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A NEW PRE-LOADED MEMBRANE GEOMETRIC STIFFNESS
MATRIX WITH FULL RIGID BODY CAPABILITIES

P. A. Boselat and D. R. Ludwiczak}

tDepartment of Engineering Technology, Cleveland State University, Cleveland, Ohio 44115, U.S.A.
1Engineering Directorate, Structural Systems Division, Dynamics Branch,
NASA Lewis Research Center, Cleveland, Ohio 44135, U.S.A.

NOTATION
a membrane element length
b membrane element width
[DFC] directed force correction matrix
[DFCTotal] matrix of all corrections ([DFC)]+ [MCOR))
E Young's modulus (Modulus of elasticity)
h clement thickness
[Ke] elastic stiffness matrix
[Kg] geometric stiffness matrix
K; i,j element of stiffness matrix

[M] mass matrix

[MCOR] fixed end moment correction

N distributed tensile load (N, = N for example,
where N, =N, =0)

N, distributed tensile load in x-direction

N, distributed tensile load in y-direction

N, distributed shear load on membrane

o element constant

B; element constant

p mass density

v Poisson’s ratio

INTRODUCTION

Due to economic constraints associated with payload
cost, space structures must consist of light-weight,
and subsequently relatively flexible, components. The
total stiffness of a member, in many cases, includes
both the elastic stiffness, due to the material proper-
ties and member configuration, as well as geometric
or initial stress stiffness due to pre-loads. Accurate
prediction of the natural frequencies and mode
shapes is essential for determining the adequacy of
components, and for designing a controls system.

The finite element method is normally used to
perform this analysis. However, a phenomenon
known as “grounding” or false stiffening, occurs
when the geometric stiffness matrix is used. When a
pre-loaded model with free/free boundary conditions
is analyzed, it behaves as if it is restrained internally.
Thus, it is unable to rotate as a rigid body. Instead,
erroneous “pseudo-forces” develop during rigid body
motion. Free vibration analysis also yields an erro-
neous (non-zero) natural frequency associated with
rigid body rotation. Bosela et al. [1-3] have examined
the grounding phenomenon for a pre-loaded beam,
and determined that it is caused by a force imbalance
during rigid body rotation, and is typical of beam
geometric stiffness matrices formulated by others,
even those which include higher order effects. By
utilizing a directed force premise, and extending to a
global model the natural mode approach used by
Argyris and Symeonidis [4] for developing load cor-
rection factors for non-conservative forces, a pre-
loaded beam geometric stiffness matrix with full rigid
body capabilities was developed and tested [3, 5].

This paper has the following objectives:

(1) Examine the grounding phenomenon as it relates
to pre-loaded membrane elements.

(2) Develop a pre-loaded membrane element with
full rigid body capabilities by following the directed
force approach used successfully in developing the
pre-loaded beam element.



MEMBRANE ELEMENTS

Although various membrane elements are used in
commercial finite element programs, most are not
readily available in explicit form. One which is stated
explicitly by Yang[6] is the four-node rectangular
element in Fig. 1, which has either 12 or 16 degrees
of freedom (DOF). The degrees of freedom numbered

as 13, 14, 15 and 16, correspond to second-order twist
terms such as 02w/dx dy. This element is obtained by
combining the shape functions for the elementary
beam element in both the x and y directions.

The geometric, or initial stress stiffness matrix [Kg]
for this plate element when the distributed load is in
the x-direction only is
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Fig. 1.(a) Four-node rectangular plate element with 16 DOF. (b) In-plane normal and shear forces on

y
b

quadrilateral membrane element.
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In order to solve for the natural frequencies, the equation

corresponding four-node quadrilateral mass matrix
developed by Yang was also used. The coefficients
of the mass matrix are determined by using the

M, = h f j fi Y%, p) % .
0
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GROUNDING OF MEMBRANE ELEMENTS

Suppose one considers a free/free model with two
12 DOF elements, and a uniform tensile load applied
in the x-direction only, as shown in Fig. 2. That
element should possess five rigid body modes: (1)
translation in the y-direction; (2) rigid body rotation
about the x-axis; (3) rotation of the edge line between
nodes 1, 2 and 5; (4) rotation of the edge lines
between nodes 4, 3 and 6; (5) rigid body rotation
about the y-axis. It should be noted that (2) and (4)
only occur because for the example problem, there is
no tension in the y-direction, and we are neglecting
elastic stiffness effects.

