Conceptualization and Design of a Surface Translation Balance Training Device

Annie Djukic  
*Cleveland State University*

Omri Tayyara  
*Cleveland State University*

Deborah Espy  
*Cleveland State University*, D.ESPY@csuohio.edu

Majid Rashidi  
*Cleveland State University*, M.RASHIDI@csuohio.edu

Follow this and additional works at: [https://engagedscholarship.csuohio.edu/u_poster_2013](https://engagedscholarship.csuohio.edu/u_poster_2013)

Part of the Movement and Mind-Body Therapies Commons, and the Physical Therapy Commons

How does access to this work benefit you? Let us know!

**Recommended Citation**  
[https://engagedscholarship.csuohio.edu/u_poster_2013/14](https://engagedscholarship.csuohio.edu/u_poster_2013/14)

This Article is brought to you for free and open access by the Undergraduate Research Posters at EngagedScholarship@CSU. It has been accepted for inclusion in Undergraduate Research Posters 2013 by an authorized administrator of EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.
Conceptualization and design of a surface translation balance training device

College of Sciences and Health Professions

Student Researchers: Annie Djukic; Omri Tayyara

Faculty Advisors: Debbie Espy, PT, Ph.D.; Majid Rashidi, Ph.D.

Abstract

Research supports the idea that dynamic control of both a person’s center of mass and base of support are necessary to prevent falls, and that older adults can learn this combined control through specific balance training. Effective balance training requires a large number of repetitions of task-specific practice. Externally induced movements have been employed in balance studies both to test and train balance responses, most often using mechanized surface perturbations. These systems however are quite expensive; therefore, we chose to investigate a more cost effective solution focusing on surface translation for balance training in our lab.

We performed a literature review of balance testing or training studies which had successfully used a translating surface paradigm. The motion parameters and subject characteristics were compiled (Table 1) to arrive at a decision about the parameters to be designed into our device. The device was designed to meet the space and subject use needs, compiled motion parameters, and engineering and safety requirements. A scotch yoke mechanism was chosen as well as a DC Motor and an appropriate gearbox, which were designed to translate, via a steel arm, a plywood and square tubing platform.