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An Intelligent System for Monitoring the 
Microgravity Environment Quality On-Board 

the International Space Station 
Paul P. Lin and Kenol Jules 

Abstract—An intelligent system for monitoring the microgravity 
environment quality on-board the International Space Station is 
presented. The monitoring system uses a new approach combining 
Kohonen’s self-organizing feature map, learning vector quantiza-
tion, and a back propagation neural network to recognize and clas-
sify the known and unknown patterns. Finally, fuzzy logic is used to 
assess the level of confidence associated with each vibrating source 
activation detected by the system. 

Index Terms—Adaptive pattern recognition and classification 
(APRC), back propagation neural network (BPNN), learning 
vector quantization (LVQ), microgravity, self-organizing feature 
map (SOFM), source detection, system monitoring. 

I. INTRODUCTION 

STARTING with Flight 6A (STS-100) in April 2001, the 
International Space Station (ISS) became scientifically 

operational. It provides the scientific community with much 
longer periods of microgravity condition compared to the 
U.S. Space Shuttle. The Principal Investigator Microgravity 
Services (PIMS), part of the Microgravity Measurement and 
Analysis Project (MMAP) at the NASA Glenn Research Center 
(GRC), has the responsibility for measuring, analyzing and 
characterizing the microgravity environment on-board the ISS, 
since many of the experiments conducted on the ISS require 
the knowledge of the microgravity environment quality for 
accurate analysis of the science experimental data. 

The main objective of this work is to develop an intelligent 
monitoring system, which not only can classify incoming sig
nals into known patterns, but also identify the unknown ones, 
in near real time. Since the ISS is being built in increments, its 
fundamental frequency will change some until assembly is com
plete. Thus, identifying the unknown patterns is as important as 
the known ones. At this point, there are five sensors that can si
multaneously receive acceleration data. The monitoring system 
is fully automated from analyzing the sensor data to making the 
final decision as to what vibrating sources are active, with some 
degree of confidence. 

P. P. Lin is with the Mechanical Engineering Department, Cleveland State 
University, Cleveland, OH 44115-2425 USA (e-mail: p.lin@csuohio.edu). 

K. Jules is with the NASA Glenn Research Center, Cleveland, OH 44135 
USA (e-mail: kenol.jules@grc.nasa.gov). 

II. INTELLIGENT MONITORING SYSTEM 

Currently, the acceleration data analysis and interpretation to 
characterize the Space Shuttle and other spacecraft platforms 
microgravity environment is performed by a PIMS data analyst. 
The acceleration data received from the sensors are in the time 
domain. They are, then, transformed to the frequency domain by 
means of a fast Fourier transform (FFT), from which the power 
spectral density (PSD) is generated. The PSD is a function that 
quantifies the distribution of energy in a signal with respect to 
frequency and it is used to identify and quantify vibratory (oscil
latory) components of the acceleration environment. The major 
peak values of the PSDs must be associated with the fundamental 
or natural frequencies of different vibrating sources. Such anal
ysis is time consuming. To ease the analyst’s work, it is desirable 
to automate the analysis process described above. Also, automa
tion will provide space-experiment principal investigators (PIs) 
on-line access to the acceleration data via the PIMS world wide 
web site, where they can see what vibrating sources are active in 
near real time, which might impact their experiments. 

The intelligent monitoring system is designed to perform the 
following four tasks: 

1) Detect the current vibrating sources on-board the ISS in 
near real time (source detection). 

2) Classify known patterns (pattern classification). 
3) Recognize unknown patterns (pattern recognition). 
4) Assess the level of confidence associated with each vi

brating source activation (confidence determination). 

The schematic diagram of the overall monitoring system is 
shown in Fig. 1 and described in detail below. 

