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ANALYTIC CONFUSION MATRIX BOUNDS FOR FAULT DETECTION AND 
ISOLATION USING A SUM-OF-SQUARED-RESIDUALS APPROACH 

Dan Simon, Cleveland State University 
Donald L. Simon, NASA Glenn Research Center 

ABSTRACT 

Given a system which can fail in 1 of n different ways, 
a fault detection and isolation (FDI) algorithm uses sensor data 
to determine which fault is the most likely to have occurred. The 
effectiveness of an FDI algorithm can be quantified by a confusion 
matrix, also called a diagnosis probability matrix, which indicates 
the probability that each fault is isolated given that each fault has 
occurred. Confusion matrices are often generated with simulation 
data, particularly for complex systems. In this paper, we perform 
FDI using sum-of-squared residuals (SSRs). We assume that the 
sensor residuals are s-independent and Gaussian, which gives 
the SSRs chi-squared distributions. We then generate analytic 
lower, and upper bounds on the confusion matrix elements. This 
approach allows for the generation of optimal sensor sets without 
numerical simulations. The confusion matrix bounds are verified 
with simulated aircraft engine data. 

Index Tenns-Aircraft turbofan engine, chi-squared distribu
tion, confusion matrix, diagnosis probability matrix, fault detec
tion and isolation. 

ACRONYM 

C - ALI?S S Commercial modular aero-propulsion 
system simulation 

CCR Correct classification rate 

CN Ii Correct no-fault rate 

F D I Fault detection and isolation 

FNlI False negative rate 

FPR False positive rate 

HPC High pressure compressor 

HPT High pressure turbine 

LPC Low pressure compressor 

LPT Low pressure turbine 

SSIi Sum of squared residual 

TNR True negative rate 

TPR True positive rate 
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(e-mail: d.j.simon@csuohio.edu). 

D. L. Simon is with the NASA Glenn Research Center, Cleveland, OR, USA 
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NOTATION 

CCR of fault i 

Marginal CCR of fault i relative to fault.i 

Marginal detection rate of fault -i relative to 
fault j 
Chi -squared pdf 

Noncentral chi-squared pdf 

Chi-squared CDF 

Noncentral chi-squared CDF 

Number of sensors used to detect a fault 

Cardinality of Yi 

Cardinality of Yi 
Probability that no fault is detected given that 
fault j occurred 
Probability that fault i is isolated given that no 
fault occurred 
Probability that fault i is isolated given that fault 
j occurred 
Marginal misc1assification rate of fault i given 
that fault j occurred 
Marginal misclassification rate of fault i relative 
to fault j given no fault 
Number of possible fault conditions 

Core speed 

Bypass duct pressure 

LPC outlet pressure 

HPC outlet pressure 

Normalized residual of the ith fault detection 
algorithm 
Fault detection threshold 

LPC outlet temperature 

HPC outlet temperature 

HPT outlet temperature 

Fuelfiow 

Residual of the -ith sensor 

Sensors unique to algorithm i 
Normalized residual of the jth sensor in Vi. 
Sensors common to two fault detection 
algorithms 
Normalized residual of the jth sensor in Yc 
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Yi {Yi,Y,} 
Yij Normalized residual of the jth sensor in Yi 

Mean of Iii, 

(J"i Standard deviation of Yi 

M 
I. INTRODUCTION 

ANY different methods of fault detection and isolation 
(FDI) have been proposed. Frequency domain methods 

include monitoring resonances [1], or modes [2]. Filter-based 
methods include observers [3], unknown input observers [4], 
Kalman filters [5], particle filters [6], sliding mode observers 
[7], II~, filters [8], and set membership filters [9]. There are 
also methods based on computer intelligence [10] that include 
fuzzy logic [11], neural networks [12], genetic algorithms [13], 
and expert systems [14]. Other methods include those based on 
Markov models [15], system identification [16], wavelets [17], 
Bayesian inference [18], control input manipulation [19], and 
the parity space approach [20]. Many other FDI methods have 
also been proposed [21], some of which apply to special types 
of systems. 

