Combining Orthogonal tRNA/synthetase Pair and Amber Codon Suppression to Genetically Encode Oxidative Damage in High Density Lipoproteins

Jaclyn Alatrash
Cleveland State University

Nicholas Gilliam
Cleveland State University

Alisha House
Cleveland State University

Valentin Gogonea
Cleveland State University, V.GOGONEA@csuohio.edu

How does access to this work benefit you? Let us know!
Follow this and additional works at: http://engagedscholarship.csuohio.edu/u_poster_2013

Part of the Biochemistry Commons

Recommended Citation
http://engagedscholarship.csuohio.edu/u_poster_2013/5
Combining orthogonal tRNA/synthetase pair and amber codon suppression to genetically encode oxidative damage in high density lipoproteins

College of Sciences and Health Professions
Department of Chemistry

Student Researchers: Jaclyn Alatrash; Nicholas Gilliam; Alisha House

Faculty Advisor: Valentin Gogonea

Abstract

Apolipoprotein A-I (apoA-I) is the main protein constituent of high density lipoprotein (HDL - the “good cholesterol”). Oxidatively damaged apoA-I has been isolated from circulating plasma and atherosclerosis plaque with the amino acid residue tryptophan 72 (W\textsubscript{72}) of apoA-I identified as a primary oxidation site. ApoA-I designed to include specific oxidized amino acids can be used to further investigate the role of site-specific oxidative damage in atherosclerosis. Genetic encoding of oxidized amino acids through orthogonal tRNA/aaRS pairs offers a reliable method for producing site-specific oxidized proteins. Our project involves the generation of Saccharomyces tryptophan-RS mutants for recognition of oxidized tryptophan (ox-W) but not naturally occurring tryptophan. To study the role of oxidative damage on HDL function we need oxidized proteins that mimic the oxidatively damaged protein observed \textit{in vivo}. Thus, our goal was to produce site-specific oxidized apoA-I (ox-W\textsubscript{72}) for incorporation into reconstituted nascent HDL. The two aims we hope to achieve within this project are 1) to provide targeted mutations that increase the specificity and affinity of aaRS towards 2-hydroxy-W-apoA-I, as well as 2) express and confirm the presence of ox-W\textsubscript{72} in modified apoA-I.