A. Source Detection 

In terms of source detection, the system must automatically 
detect the fundamental frequencies of the vibratory disturbance 
sources from the acceleration data measured by the accelerom
eters (sensors) located at different locations on-board the ISS. 
The fundamental frequencies correspond to the major peaks of 
the PSD data. First of all, based on the degree of PSD data varia
tion, the entire frequency spectrum is automatically divided into 
several regions. Within each region, all data points are fitted with 
a high-order curve. A data point whose function value (the PSD 
value, in this case) is significantly (such as three times) higher 
than the fitted value and whose sign of gradient changes from 
positive to negative, is considered as a major peak. 

mailto:kenol.jules@grc.nasa.gov
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Fig. 1. Overall monitoring system. 

B. Pattern Classification 
On-board the ISS, there are many disturbance sources, such 

as fans, pumps, life support systems, etc. In addition, distur
bances can be generated during vehicle docking. As a result, 
the structural modes of the ISS change due to the addition of the 
new ISS modules. For the purpose of source classification, these 
disturbance sources need to be identified as soon as they are 
detected. The Kohonen’s self-organizing feature map (SOFM) 
[1] is used to cluster the known patterns. A known pattern con
sists of the nominal values of the previously measured frequency 
and acceleration of an existing disturbance source. SOFM is a 
special class of artificial neural networks. It is based on com
petitive learning in which the output neurons compete among 
themselves to be activated or fired and the winner takes it all. 
Furthermore, SOFM is characterized by the formation of a topo
logical map of the input patterns in an unsupervised manner. The 
topological map allows one to visualize the order of organized 
input patterns in the input space. 

The classification approach used in this work consists of 
cluster and class (pattern) grouping. A cluster is a group of 
data with the same classification features. In this case, a cluster 
represents a group of measured frequency and acceleration 
values of a single vibrating source and the mean value of this 
group is called the cluster center. Thus, each cluster center 
contains a pair of data representing the nominal fundamental 
frequency and the nominal acceleration values of a known 

vibrating source. A class is formed by grouping several clusters 
that share the same attributes into a group. In other words, 
class is one level higher than cluster. Since the ISS has multiple 
degrees of freedom, it possesses multiple fundamental frequen
cies, known as structural modes. In this case, several clusters 
represent the structural modes of the ISS. These several clusters 
form a class. Likewise, the harmonics of a vibrating source, 
which by themselves are clusters, also form a class. Grouping 
clusters into classes is accomplished by using learning vector 
quantization (LVQ) [2], [3], which is a supervised learning 
technique. The strength of LVQ networks is that they can be 
trained to recognize classes made up of multiple unconnected 
regions, which cannot be accomplished by SOFM. A mul
tiple-unconnected-region is referred to a class that contains 
both the fundamental frequency of a vibrating source and its 
related harmonics. The aforementioned ISS structural modes 
and their harmonics are a typical example of such multiple-un
connected-region. The LVQ offers the advantage of grouping 
several clusters into the same class (same source, in this case). 

C. Pattern Recognition 

To prevent possible misclassification, the classified patterns 
need to be verified. For each known pattern, the allowable tol
erance (deviation) ranges from the nominal values of frequency 
and acceleration are specified. Thus, as soon as an input pattern 



is assigned to a cluster, a verification process begins by checking 
if the pattern falls within the maximum allowable range [The 
maximum allowable range is knowledge based. For example, 
the Ku band antenna, used by the Shuttle for communication 
and data downlink to ground, has a disturbance signature around 
17 Hz with associated acceleration magnitude level between 
100 to 300 g (RMS). Knowing such range from past data, an 
allowable deviation range from the nominal value is specified, 
for example, 5 based on past observation]. Therefore, a pat
tern, which has been classified and verified, is recognized as 
a known pattern. On the other hand, any pattern that falls out
side of the allowable range is recognized as an unknown pattern 
(meaning that the system has not seen it before or been trained 
yet to recognize it). 

