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Excitation of morphology-dependent resonances and
van de Hulst’s localization principle

James A. Lock

Department of Physics, Cleveland State University, Cleveland, Ohio 44115

Received October 30, 1998

When a laser beam scatters from a microparticle whose shape deviates from that of a sphere, a number of
partial waves of the incident beam couple to a given partial wave of the scattered and interior f ields. As a
result, partial-wave coupling caused by small surface irregularities of a liquid droplet provides the mechanism
for exciting low-radial-order morphology-dependent resonances.  1999 Optical Society of America

OCIS codes: 290.4020, 290.5850.

For scattering of a plane wave of wave number k 
2pyl by a sphere of radius a, van de Hulst’s localiza-
tion principle1 was originally stated as follows: The
angular dependence of the scattered light for each scat-
tering process (i.e., ref lection, transmission, etc.) in
Mie theory is compared with that of ray theory. The
scattered electric fields of the two theories nearly co-
incide for a .. l if the partial wave l of the incident
plane wave is associated with an incident geometrical
ray that has the impact parameter r0 with respect to
the center of the sphere:

kr0  l 1 1y2 . (1)

The association is restricted to l , ka because only
the rays with r0 , a strike the sphere. Later, the lo-
calization principle was extended2,3 to predict that a
morphology-dependent resonance (MDR) of a partial
wave l . ka is most efficiently excited when a focused
incident beam, rather than a plane wave, passes the
distance r0 . a from the center of the sphere with l
and r0 related by Eq. (1). Inasmuch as the beam clas-
sically passes the sphere by without striking it, the
MDR is excited by the incident partial wave tunnel-
ing through the centrifugal barrier surrounding the
sphere.4 The localization principle then was extended
to the partial-wave coefficients of the focused incident
beam itself.5,6 Again the relation between the partial-
wave number l about which the incident beam coeffi-
cients are sharply peaked and the impact parameter r0
of the focused beam with respect to the origin of coordi-
nates is given by Eq. (1).

In a recent Letter7 an experiment was described
whose purpose was to determine experimentally the
position of a focused laser beam that most efficiently
excites a MDR in a liquid droplet of nominal radius
a. It was found that the incident beam position that
most eff iciently excited high-radial-order MDR’s was
beyond the droplet’s edge, although not so far beyond
as Eq. (1) predicts. For low-radial-order MDR’s, how-
ever, the most efficient excitation position was found
to be slightly inside the droplet’s edge. This result,
which apparently violates the extension of the local-
ization principle to MDR excitation, was attributed to
scattering by irregularities in the shape of the droplet’s

surface. These irregularities include both an overall
distortion produced by hydrodynamic forces acting on
the falling droplets and small-amplitude thermally in-
duced surface capillary waves. This attribution was
supported in Ref. 7 by a numerical computation of the
energy inside the droplet in the MDR mode with the
droplet shape modeled by

rscos ud  af1 1 e coss20udg (2)

and e ,, 1. For this surface shape, the beam posi-
tion that most efficiently excited the TE1

97 resonance
shifted from the prediction of Eq. (1) to slightly in-
side the droplet edge when 1026 , e , 1025. These
results illustrate that, in experimental situations, low-
radial-order MDR’s of liquid droplets are excited not
by partial-wave tunneling but rather by a different
mechanism involving scattering by surface irregulari-
ties that does not occur for spheres but that dominates
when the height of the irregularities is less than a
tenth of a nanometer.

The purposes of this Letter are to provide a more
detailed physical mechanism for the excitation of low-
radial-order MDR’s in microparticles that have small
surface irregularities and to show that the mecha-
nism is consistent with the extension of the localiza-
tion principle to the incident beam coefficients. The
light-scattering equations of generalized Lorenz–Mie
theory8 were derived to first order in the surface per-
turbation from a sphere following the method of Yeh9

and Erma.10 The first-order perturbation theory re-
sults given here employ the notation of Ref. 8 and are
expected to be accurate because the height of the ir-
regularities is much smaller than the wavelength of
light. The particle has refractive index n, and its
axisymmetric surface shape is

rscos ud  af1 1 ef scos udg , (3)

where ef ,, 1. The incident focused beam propagates
parallel to the z axis, has electric-field half-width
w0 in its focal plane, and is decomposed into partial
waves with coefficients Al, m and Bl, m. The Mie theory
partial-wave scattering and interior amplitudes for a
plane wave scattered by a sphere of radius a are al, bl

