4-15-2006

9-Ethyl-3-(9H-9-ethylcarbazol-3-yl)-4-nitro-9H-carbazole

Erol Asker
Balıkesir University, Balıkesir, Turkey

John Masnovi
Cleveland State University, j.masnovi@csuohio.edu

Follow this and additional works at: http://engagedscholarship.csuohio.edu/scichem_facpub

Part of the Organic Chemistry Commons

How does access to this work benefit you? Let us know!

Recommended Citation

This Article is brought to you for free and open access by the Chemistry Department at EngagedScholarship@CSU. It has been accepted for inclusion in Chemistry Faculty Publications by an authorized administrator of EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.
9-Ethyl-3-(9H-9-ethylcarbazol-3-yl)-4-nitro-9H-carbazole

In the molecule of the title compound, C_{28}H_{23}N_{3}O_{2}, the nitro group is almost perpendicular to the carbazole ring to which it is attached. The crystal packing is determined by C—H···O and π–π interactions, where the nitrated carbazole ring of one molecule associates in a shifted parallel planar orientation with the centrosymmetrically related non-nitrated carbazole ring of a neighbouring molecule.

Comment

Nitrocarbazoles serve as precursors for the synthesis of aminocarbazoles, which are of interest due to their pharmaceutical and photoconduction properties (Shufen et al., 1995). Photochemical nitration of carbazoles using tetryanitromethane (TNM) can be used as an alternative route to the conventional methods which require the use of nitric acid. Photochemical reactions between carbazoles and TNM take place through an electron-transfer process upon irradiation of their donor–acceptor (EDA) complexes (Iles & Ledwith, 1969; Masnovi et al., 1990). Photonitration products of carbazoles vary depending on the nature of the substituents on the carbazole rings. While unsubstituted carbazoles lead to 3-nitro derivatives, 3-alkyl-substituted carbazoles give rise to 1- and 6-nitro derivatives. In the case of 9,9'-diethyl-3,3'- dicarbazolyl, nitration takes place mainly at the C4 centre. This can be explained by the stabilization of the positive charge of the cation intermediate by the resonance structures involving the N atoms of both carbazole rings. The higher reactivity of the carbazole C4 centre suppresses the possible nitration at C3. Hence, only a minimum quantity of the 6-nitro product was isolated. Due to the conjugation of carbazole ring systems with each other, the electron-withdrawing nitro group of one ring system reduces the reactivity of the second ring system, making the introduction of another nitro group more difficult. We report here the X-ray crystal structure of the title compound, (I) (Fig. 1).

The essential features of the structures of the nitrated and non-nitrated carbazole groups of (I), such as bond lengths and angles (Table 1), are not unusual (Asker & Masnovi, 2004;
Chen et al., 1992). The only notable distinction is that the C3—C4—a internal bond angle of 123.1 (4)° (where the nitro group is attached) is about 2.7° larger than that of the corresponding C3′—C4′—C4a′ angle [120.4 (4)°]. The C3—C4 bond [1.402 (6) Å] is also somewhat longer than the corresponding C3′—C4′ bond [1.373 (6) Å].

The molecular packing is determined by C—H···O and π–π interactions (Fig. 2 and Table 2). In the crystal structure, the nitrated carbazole group of one molecule associates in a shifted parallel planar orientation with the centrosymmetrically related non-nitrated carbazole ring of a neighbouring molecule. Thus, the dihedral angle between the planes of the pyrrole rings of two neighbouring carbazole groups at (2 + x, 1/2 — y, z) and (1 + x, 1/2 — y, 1/2 + z) is 2.0 (3)°, with a ring-centroid separation of 3.634 (3) Å and an interplanar spacing of 3.49 Å, corresponding to a ring-centroid offset of ca 1.03 Å.

Experimental

The title compound was synthesized through the photolysis of donor–acceptor complexes of 9,9-diethyl-3,3′-dicarbazolyl with tetrarnitromethane (TNM) in dichloromethane. A Westinghouse sun lamp (275 W) was used as the light source. The reaction was carried out in a 25 ml test tube, dissolving 9,9-diethyl-3,3′-dicarbazolyl (100 mg, 0.26 mmol) and TNM (500 mg, 2.5 mmol) in dichloromethane (5 ml). The light source was placed at a distance of approximately 15 cm from the reaction tube and a Corning sharp-cutoff UV filter was placed between the light source and the test tube. After 35 min of irradiation time, the reaction mixture was extracted with water, the solvent was removed under reduced pressure, and the remaining yellow solid was treated by column chromatography using basic alumina (80–200 mesh, activity III) with dichloromethane–hexane as the eluting solvents. The solvents were removed using a rotary evaporation system to give 86 mg (77%) of the title compound, in addition to 7 mg (6%) of 9-ethyl-3-(9-ethylcarbazol-3-yl)-6-nitrocabezole (m.p. 465–467 K, yellow powder). Single crystals of (I) suitable for X-ray diffraction analysis were obtained from a solution in CH2Cl2 by slow evaporation at ambient conditions (m.p. 429 K).

Crystal data

C28H23N3O2
Mf = 433.49
Monoclinic, Cc
a = 16.2810 (13) Å
b = 13.8472 (8) Å
c = 9.9233 (9) Å
β = 90.721 (7)°
V = 2237.0 (3) Å³
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer
θ max = 25.0°
h = −19 → 19
k = −16 → 16
l = 0 → 11
3 standard reflections
frequency: 120 min
intensity decay: 1.1%

Refinement

Refinement on F²
R[F² > 2σ(F²)] = 0.038
S = 1.03
1975 independent reflections
299 parameters
H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

C3—C4 1.402 (6)
C3′—C4′ 1.373 (6)
C4a—C4—C3 123.1 (4)
C3′—C4′—C4a′ 120.4 (4)
C9a—N9—C10—C26 88.4 (6)
C9a′—N9′—C10′—C26′ 87.1 (6)
Table 2
Hydrogen-bond geometry (Å, °).

<table>
<thead>
<tr>
<th>D—H—A</th>
<th>D—H</th>
<th>A—H</th>
<th>D—A</th>
<th>D—H—A</th>
</tr>
</thead>
<tbody>
<tr>
<td>C11—H11A···O2i</td>
<td>0.96</td>
<td>2.52</td>
<td>3.379 (7)</td>
<td>149</td>
</tr>
<tr>
<td>C1’—H11D···O1i</td>
<td>0.96</td>
<td>2.59</td>
<td>3.290 (6)</td>
<td>130</td>
</tr>
</tbody>
</table>

Symmetry codes: (i) x + 1/2, −y + 1/2, z + 1/2; (ii) x − 1/2, y + 1/2, z.

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H distances of 0.93, 0.96 and 0.97 Å for aromatic, methyl and methylene H atoms, respectively, and with \(U_{eq}(H) = 1.5U_{eq}(C) \) for methyl groups and 1.2\(U_{eq}(C) \) for the rest. There were no Friedel opposites in the data set; in the absence of significant anomalous scattering, these would not be independent.

Data collection: CAD-4 PC Software (Enraf-Nonius, 1993); cell refinement: CAD-4 PC Software; data reduction: DATR2 in NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

The authors thank the Turkish Ministry of Education and the CSU College of Graduate Studies for their support of this work.

References