The pattern recognition is accomplished by building two sep
arate filter masks for frequency and acceleration. Each mask 
can perform instant filtering by means of neural network map
ping. The mapping is accomplished by using another class of 
artificial neural networks, called the back-propagation neural 
network (BPNN) [4], which uses supervised learning rules. A 
BPNN based on a Gaussian distribution with respect to the nom
inal value of any known pattern has been trained. The distribu
tion is bounded by three standard deviations ( 3 ). Therefore, 
if a frequency value with a 5 deviation from the nominal 
frequency of a vibrating source of interest is specified, the de
viation is equivalent to ( 3 ), likewise, for acceleration. It is 
worthwhile to note that the BPNN was trained in terms of the 
unit of , which is dimensionless. Therefore, there is only one 
trained BPNN for both frequency and acceleration. 

To recognize a pattern, the BPNN generates the so-called de
gree of belongingness (DOB) between 0 and 1 for both fre
quency and acceleration. For instance, a value below 0.1 (using 
3 ) for either frequency or acceleration means that the detected 
source does not belong to the cluster and is recognized as an un
known pattern. On the other hand, if the detected frequency is 
exactly the same as the nominal frequency, then the DOB value 
of frequency will be 1, likewise, for acceleration. 

D. Confidence Determination 

The objective here is to provide an index, which gives a rel
ative assessment as to how confident the monitoring system is 
regarding the determination of which source is active at any mo
ment in time. 

On-board the ISS, there are many accelerometers with dif
ferent sampling rates. They may be moved to different locations 
from time to time and may or may not be located in the scien
tific racks where the experiments are located. Therefore, the lo
cations of known sources, sensors and racks should be known 
by the system. Such information is used to design the decision-
making process, which in turn generates the confidence index. 

It is very possible that the same disturbance source is detected 
by more than one sensor. In this case, it is desired to determine 
which sensor is most relevant to a specific experiment. Instead 
of classifying the relevance as relevant or irrelevant, it is quanti
fied using the concept of partial truth. As a result, the degree of 
relevance (DOR) is between 0 and 1, where 0 and 1 mean very ir
relevant and very relevant, respectively. The DOR between sen-

TABLE I
 
ACCURACY COMPARISON FOR THE FIRST DATA SET
 

TABLE II
 
ACCURACY COMPARISON FOR THE SECOND DATA SET
 

Note: The above-estimated RMS acceleration values were calculated using the 
proposed procedure based on the PSD data at 60.18 Hz. 

sors and experiment racks greatly depends on their geometric 
relationship. 

To accomplish this, fuzzy logic [5] is used since it is suitable 
for dealing with imprecision and uncertainty. Fuzzy logic mea
sures the truth of a given situation as a matter of degree. Between 
the input and the output, there is a black box that does the work 
through the use of if-then rules. The input for the fuzzy logic 
contains membership functions of each input variable and the 
output also contains membership functions of each output vari
able. In this work, there are three input membership functions: 
the DOB of frequency, the DOB of acceleration and the DOR of 
sensors with respect to experiment racks. The DOB and DOR 
values are both between 0 and 1. The output membership func
tion of fuzzy logic is the degree of confidence (DOC), which is 
also between 0 and 1, where 1 represents 100% confidence that 
a source of interest is active and 0 means that the source is not. 
An example of a fuzzy logic rule for a sensor is: if DOB is high 
and DOR is high, then the DOC is high. 

III. TECHNICAL NOVELTIES 

In the course of developing the monitoring system, many 
technical problems arose, but were overcome. Below we briefly 
discuss how the process leads to some technical innovations 
(novelties) in the field of pattern classification. 

A. Generating Additional Dimension for Pattern Classification 
Generally speaking, the more dimensions used in pattern clas

sification, the better the classification will be. This is simply be
cause each pattern will have more distinct features. In this work, 
however, once the acceleration data have been transformed from 
the time domain to the frequency domain through FFT, it is diffi
cult to relate a detected fundamental frequency magnitude level 
in the frequency domain to its corresponding acceleration in the 
time domain. Such task is time consuming and resource inten
sive in terms of storing and tracking data in the two domains. 

