A 2:1 complex of 1,3-bis(9H-carbazol-9-yl)propane and tetrachloro-p-benzoquinone (p-chloranil)

Mustafa Arslan
Sakarya University, Adapazari, Turkey

Randolph B. Krafcik

John Masnovi
Cleveland State University, j.masnovi@csuohio.edu

Ronald J. Baker

Follow this and additional works at: https://engagedscholarship.csuohio.edu/scichem_facpub

Part of the Organic Chemistry Commons

How does access to this work benefit you? Let us know!

Recommended Citation

This Article is brought to you for free and open access by the Chemistry Department at EngagedScholarship@CSU. It has been accepted for inclusion in Chemistry Faculty Publications by an authorized administrator of EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.
A 2:1 complex of 1,3-bis(9H-carbazol-9-yl)propane and tetrachloro-p-benzoquinone (p-chloranil)

In the title electron donor–acceptor complex, C_{27}H_{22}N_{2}0.5C_{6}Cl_{4}O_{2}, the p-chloranil molecule lies on a crystallographic inversion center, which is located at the center of the benzene ring. In the crystal structure, one p-chloranil molecule lies above and below the central rings of each donor group of two neighboring 1,3-bis(9H-carbazol-9-yl)propane molecules, with a ring-centroid separation of 3.444 (1) Å. The angle between the planes of the stacking rings of the carbazole and p-chloranil molecules is 3.4 (2)°.

Comment

Electron donor–acceptor (EDA) complexes of carbazoles with certain electron acceptors have attracted much interest, due to their application in industry as photoconductors (Sirotkina et al., 1985; Haderski et al., 2000; Tazuke & Nagahara, 2003). The addition of various electron acceptors as dopants to polyvinylcarbazole (PVK) increases the photosensitivity of these materials in the visible region. Studies of the EDA complexes of some low molecular weight examples of PVK have been conducted in order to understand the nature of the complexation both in solution and in the solid state. We report here the results of the single-crystal X-ray diffraction analysis of an EDA complex of 1,3-bis(9H-carbazol-9-yl)propane and p-chloranil, (I), carried out to determine the intermolecular relations, molecular geometry, and stoichiometry of complexation.
molecule in the complex do not deviate significantly from those of related compounds reported in the literature (Chu et al., 1962; Baker et al., 1991; Duan et al., 2004; Wang et al., 2006).

Each of the carbazole skeletons and the p-chloranil molecule in (I) (Fig. 1) are essentially planar, with r.m.s. deviations of 0.056 (unprimed ring), 0.008 (primed ring) and 0.007 Å (p-chloranil). The dihedral angle between the planes of the carbazole ring systems is 52.52 (9). The methylene chain connecting the two carbazole groups exhibits an anti–gauche conformation.

The molecular packing of (I) (Fig. 2) is mainly determined by $\text{C}14$–$\text{C}25$ interactions between the central ring of the carbazole group and the p-chloranil ring. One p-chloranil molecule associates with two centrosymmetrically related neighboring carbazole rings, forming a sandwich-type complex. The dihedral angles between the mean planes of the p-chloranil ring at (x, y, z) and the pyrrole rings of each of the neighboring dicarbazolyl molecules at (x, y, z) and $(1 - x, -y, 1 - z)$ are equal [$3.4 (2)$], with ring-centroid separations of 3.444 (1) Å and interplanar spacings of ca 3.331 Å, corresponding to a ring-centroid offset of ca 0.875 Å. Additionally, the crystal structure is also stabilized by a C—H···Cg interaction involving the C4–H4 atoms of one molecule and the benzene ring of a second, with H4···Cg = 2.81 Å, where Cg is the centroid of the C4b/C5–C8/C8a ring [symmetry code: (i) $x, \frac{1}{2} - y, -\frac{1}{2} + z$].

Experimental

1,3-Bis(9H-carbazol-9-yl)propane was synthesized from the potassium salt of carbazole and 1,3-dibromopropane according to the literature procedure of Ohline et al. (1992). Dark-blue crystals of the EDA complex of 1,3-bis(9H-carbazol-9-yl)propane with p-chloranil were grown from a concentrated solution (1:1 molar ratio) in dichloromethane by slow evaporation at room temperature. Crystals of the title compound were separated manually from the yellow crystals of uncomplexed p-chloranil.

Crystal data

$\text{C}_{27}\text{H}_{22}\text{N}_{2} \cdot 0.5\text{C}_{6}\text{Cl}_{4}\text{O}_{2}$
$M_r = 497.42$
Monoclinic, $P2_1/c$
a = 12.9035 (11) Å
b = 20.8191 (15) Å
c = 9.0126 (7) Å
$\beta = 93.05 (7)^\circ$
$V = 2417.7 (4) \text{Å}^3$
$Z = 4$
$D_x = 1.367 \text{Mg m}^{-3}$
Mo Kα radiation
$\mu = 0.30 \text{mm}^{-1}$
$T = 295 (2) \text{K}$
Prism, dark blue
0.46 × 0.37 × 0.33 mm

Data collection

Enraf–Nonius CAD-4 diffractometer
$\theta_{\text{max}} = 25.1^\circ$
2 standard reflections
frequency: 120 min
intensity decay: 0.7%

Refinement

Refinement on F^2
$R[F^2 > 2\sigma(F^2)] = 0.040$
$wR(F^2) = 0.097$
$S = 1.02$
4289 measured reflections
316 parameters
H-atom parameters constrained

All H atoms were positioned geometrically and allowed to ride on their parent atoms with C–H distances of 0.93 and 0.97 Å for...
aromatic and methylene H atoms, respectively, and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: CAD-4-PC Software (Enraf–Nonius, 1993); cell refinement: CAD-4-PC Software; data reduction: DATRD2 in NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the Turkish Ministry of Education and CSU College of Graduate Studies for their support of this work.

References