0146-9592/99/070427-03$15.00/0  1999 Optical Society of America
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and cl, dl, respectively. The analogous partial-wave
scattering and interior amplitudes for a focused beam
scattered by a particle with the surface shape of Eq. (3)
are al, m, bl, m, gl, m, and dl,m. These amplitudes, to
first order in e, are given by

al, m  alAl, m 2 iecl

X
l0

fl0sl0 1 1dcl0 Al0 , mRl0, lI
2
l0, l, myskad2

1 cl0 Al0, mUl0 , lI
1
l0 , l, m 2 dl0 Bl0, mSl0, lJl0, l, mg , (4)

bl, m  blBl, m 2 iedl

X
l0

sdl0 Bl0 , mRl0, lI
1
l0, l, m

2 cl0 Al0, mTl0 , lJl0 , l, md , (5)

gl, m  clAl, m 1 iecl

X
l0

fl0sl01 1dcl0Al0 , mWl0, lI
2
l0, l, mynskad2

1 cl0 Al0 , mZl0 , lI
1
l0 , l, m 2 dl0 Bl0, mXl0 , lJl0 , l, mg , (6)

dl,m  dlBl, m 1 iedl

X
l0

sdl0 Bl0 , mWl0, lI
1
l0, l, m

2 cl0 Al0 , mYl0 , lJl0 , l, md . (7)

In Eqs. (4)–(7) the radial matrix elements are

Rl0 , l  Ql0, lclsnkadcl0 snkad , (8)

Sl0 , l  Ql0 , lc
0
lsnkadcl0 snkad , (9)

Tl0 , l  Ql0, lclsnkadc 0
l0 snkad , (10)

Ul0 , l  Ql0 , lc
0
lsnkadc 0

l0 snkad , (11)

Wl0, l  Ql0 , lj
s1d
l skadcl0 snkad , (12)

Xl0 , l  Ql0, lj
s1d0
l skadcl0 snkad , (13)

Yl0 , l  Ql0 , lj
s1d
l skadc 0

l0 snkad , (14)

Zl0 , l  Ql0, lj
s1d0
l skadc 0

l0 snkad , (15)

where the outgoing Riccati–Bessel function is j
s1d
l 

cl 1 ixl and

Ql0, l  kasn2 2 1dil02llsl 1 1d s2l0 1 1dyl0sl0 1 1d s2l 1 1d .

(16)

The angular matrix elements are

I1
l0, l, m 

s2l 1 1d sl 2 jmjd !
2lsl 1 1d sl 1 jmjd !

Z p

0
sin u duf scos ud

3 stjmj
l0 t

jmj
l 1 m2p

jmj
l0 p

jmj
l d , (17)

I2
l0 , l, m 

s2l 1 1d sl 2 jmjd !
2 sl 1 jmjd !

Z p

0
sin u duf scos ud

3 P jmj
l0 P jmj

l , (18)

Jl0, l, m 
s2l 1 1d sl 2 jmjd !
2lsl 1 1d sl 1 jmjd !

m
Z p

0
sin u duf 0scos ud

3 P jmj
l0 P jmj

l , (19)

where P jmj
l are associated Legendre polynomials and

t
jmj
l and p

jmj
l are the angular functions of generalized

Lorenz–Mie theory.8 When the beam focal waist is
located at r0 cos f0ûx 1 r0 sin f0ûy with r0 , a, the
incident beam partial-wave coefficients for a focused
Gaussian beam and l ..1 are given by8

Al, mø Kmax
l, m fsl 1 1y2dykr0g1/2 cos f0

3 expf2skr0 2 l 2 1y2d2yskw0d2g , (20)

Bl, mø Kmax
l, m fsl 1 1y2dykr0g1/2 sin f0

3 expf2skr0 2 l 2 1y2d2yskw0d2g , (21)

where

Kmax
l, 6m  s2idjmj21kw0 exps7ijmjf0dyp1/2sl 1 1y2djmj

(22)

is the maximum value of Al, m and Bl, m, which occurs
when l satisfies Eq. (1).