In the time domain, an acceleration magnitude value is the 
combined effect of all vibrating sources at that instant of time. 
Therefore, the acceleration values in the time domain can not 
be used to identify which vibrating sources are active. Conse



Fig. 2. Integration of PSD Data with respect to Frequency. 

quently, source detection has to be made in the frequency do
main. However, it is necessary to know the corresponding ac
celeration value for each detected frequency in the frequency 
domain. To do so, one of Parseval theorems [6] is used. The 
theorem states that the total energy may be determined either by 
computing the energy per unit time and integrating over all time 
or by computing the energy per unit frequency and integrating 
over all frequencies. The theorem further states that there exists 
an equivalence between the root mean square (RMS) value of 
a signal computed in the time domain to that in the frequency 
domain. The equivalent RMS acceleration can be calculated as 
follows 

(1) 

, is the number of samples in the 
time domain, 
where 

is the PSD value at frequency and is 
the frequency resolution. 

Furthermore, this theorem can be used to attribute a fraction 
of the total energy in a signal to a user-specified band of frequen
cies by appropriately choosing the limits of integration. How
ever, the theorem does not address what the appropriate limits 
of integration are. In this paper, a procedure for quantifying the 
RMS acceleration, which addresses the choice of the limits of 
integration, is developed. It is described below. 

Step 1)	 The PSD data around the frequency of interest are re
constructed by a Gaussian distribution to minimize 
the measurement noise. Conceptually, the standard 
deviation ( ) value of this distribution should be rel
atively small in order to make a narrow band around 
the frequency of interest. The value was deter
mined by simulations using some sets of previous 
Space Shuttle mission data in the frequency domain 
and the time domain. For each data set, the error 
between the estimated RMS acceleration from the 
frequency domain and the actual RMS acceleration 
from the time domain was compared while varying 
the value. As a result of the simulations, it was 
found that setting the value equal to yields the 
smallest error. The accuracy comparisons are shown 
in Tables I and II. 

Step 2)	 The reconstructed PSD data are integrated with re
spect to frequency from to , where 
and stand for the frequency value of interest and 
the PSD frequency resolution, respectively. Such in
tegration is essentially equivalent to the hatched area 
shown in Fig. 2. Note that the integration limits were 
determined by the simulations mentioned above. 

Step 3)	 The square root of the integrated result is taken. As a 
result, the time-domain equivalent RMS acceleration 
( ) for the frequency of interest is recovered. 



This procedure was verified using two sets of the Space 
Shuttle mission data in the frequency domain and the time 
domain (for comparison). The accuracy of the acceleration 
estimation for each set is given in Tables I and II. 

Here , , and are the PSD data in the , and 
axes, respectively. Note that the above-estimated RMS accelera
tion values were calculated using the proposed procedure based 
on the PSD data at 79.77 Hz, whereas the actual RMS accel
eration values came from the Space Shuttle past mission data 
collected from sensors in the time domain. 

Generally speaking, the actual acceleration magnitude mea
sured in the time domain is the combined acceleration of all vi
brating sources at that time. However, it is possible to find a vi
brating source that happens to be the only active source at some 
instant of time. Such sources can be found in the frequency do
main by identifying the dominant PSD value at some specific 
frequency such as 79.77 Hz or 60.18 Hz, in this case. As shown 
in the above tables, the estimation errors are quite small. This 
procedure was implemented for this work. As a result, each de
tected fundamental frequency is accompanied by the estimated 
RMS acceleration magnitude to form a pair of data to be used 
for the pattern classification. 

B. Proper Weighting With Multiple Dimensions 
The SOFM uses Euclidean distance to measure the distance 

between an input pattern and the cluster center of interest. For 
example, the Euclidean distance in two-dimensional space is 
defined as 

(2) 

where and are the values of the input pattern in dimensions 
1 and 2, respectively and and are the cluster centers 
in dimensions 1 and 2, respectively. In this work, the two di
mensions are the frequency and acceleration magnitude. There
fore, the Euclidean distance of an input pattern ( ) to a cluster 
center ( ) can be expressed as 

(3) 

Since SOFM uses Euclidean distance for classification, im
proper weighting between these two dimensions could lead 
to misclassification. For example, consider the following two 
cluster centers, whose units are Hz and g (Table III). 

