7.31 Hz, 6H).

Crystal data

C31H30N2

Mo Kα radiation

Orthorhombic, P212121

Cell parameters from 25 reflections

a = 8.1950 (9) Å

θ = 4.0–14.0°

b = 11.1921 (8) Å

μ = 0.07 mm−1

c = 26.931 (3) Å

T = 295 (2) K

V = 2470.1 (3) Å³

Block, colorless

Z = 4

0.36 × 0.32 × 0.23 mm

Dx = 1.158 Mg m−3

Table 1

Selected geometric parameters (Å, °).

<table>
<thead>
<tr>
<th></th>
<th>C1–C2</th>
<th>1.356 (7)</th>
<th>C4A′–C9A′</th>
<th>1.414 (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3–C12</td>
<td>1.515 (7)</td>
<td>C4B–C4A′</td>
<td>1.441 (6)</td>
<td></td>
</tr>
<tr>
<td>C3′–C2′</td>
<td>1.409 (7)</td>
<td>C4B–C5′</td>
<td>1.400 (7)</td>
<td></td>
</tr>
<tr>
<td>C4A–C4B</td>
<td>1.433 (6)</td>
<td>C4B–C8A′</td>
<td>1.408 (6)</td>
<td></td>
</tr>
<tr>
<td>N–C8A′–C4B′</td>
<td>108.8 (4)</td>
<td>C5′–C6–C7</td>
<td>109.9 (6)</td>
<td></td>
</tr>
<tr>
<td>N–C9A′–C4A′</td>
<td>108.3 (5)</td>
<td>C6′–C5–C4B′</td>
<td>118.1 (5)</td>
<td></td>
</tr>
<tr>
<td>C1–C2–C3</td>
<td>122.5 (5)</td>
<td>C6–C7–C8</td>
<td>122.1 (7)</td>
<td></td>
</tr>
<tr>
<td>C1′–C4A′–C4A′</td>
<td>120.3 (5)</td>
<td>C7–C8–C9A′</td>
<td>117.6 (5)</td>
<td></td>
</tr>
<tr>
<td>C1–C9A–C4A</td>
<td>120.5 (5)</td>
<td>C8–C7–C6′</td>
<td>122.3 (6)</td>
<td></td>
</tr>
<tr>
<td>C2′–C1′–C9A′</td>
<td>118.0 (5)</td>
<td>C8′–C8A′–C4B′</td>
<td>121.3 (5)</td>
<td></td>
</tr>
<tr>
<td>C2–C1–C9A</td>
<td>118.3 (5)</td>
<td>C8′–C6A–C4B</td>
<td>122.6 (6)</td>
<td></td>
</tr>
<tr>
<td>C3–C4–C4A′</td>
<td>119.9 (5)</td>
<td>C8′–C4B′–C4A′</td>
<td>106.7 (4)</td>
<td></td>
</tr>
<tr>
<td>C4–C3–C2</td>
<td>118.6 (5)</td>
<td>C4A–C4B–C4A</td>
<td>107.5 (4)</td>
<td></td>
</tr>
<tr>
<td>C4–C3–C2′</td>
<td>118.7 (5)</td>
<td>C4A–C8A–C7</td>
<td>117.4 (6)</td>
<td></td>
</tr>
<tr>
<td>C4–C4A–C9A</td>
<td>119.0 (5)</td>
<td>C8A–N–C9A</td>
<td>109.1 (4)</td>
<td></td>
</tr>
<tr>
<td>C4′–C4A′–C9A′</td>
<td>120.5 (5)</td>
<td>C9A–C4B′–C4A′</td>
<td>106.1 (4)</td>
<td></td>
</tr>
<tr>
<td>C5–C4B–C9A</td>
<td>118.2 (5)</td>
<td>C9A–N′–C8A′</td>
<td>109.0 (4)</td>
<td></td>
</tr>
</tbody>
</table>

H atoms were positioned geometrically and allowed to ride on their corresponding parent atoms at distances of 0.93, 0.96 and 0.97 Å for aromatic, methyl, and methylene H atoms, respectively, with Uiso(H) = 1.5Ueq(C) of the parent atom for the methyl groups and 1.2Ueq(C) for the remainder.
Data collection: *CAD-4-PC Software* (Enraf–Nonius, 1993); cell refinement: *CAD-4-PC Software*; data reduction: *DATRD2* in *NRCVAX* (Gabe et al., 1989); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2003); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

References


Figure 2

The molecular packing of (I), viewed down the b axis. H atoms have been omitted for clarity.