In matrix form, assembling [Kg] and multiplying a
matrix of these rigid body modes yields

to rigid body rotation about the y-axis, was
not present. Instead, pseudo-forces developed in
degree of freedoms 1, 4, 9, 12, 13, 14, 17 and 18.
The pseudo-forces in degrees of freedom 1, 4, 13
and 14 correspond to the forces required to keep
the rotated model in equilibrium, which is
consistent with the behavior of a pre-loaded beam
element [2]. Hence, the procedure used successfully
for the pre-loaded beam element[3] will be
adapted.

The pseudo-moments developed in degrees of
freedom 9, 12, 17 and 18 did not occur with rotation
of the pre-loaded beam element. It should be noted,
however, that the form resembles a fixed-end moment
caused by a distributed load.
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Examining the right hand side of eqn (5) reveals
that rigid body modes 1-4 are present in the
global [Kg]. However, mode # 5, which corresponds

DIRECTED-FORCE APPROACH

Consider Argyris’s methodology [4] for the di-
rected force problem. Let ¢ = (u,—u;)/2a or



becomes

RPFC = [(Nb/2)sin(u); — u, /2a) 0 0 (Nb/2)sin

x (3 —1/2a)0 00000000000

—(Nb/2)sin(uy; — uy /2a)

—(Nb[2)sin(uyg — 1,/2a) 0 0 0 0 0 0]. (6)

Taking

Fig. 2. Two element 18 DOF.

ORPFC
ou;

(u; — uy;)/2a. If one neglects the change in the axial
component during a small rotation, one obtains ) ]
N(b/2)cos ¢ = Nb/2. The load vector for this force 2and assuming small angles yields
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Combining [Kg]+ [KP"] and multiplying by the rigid body mode matrix yields
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Note that the pseudo-force terms associated with degrees of freedom 1, 4, 13 and 14 have disappeared, but
the pseudo-moment terms associated with degrees of freedom 9, 12, 17 and 18 remain.

Once again, consider a rotation ¢ about the y-axis, and let ¢ = (u); + #,, — 4, — u,)/4a. We have considered
the equivalent concentrated vertical loads at the nodes due to the rotation in the determination of [K DFCY,
However, this vertical component is really based on a distributed load. In order to replace it with concentrated
loads at the node points, we must also include fixed-end moments. The load vector for the fixed end moments
caused by the vertical distributed loads would be

2 2

Nb Nb
RFEM=[0 00 0O0O0OO0O Fxsinq& 00 —Esind) 0 000

Nb? . nB*
_—li— sin ¢ W sin ¢] (9)

FEM
Taking T assuming small angles and enforcing symmetry yields
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At this point,
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(1

Thus, the all pseudo-forces and pseudo-moments
have been eliminated.

COMPARISON OF FREQUENCIES

In order to determine the effect of the correction
factors, a comparison of the first 12 natural frequen-
cies of vibration was performed for the two element
model. The results are included in Table 1.

Table 1. Comparison of frequencies of vibration for two-
element free/free model

Yang's Yang's
[Kg] 16 [Kg] 24 Corrected Corrected
Frequency  DOF DOF 16 DOF 24 DOF

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 103.2 0 0 0.0152

6 103.2 0 103.2 103.2

7 118.0 0 118.0 103.2

8 118.0 0 206.4 174.7

9 206.4 0 206.4 206.4
10 206.4 0 206.4 206.4
i1 206.4 0 206.4 206.4
12 206.4 0 268.3 206.4




As the table indicates, the missing rigid body mode
(mode #35, frequency =0), was obtained when the
total directed force correction factors were added to
Yang’s [Kg].

SUMMARY

Based upon this investigation, the following con-
clusions can be made:

(1) Pre-loaded membrane elements exhibit the
same “grounding” problems associated with pre-
loaded beam elements. In other words, an internal
grounding, or false stiffening, occurs when they are
subjected to a rigid body rotation, which generates
erroneous pseudo-forces.

(2) In addition to the pseudo-forces, erroneous
pseudo-moments also develop during rigid body
rotation.

(3) An erroneous non-zero frequency develops
during rigid body rotation, instead of the required
zero frequency associated with a rigid body mode.

(4) Using a directed force premise, and extending
the Argyris approach for developing correction fac-
tors for non-conservative forces to the global level,

the pseudo-forces were eliminated, but the pseudo-
moments still remained.

(5) By considering the fixed-end moments associ-
ated with the distributed load, and similarly develop-
ing correction factors, the pseudo-moments were
eliminated, and the missing zero frequency associated
with rigid body rotation were obtained.

(6) Future work should include comparison of
results for larger models and with test results.
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