If a source is detected at 71.8 Hz and 46 micro-g, then without 
proper scaling the data point will be classified into cluster 
because the first dimension (frequency, in this case) is much 
more dominant than the second dimension (acceleration). This 
results in the shortest Euclidean distance between the detected 
source and cluster [see (3)]. In this case, the Euclidean 
equation degenerates from 2-D to 1-D. However, if a scaling 
factor of 2 10 were applied to the second dimension (i.e., the 
values of acceleration are multiplied by this factor in order to 
generate an equally weighted scale to preserve the two dimen
sionality of the data), then the same source would be classified 
into cluster , which is correct because the Euclidean distance 
is the shortest and both dimensions are equally weighted. It 
is very important to make and [as shown in (3)] the 
same order of magnitude. Otherwise, one dimension alone will 

TABLE III
 
CLUSTER CENTERS AND THEIR DIMENSIONAL RANGES
 

Fig. 3. Cluster centers and their boundaries. 

dictate the selection of the cluster, which will result in pattern 
misclassification. 

C. Modified Model for Pattern Classification and Recognition 
The SOFM classifies every input data point into one of the 

established cluster centers. By default, the boundary between 
any two adjacent clusters is essentially located in the middle 
of the two cluster centers (see Boundary —the boundary 
between clusters and and Boundary —the boundary 
between clusters and , Fig. 3). 

Therefore, any point, such as (marked by “ ”) 
that falls within the region between boundary and 
boundary belongs to cluster . 

Let us suppose that cluster has a range in each dimension, as 
enclosed by the rectangle around the cluster center (see Fig. 3). 
Any point that falls outside the rectangular region, but still be
tween boundary and boundary , should not be classi
fied into cluster . In fact, it should be classified as an unknown 
pattern. Unfortunately, SOFM has no such ability. Lippman [7] 
proposed an approach to combine SOFM and LVQ in order to 
place the input vectors into the desired classes. His approach en
hanced the capability of pattern classification. However, it still 
can not recognize unknown or new patterns. To address these 
shortcomings, the hybrid model is proposed in this paper. This 
model, as shown in Fig. 4, combining SOFM, BPNN, and LVQ, 
is referred to herein as adaptive pattern recognition and classi
fication (APRC). 

In this proposed model, the BPNN is inserted in between 
SOFM and LVQ for unknown pattern recognition, while SOFM 
and LVQ are used solely for the classification of known patterns. 



Fig. 4. Adaptive pattern recognition and classification. 

D. Taking Into Account Multi-Dimensional Ranges of 
Neighboring Clusters 

In multi-dimensional space, each cluster may have a different 
range in each dimension, as shown in Fig. 5. In this case, the 
Kohonen’s SOFM [1] will classify the data point into 
cluster due to the shortest Euclidean distance between the 
point and the center of cluster (even though that data point 
belongs to cluster ). However, in the APRC model, since 
the point falls outside the specified range of each dimension 
of cluster , that data point will be placed on hold until the 
ranges of the neighboring cluster (cluster , for instance) 
are checked. As a result, the data point will be classified into 
cluster as a known pattern. Without the multi-dimen
sional neighboring cluster checking feature of APRC, the data 
point would have been classified as an unknown pattern, which 
would have been incorrect. The proposed APRC model has the 
ability to avoid such possible misclassification in multi-dimen
sional space for clusters with cross-boundary range overlapping. 

In multidimensional space, this type of misclassification 
could occur even with proper scaling among dimensions. 
The problem is essentially due to the different dimensional 
ranges for each cluster when two cluster centers are close to 
each other. The only remedy to this problem is to check the 
neighboring clusters in each dimension. In this monitoring 
system, neighboring cluster checking was implemented using 
the BPNN, which compares every unknown pattern with the 
neighbors of the rejected cluster to make sure that the unknown 

Fig. 5. Multi-dimensional ranges for each cluster. 

pattern, in fact, does not belong to any of the surrounding 
clusters. 