The parity space approach to FDI compares the sensor 
residual vector to nominal user-specified fault vectors, and the 
closest fault vector is isolated as the most likely fault. If the 
sensor residual vectors are Gaussian, the parity space approach 
allows an analytic computation of the confusion matrix. The 
FDI approach that we propose is philosophically similar to the 
parity space approach, but instead of using fault vectors, we use 
sum-of-squaredresiduals (SSRs) to detect and isolate a fault. Our 
approach is chosen because of its amenability to a new statistical 
method for the calculation of confusion matrix bounds. 

A preliminary version of this paper was published as a tech
nical report [22]. This paper has corrected proofs and expanded 
simulation results. 

If sensor residuals are Gaussian, the SSRs have a chi-squared 
distribution [23]. This allows for the specification of SSR 
bounds for fault detection, which have a knovm false negative 
rate (FNR), and false positive rate (FPR). We can also compare 
the SSRs for each fault type to determine which fault is most 
likely to have occurred, and then find analytic bounds for 
fault isolation probabilities. Our FDI algorithm is new, but the 
primary contribution of this paper is to show how confusion 
matrix element bouuds can be derived analytically. The FDI 
algorithm that we propose is fairly simple, but the confusion 
matrix analysis that we develop is novel, and its ideas may be 
adaptable to other FDI algorithms. 

Our approach is to first specify the magnitude of each fault 
that we want to detect, along with a target FPR. For each fault, 
we then find the sensor set that gives the largest true positive rate 
(TPR) for the given FPR. Then we use statistical approaches to 
find confusion matrix bounds. The confusion matrix bounds are 
the outputs of this process. We cannot specify desired confusion 
matrix bounds ahead of time; the bounds are the -,-dependent 
variables of the sensor selection process. 

The goal of this paper is threefold. Our first goal is to present 
our SSR-based FDI algorithm, which we do in Section II. Our 
second goal is to derive confusion matrix bounds, which we 
do in Section III. Our third goal is to confirm the theory with 

simulation results, which we do in Section IV using an aircraft 
turbofan engine model. Section V presents some discussion, and 
conclusions. 

II. AN SSR-BASED FDI ALGORrrnM 

This section presents the background, and an overview of our 
proposed SSR-based FDI algorithm for a static, linear system. 
To perform FDI, sensor residuals are computed at each mea
surement time, and the SSRs are used. If the sensor residuals are 
Gaussian, then the SSRs have chi-squared distributions, which 
allows the formulation of analytic bounds on the confusion ma
trix elements as discussed in Sections III-A-III-C. 

A. Sensor Residuals, and Chi-Squared Distributions 
The residual of the ith sensor is denoted as .IIi, and is a mea

surement of the difference between the sensor output and its 
nominal no-fault output. In the no-fault case, !-li has a zero ex
pected value. In the fault case, the mean of lIi is {I'i. In either 
case, the standard deviation of .IIi is ai. The mean Pi depends 
on which fault occurs. But for simplicity of notation, we do not 
indicate that s-dependence in our notation. An SSR is given as 

k 

S = L(Y;/(Ji)2 (1 ) 
i=l 

1) No-Fault Condition: In the no-fault case, Yi has a zero ex
pected value. If each l) i is a s-independent zero-mean Gaussian 
random variable, then S is a random variable with a chi-squared 
distribution [23]. We use the notation f(,r, k), and F(,r, k) to 
denote its pdf, and CDF respectively. We use a user-specified 
threshold T to detect a fault. 

8 ;:::: T fault detected---l

,') < T no fault detected.---l-

Note that fault isolation is a different issue than fault detection. 
Detection of fault q means that Sq 2: '/~ for fault detection 
algorithm q. However, it may be that Si 2: Ti for more than one 
value of i. In that case, multiple faults have been detected, and 
a fault isolation algorithm is required to isolate the most likely 
fault. 

The true negative rate (TNR) for fault i is the probability that 
Si < Ti given that there are no faults. The FPR for fault i is the 
probability that Si 2: Ti given that there are no faults. These 
probabilities are given as 

T'\R(Ti,k) =F(Ti,k) 
FPR('/;, Ie) = 1 - F('I;, k). (2) 

Fig. 1 illustrates TNR, and FPR for a chi-squared SSR. The TNR 
is the area to the left of the user-specified threshold'/' = 25, and 
the FPR is the area to the right of the threshold. 

