Modeling and Parameter Estimation of an Actuator for Prosthetic Joints

Bartholomew J. Brown  
*Cleveland State University*

Katherine Florek  
*Cleveland State University*

Hanz Richter  
*Cleveland State University*, h.richter@csuohio.edu

Follow this and additional works at: https://engagedscholarship.csuohio.edu/u_poster_2014

Part of the Engineering Commons

How does access to this work benefit you? Let us know!

Recommended Citation

https://engagedscholarship.csuohio.edu/u_poster_2014/6

This Article is brought to you for free and open access by the Undergraduate Research Posters at EngagedScholarship@CSU. It has been accepted for inclusion in Undergraduate Research Posters 2014 by an authorized administrator of EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.
Abstract

A mathematical model was developed for a linear actuator to be used in a powered leg prosthesis. The model consists of a differential equation relating motor voltage, external force and velocity. All model parameters were known from manufacturer's data, except inertia and friction. A numerical simulation was prepared to estimate these parameters from experimental data. Experiments were conducted and a numerical search was performed to arrive at parameter values that closely fit the data. The mathematical model will be used in subsequent control development work.