In summary, the proposed APRC used in this work is superior 
to Lippman’s model [7] in the following aspects: 

a) It can recognize unknown patterns. 
b) It can avoid pattern misclassification. 
c) It takes into account multi-dimensional ranges of neigh

boring clusters. 



IV. THE APRC APPROACH 

Fig. 4 shows the schematic diagram of the APRC approach. 
The procedure of the approach is described below in detail. The 
program begins by retrieving PSD data sets generated from the 
real-time acceleration data downlinked from the ISS to perform 
peak detection. For each detected relevant peak, the program 
uses the modified Parseval theorem to estimate the RMS ac
celeration, from which the acceleration magnitude level from 
the time domain is calculated, for each detected frequency. For 
each pair of acquired parameter detected (frequency and accel
eration), the program uses SOFM to screen each set by assigning 
it to some potential cluster (remember that SOFM uses the Eu
clidean distance for classification; thus, if it is used alone, it 
could lead to pattern misclassification). 

To overcome the weakness of SOFM, the program then uses 
the BPNN to check if the detected pair falls within a prescribed 
range (for both frequency and acceleration). The BPNN either 
affirms or rejects the preliminary clustering made by SOFM. 
If it affirms it, the pair is left in the assigned cluster. Other
wise, the BPNN performs the neighboring-cluster check. If a 
match is found, the pair is removed from the preliminary as
signed cluster and reassigned to the new cluster by SOFM. If 
no match is found, the cluster is removed from the previously 
assigned cluster and transferred to a database reserved for un
known patterns for further analysis and possible training. Once 
the pair is affirmed, SOFM sends it to LVQ, which classifies 
the pair as well as matching the value (frequency and accelera
tion) of the pair with the name of the pattern, for example, fan 
or pump, in the known database. Once, the name of the pair is 
identified, the vibrating source name along with its value is sent 
to the PIMS web site for display and viewing by principal in
vestigator teams. 

V. SIMULATION RESULT 

At the time when this simulation was performed, no real-time 
acceleration data was available from the ISS. Therefore, the 
monitoring system was simulated using two sets of data from 
previous Space Shuttle missions and two sets of data from pre
vious NASA missions on the Russian MIR Space Station. For 
these four sets of data, the program correctly detected the fun
damental frequencies of the vibratory disturbance sources, rec
ognized and classified them into the right clusters and classes. 

The result of the simulation is discussed in detail below. For 
the simulation a database was created containing 43 clusters 
simulating known patterns to the system and 15 classes simu
lating the vibrating classes to which the 43 clusters belonged. 
The simulation started with peak detection of all the three axes 
PSD data generated from the four previous missions mentioned 
above. Taking the -axis PSD data as an example, in the range 
of 0 to 200 Hz, 58 peaks (clusters) were detected. Out of these 
58 peaks, the program recognized 24 as known patterns and 34 
as unknown. The reason a large number of unknowns were de
tected is due to the fact that the trained patterns (stored in the 
database as known patterns) were mostly between 0 and 100 Hz. 
Only three known patterns were over 100 Hz in the database. 

As soon as a peak from the PSD data was detected, the mod
ified Parseval theorem was used to calculate the actual accel-

TABLE IV
 
EXAMPLE OF NEIGHBORING CLUSTERS
 

eration magnitude associated with that peak. For example, a 
peak was detected at 38.0859 Hz and the acceleration magni
tude was calculated to be 11.32 g. The SOFM temporarily as
signed the pattern in cluster 17, which has the prescribed range 
of 38 5% for frequency and 10 to 30 g for acceleration. The 
SOFM passed the values of the detected peak to the BPNN 
for verification in order to avoid possible misclassification. The 
BPNN compared the frequency and acceleration values with 
the nominal values of cluster 17 (38 Hz and 20 g, respec
tively) and determined the DOB for frequency and acceleration 
as 0.912 and 0.034, respectively. In this case, the frequency of 
38.0859 Hz was very close to the nominal value, while the ac
celeration of 11.32 g was just slightly above the minimum ac
celeration 10 g. This pattern was confirmed and then sent back 
to SOFM for final clustering. Since both frequency and accel
eration values were within the prescribed ranges, that pattern 
was recognized as a known pattern belonging to cluster 17. Fi
nally, SOFM passed that information to LVQ, which determines 
which class that pattern belongs to and its actual name. In this 
case, it was the signature of a fan associated with an experiment 
called glovebox. 