2) Fault Condition: If a fault occurs, then the Yi terms in (1) 
will not, in general, have a mean value of zero. In this case, 
S has a noncentral chi-squared distribution [23], and we use 
J(:r, k, .\), and F(J:, k,,\) to denote its pdf, and CDF, where.\ 
is given as 

k 

A = Lll.T/af. 
i=l 
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Fig. 1. Illustration of a chi-squared pdf of an SSR with k: = 10 sensors. 
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Fig. 2. Illustration of a noncentral chi-squared pdf of an SSR with k = 10 
sensors, and ,\. = 40. 

The TPR is defined as the probability that fault i is correctly 
detected (Hi > T i ) given that it occurs. This approach does 
not take fault isolation into account. The FNR is defined as the 
probability that fault i is not detected (Si < Ti ) given that it 
occurs. These probabilities can be written as 

FNRi = F(Ti' k, >..) 
TPRi = 1 - F(Ti' k, >..). (3) 

Fig. 2 illustrates TPR, and FNR for a chi-squared SSR. The FNR 
is the area to the left of the user-specified threshold T = 20, and 
the TPR is the area to the right of the threshold. 

B. Confusion Matrix 

A confusion matrix specifies the likelihood of isolating each 
fault, and can be used to quantify the performance of an FDI al
gorithm. A typical confusion matrix is shown in Table I. The 
rows correspond to fault conditions, and the columns corre
spond to fault isolation results. The element in the 'lth row and 
jth column is the probability that fault j is isolated when fault 
i occurs. Ideally, the confusion matrix would be an identity ma
trix, which would indicate perfect fault isolation. 

TABLE I 

TYPICAL CONFUSION MATRIX FORMAT, WHERE THE Rows CORRESPOND 


TO FAULT CONDITIONS, AND THE COLUMNS CORRESPOND TO FAULT 

ISOLATION RESULTS 

Fault 1 Fault 2 Fault n No fault 
Fault 1 CCRI I NI21 I· .. I Mnl I MOl 

Fault 2 Ml2 I CCR2 I ... I Mn2 I M02 

Fault II Nhn I Nhn I··· I CCRn I 1\/fon 
No fault MIO I M 20 I' .. I Mno I CNR 

C. Summary of SSR-Based FDT Algorithm 

Our FDI approach is to first specify the magnitude of each 
fault that we want to detect, along with a maximum allowable 
FPR. For each fault, we then find the sensor set that gives the 
largest TPR for the given FPR. This idea can be seen by exam
ining Figs. I and 2. For a given fault, we will obtain different 
Figs. 1 and 2 for each possible sensor set. Given a particular 
Fig. 1 for a specific sensor set, we obtain a detection threshold 
T that corresponds to our allowable FPR. Given a particular 
threshold T, we obtain a TPR from Fig. 2. Intuitively we want to 
use sensors with large fault signatures in our FDI algorithm, and 
this result leads to the algorithm shown in Fig. 3 for selecting a 
sensor set for each fault. 

Note that, although the sensor selection algorithm is logical, 
it is not necessarily optimal for FDI. The sensor selection algo
rithm in Fig. 3 is executed once for each fault that we want to 
detect. After we have selected a sensor set for each fault, any 
SSR that is greater than its threshold is considered to have been 
detected. If more than one SSR is greater than its threshold, the 
SSR that is largest relative to its threshold is isolated as the most 
likely fault. The FDI algorithm is summarized in Fig. 4. The 
strategy of isolating a fault using relative SSR values is a rea
sonable ad-hoc approach, but is not necessarily optimal. 

III. CONFUSION MATRIX BOUNDS 

This section derives analytic confusion matrix bounds for our 
SSR-based FDI algorithm. Section III-A deals with the no-fault 
case, and derives bounds for the correct no-fault rate (CNR) , 
which is the probability that no fault is detected given that no 
fault occurs. It also derives bounds for the FPR, which is the 
probability that one or more faults are detected given that no 
fault occurred. Finally, it derives an upper bound for the no-fault 
misclassification rate, which is the probability that a given fault 
is isolated given that no fault occurred. Section III-B deals with 
the fault case, and derives bounds for the correction classifica
tion rate (CCR), which is the probability that a given fault is 
correctly isolated given that it occurred. Section III-C also deals 
with the fault case, and derives upper bounds for the fault mis
classification rate, which is the probability that an incorrect fault 
is isolated given that some other fault occurred. Section III-D 
summarizes the bounds, and their use in the confusion matrix; 
and Section III-E discusses the required computational effort. 