Equations (4)–(7) have a pleasing physical inter-
pretation. The first term of each equation describes
scattering by a sphere of radius a, where a given
incident beam partial wave l couples to only the same
partial wave l of the scattered and interior fields. The
remaining terms describe scattering to first order in e
by the surface irregularity aef scos ud, where a number
of different incident beam partial waves l0 couple to
a given partial wave l of the scattered and interior
fields. In the language of quantum mechanics, some
of the angular momentum of the incident partial wave
is taken up by a Fourier component of the irregularity,
producing the different angular momenta of the scat-
tered and interior fields. For the Fourier component
f scos ud  cosspud, the range of the partial-wave
coupling is l 2 p # l0 # l 1 p, the angular matrix ele-
ments I1

l0 , l, m and I2
l0, l, m vanish when l0 2 l is odd

(even) if p is even (odd), and Jl0, l, m vanishes
when l0 2 l is even (odd) if p is even (odd) as a
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result of the algebra of associated Legendre poly-
nomials. Numerical computations with a number
of different values of l, l0, p, and jmj showed that,
for f scos ud  cosspud, the value of I 1

l0, l, m was
,Os1d only when l0  l 2 p or l0  l 1 p. Otherwise
I1

l0 , l, m , Os1023d for all other allowed values of l0. Thus
a given Fourier component of the surface irregularity
strongly couples two incident beam partial waves to a
given partial wave of the scattered and interior fields.
Because the surface irregularity is assumed to be
axisymmetric, the z component of the angular momen-
tum is conserved; i.e., the azimuthal mode number
m of the incident beam, the scattered fields, and the
interior fields is identical. Scattering by the surface
irregularity also has both a polarization-preserving
component proportional to I1

l0, l, m and I2
l0, l, m and a cross-

polarized component proportional to Jl0 , l, m.
In Ref. 7, the partial-wave l  97 resonance TE1

97
in a microparticle with the surface shape of Eq. (2)
and n  1.332 was calculated for an incident focused
Gaussian beam with l  0.5145 mm and f0  py2
such that Al, m  0 and Bl, m fi 0. The energy inside
the particle in the MDR with azimuthal mode number
m is proportional to jd97,mj2. If the incident beam is
positioned beyond the edge of the particle as in Eq. (1)
such that kr0  97.5, and the beam is tightly focused
so Bl, m rapidly decreases as a function of l, the interior
partial-wave amplitude can be approximated by the
first term of Eq. (7):

d97,m ø d97Kmax
97, m , (23)

and MDR excitation occurs by means of tunneling.
If instead the incident beam is positioned such that
kr0  77.5, and the beam is again tightly focused so
Bl, m rapidly decreases as a function of l0, the interior
partial-wave amplitude of Eq. (7) is

d97,m ø ied97d77Kmax
77, mW77, 97I1

77, 97, m , (24)

and MDR excitation occurs through angular momen-
tum coupling. If e is large enough, the magnitude of
d97,m in relation (24) becomes greater than that in re-
lation (23). As the size parameter of the particle is
ka ø 78.558 at the TE1

97 resonance, the partial wave
l0  77 corresponds to the focused incident beam lying
just inside the droplet surface through the extension of
the localization principle to the incident beam partial-
wave coefficients. Thus, if e is large enough, position-
ing the beam just inside the edge of the particle so light
enters it by refraction and using the surface shape ir-

regularity to couple the incident partial wave to the
resonant partial wave excite the MDR more than do
positioning the beam the appropriate distance beyond
the edge of the particle and having the MDR be excited
by tunneling.

Numerical computations showed that, for the values
of the parameters given above, jd77W77, 97j  8.1 3 105

and I1
77, 97, m , 0.3 for small jmj. Also, Kmax

77, m and Kmax
97, m

are comparable for small jmj. Thus, when e is larger
than ,4 3 1026, corresponding to a surface roughness
of ,0.03 nm, the partial-wave coupling mechanism
dominates the tunneling mechanism in exciting the
TE1

97 resonance. This crossover value of e agrees with
the results shown in Fig. 5 of Ref. 7. Generalization of
the partial-wave coupling mechanism to other Fourier
components of the surface shape, other resonances,
other propagation directions of the incident beam, and
nonaxisymmetric irregularities is straightforward.

In conclusion, although the tunneling mechanism
excites low-radial-order MDR’s in a sphere, it is the
angular momentum coupling mechanism that excites
these resonances in experimental situations with liquid
droplets because the heights of the thermally induced
capillary waves upon the surface of a droplet are of the
order of a few tenths of a nanometer, and the capillary
waves’ spatial frequency spectrum is quite broad.

This study was supported in part by NASA grant
NCC3-521. The author thanks the authors of Ref. 7
for making a preprint of their manuscript available
before publication.
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