The following illustrates how the program was able to prevent 
pattern misclassification. Let us examine the three known pat
terns in the neighborhood of 71 and 72 Hz, shown in Table IV. 

The program detected a relevant peak at 71.2585 Hz with 
calculated acceleration of 38.6 g. Initially, this pattern was 
temporarily identified as an unknown pattern because it was 
compared with cluster 29. The program then checked the first 
neighboring cluster (cluster 30), but the pattern was again 
rejected because its acceleration was beyond the prescribed 
acceleration range of cluster 30. The program continued to 
check the second neighboring cluster (cluster 31) and suc
cessfully recognized the pattern as a known pattern (cluster 
31). The reason cluster 29 was picked as the right match at 
the first pass is because SOFM used Euclidean distance for 
clustering. If only SOFM were used, the pattern would have 
been assigned to cluster 29, which would have been the wrong 
cluster, but since the BPNN was used to check the prescribed 
ranges as well as neighboring clusters, two mistakes were 
avoided. First, a pattern misclassification was avoided (cluster 
31 instead of 29). Second, instead of classifying the pattern as 
an unknown pattern, it was recognized as a known one due to 
the neighboring cluster checking capability of the program. 

For this simulation, the total CPU time from peak detection 
to pattern recognition and classification was about 4 seconds for 
each axis using a PC with 500 MHz clock speed. The simula
tion result was verified by examining the corresponding color 
spectrograms in , and -axes, respectively. A spectrogram is 
a three-dimensional plot that shows PSD values (represented by 



colors) versus frequency versus time. It is primarily for the pur
pose of visualization. The result showed a 100% success rate in 
recognizing and classifying the detected frequencies and accel
eration magnitudes into known and unknown patterns. In this 
simulation, the degree of relevance for each sensor to any spe
cific experiment rack was not tested. 

VI. CONCLUSIONS 

The monitoring system discussed in this paper has demon
strated its capability to automatically detect the vibratory dis
turbance sources and to correctly identify and classify them. 
The APRC approach presented here has the ability to recognize 
and classify known and unknown patterns, as well as to prevent 
possible pattern misclassification. A procedure to quantify the 
RMS acceleration in the frequency domain, which allows for 
the calculation of the acceleration magnitude levels in the time 
domain, was developed. The acceleration magnitude calculation 
gives SOFM an extra dimension, which lessens to some degree 
the potential of pattern misclassification. Fuzzy logic is used 
to exploit the tolerance for imprecision, uncertainty and partial 
truth, along with the experience of the human experts (by means 
of fuzzy logic rules), to make intelligent decisions as to what vi
brating sources are more relevant to a specific sensor. 

Our experience is that it takes a data analyst quite some time 
to analyze a typical set of data, such as 4,193 points, to iden
tify the known and unknown patterns in three axes. This type 
of work is considered post data analysis. In contrast, the pro
posed monitoring system can automatically retrieve PSD data 
and perform data analysis in near real time. More importantly, 
the recognized events (i.e., known patterns) are instantly posted 
on the web site of the NASA PIMS so that the space-experiment 
principal investigators around the world can see what vibrating 
sources are active at any time. 

Currently, there are six sensors installed inside the Interna
tional Space Station to measure the acceleration in the vibratory 
regime (0.01–300 Hz). They usually reside at certain fixed lo
cations for some time and could measure the acceleration of the 
same vibrating source at the same time. The locations of most 
vibrating sources, such as fans and pumps, are known. Future 
work includes developing a multi-sensor fusion scheme to au
tomatically choose the sensor that is most relevant to a specific 
source. 
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