A. No-Fault Case 

1) Correct No-Fault Rate: First, suppose that only two fault 
detection algorithms, q, and j, are running. Algorithm q at



Specify the maximum allowable FPR for a given fault 
Initialize the sensor set to the empty set 
for i = 1 to number of sensors 

Add the sensor with the ith largest fault signature to the sensor set 
Use Fig. 1 to find the detection threshold corresponding to the specified FPR 
Use Fig. 2 to find the TPR corresponding to the detection threshold 

next i 
Select the sensor set that has the largest TPR 

Fig. 3. Sensor selection algorithm for a specific fault. 

for j = 1 to number of fault possibilities 
Compute the SSR Sj as shown in (1) 

next j 
If Sj < Tj for all j 

Indicate that no faults have occurred 
else 

Isolated fault p = argmaxp (Sp - Tp) 
end if 

Fig. 4. SSR-based FDI algorithm. 

tempts to detect fault q using kq sensors, and threshold Tq. We 
use the notation 

Y; 	= {sensors unique to algorithm i} 
Yc = {sensors common to algorithms q and j} 
Yi = {all sensors used by algorithm i} = {Y;, Y;,} 

k i = IY;I 
kia =IYil· 

We use the notation Yij to denote the .7th normalized residual of 
the sensors used in algorithm i, with similar meanings for lij, 
and Y;'j' That is, 

""'LYij2 = L1ij2 + LY;j·2 (4)5 i = ""' ""' 
j j j 

Now suppose that there are n > 2 fault detection algorithms. In 
this case, we can write the correct no-fault rate (CNR), which 
is the probability that all of the SSRs are below their detection 
thresholds given that no fault occurred. 

CNR = P [(51 < Td,"', (5n < Tn)]. (5) 

Theorem J: The CNR can be bounded as 

II
n 

TNR(Ti' k i ) :::; CNR:::; minTNR(Ti , k·i ), 
i=l 

where TNR(Ti' k i ) is given in (2). 
Proof" See the Appendix. 

2) Fault Misclassification Rates in the No-Fault Case: Given 
that no fault occurred, the probability that fault i is incorrectly 
isolated is called the misclassification rate, M iO . In this section, 
we derive upper bounds for this probability. 

Suppose that we have only two fault detection algorithms: q, 
and j. Given that no fault occurred, the probability that fault 
q is isolated is called the marginal misclassification of fault q 
relative to fault j, and is given as 

Lemma J: If neither Yq, Y j , nor Y c are empty, then 

Mqo,j = I: [1-F(y, kq)] [F(y+Tj-Tq, kj)f(Tq-y, kc) 

+ f(y + T j - Tq, k j ) (1 - F(Tq - y, kc ))] ely. (6) 

If Yq is empty, and Yj and Y e are not empty, then 

If Y j is empty, but Yq and Y;, are not empty, then 

Mqo,j = [1 - F(Tq - T j , kq)] [1 - F(Tj , kc )] 

+ .l~~Ti [1 - F(y, kq)] f(Tq - y, kc ) dy. (8) 

If Y c is empty, but Yq and Y j are not empty, then 

Mqo,j = [1- F(Tq, kq)] F(Tj, k j ) 

+ 	 tOC [1 - F(y, kq)] f(y + T j - Tq, k j ) ely. (9)JTq 

Proof" Equation (6) can be obtained using Lemmas 5, 6, 7 
and 10, which are listed in the Appendix. Equation (7) follows 
from the s-independence ofYj, and Ye • Equation (8) can be ob
tained using Lemmas 5, 7, and II. Equation (9) can be obtained 
using Lemmas 5, 6, and II. QED 

The preceding lemma leads to the following result for the 
fault misc!assification rate in the no-fault case. 

Theorem 2: If we have n > 2 fault detection algorithms, the 
probability that fault q is isolated given that no fault occurred 
can be bounded as 

where M qoj is given by one of (6)-(9) for each j. 
Proof" See the Appendix. 



B. Correct Fault Classification Rates 

Given that some fault occurs, we might isolate the correct 
fault, or we might isolate au incorrect fault. The probability of 
isolating the correct fault is called the correct classification rate 
(CCR). In this section, we derive lower, aud upper bounds for 
the CCR. 

