9-6-2012

Normalizing for Noise Removal from Electrocardiogram Signals

Dominique Diamond Brooks
Cleveland State University, D.D.BROOKS74@csuohio.edu

Daniel J. Simon
Cleveland State University, d.j.simon@csuohio.edu

Follow this and additional works at: https://engagedscholarship.csuohio.edu/u_poster_2012

Part of the Life Sciences Commons, and the Other Analytical, Diagnostic and Therapeutic Techniques and Equipment Commons

How does access to this work benefit you? Let us know!

Recommended Citation
Undergraduate Research Posters 2012. 11.
https://engagedscholarship.csuohio.edu/u_poster_2012/11
Normalizing for Noise Removal from Electrocardiogram Signals
By: Dominique Brooks and Dr. Daniel Simon (Faculty Advisor)
Cleveland State University
September 6, 2012

Introduction

• Electrocardiography (ECG) measures the electrical impulse of the heart over time using electrodes that attached to the body
• ECG data can determine arrhythmias in the heart
• The ability to analyze the ECG by observing the signal is difficult due to human motion
• Designing a computational program using a synthetic ECG to test Normalized Least Mean Square (NLMS) filter serves as a basis to remove noise from the signal

Methods

• To test the efficiency of NLMS, we used a synthetic ECG that is similar to a normal human ECG

Results

Figure 1- Synthetic ECG

Using a synthetic ECG comes with some great advantages that allows us to:
• Use this as a standard for exploring the effect of various parameters in the signal
• Change the levels of the accelerometer noise
• Use different sampling frequencies

NLMS

• Use NLMS to estimate the effect of user motion on measured ECG
• Use estimated effect to estimate noise for ECG

Conclusion

• The NLMS filter results indicate that the filter is working properly
• We will expand on this research by adding computational intelligence in combination with NLMS

Figure 2- Estimated Coefficients of x, y, z

• NLMS is producing the estimated coefficients of user acceleration
• NLMS is converging to 1, which is the correct value, with little noise and remains at 1 with some noise in the signal