1) Lower Bounds for the Correct Classification Rate: Sup
pose we have only two fault detection algorithms, q and j, and 
fault q occurs. Consider the probability that Sq is larger thau S; 
relative to their thresholds. We call this probability the marginal 
detection rate DlJj. Note that we are not considering whether 
or not the SSRs exceed their threshold; we are only considering 
how large the SSRs are relative to their thresholds. The marginal 
detection rate is given as 

D'1; =P[(8'1 -T'1) > (8; -Tj)] (10) 

(11)=P [(2,>q~ - Tq + T j ) > 2,=y,~]. 
Lemma 2: If neither Yq nor Y j are empty, then 

Dqj = 1= (1 - F(y + T'l - Tj , k'l , A'l)) fey, k j ) rly (12) 

where 

(13) 

If Y'1 is empty, aud Y j is not empty, then 

(14) 

If Y J is empty, aud Y'1 is not empty, then 

(15) 

Proof Equation (12) cau be obtained using Lemmas 5, and 
6, which are in the Appendix. Equations (14), aud (15) follow 
from (11). QED 

The preceding lemma leads to the following result for the 
correct fault isolation rate. 

Theorem 3: If we have n > 2 fault detection algorithms, and 
fault q occurs, the probability that fault q is correctly isolated is 
bounded as 

eeRq ::> TPRq II Dqj . 
rr=I=-J 

Proof See the Appendix. 
2) Upper Bounds for the Correction Classification Rate: 

Next, we find au upper bound for the CCR. To begin, suppose 
that we have only two fault detectors: algorithms '1, aud j. 
Given that fault q occurs, the probability that it is correctly 
isolated is called the marginal CCR. This CCR cau be written 
as 

CCI'".! = P[(Sq-Tq > Sj -T,),(Sq > Tq)] 

= p[2,=Y'lz, > lllax (2,= lj~ +Tq - T j , I;j- 2,= y,z,)]. 

Lemma 3: If neither Yq , }j, nor 1";., are empty, then 

CCRq] = - F(y, k'l , Aq)]1: [1 

x [F(y + T j - T'1 , k;)f(T'1 - y, "c,.q 
+ f(y + Tj - T'l , k])  
x (I - FCJ~ - y, k" Acll] dy (16) 


where Ac is defined aualogously to Aq, shown in (13). If Yq is 
empty, but Y, aud Y, are not empty, then 

If Y j is empty, but Y'l aud Y, are not empty, then 

(18) 

If Y, is empty, but Y'1 and Y J are not empty, then 

CCR" = [1- F(Tq, kq, A'l)] F(T], kj ) 

+ r= [I-F(y, kq, Aq)lf(y+Tj-I;j, kj)dy. (19)./rq 
Proof Equation (16) cau be obtained using Lemmas 5, 6, 

7, and 10, which are in the Appendix. Equation (17) follows 
from the 8-independence of y" aud Yc. Equation (18) can be 
obtained using Lemmas 5, 7, and 11. Equation (19) cau be ob
tained using Lemmas 5, 6, and 11. QED 

The preceding lemma leads to the following result for the 
correct fault isolation rate. 

Theorem 4: If we have n > 2 fault detection algorithms, aud 
fault q occurs, the probability that fault q is correctly detected 
and isolated can be bounded as 

CCR'l <:; minCCRqj . 
.rf-q 

Proof See the Appendix. 

C. Fault Misclassification Rates 

In this section, we derive upper bounds for the probability that 
a fault is incorrectly isolated. If fault q occurs, the probability 
that fault j is detected aud isolated is called the misclassification 
rate l\-fjq. 

First, suppose that we have two fault detection algorithms: '1, 
and j. The misc1assification rate can then be written as 

IVI;" =P [(Sj -Tj > Sq -Tq), (SJ > T j )] 

= P 2,=y,;) ][2,= lj~ > max (2,= Yq~+Tj-T'1' T J -

(20) 

where the prime symbol on .A~jq denotes that only &0 detection 
algorithms are used. 



Lemma 4: If neither Yq , Yj , nor 'Yc are empty, then 

IVri'l = L: [1- F(y,kj)] 

x [F(y + Tq - T" k" Aq)f(Tj - y, k" A,) 
+ i(y + T'l - T" k" A'l)  
x (1 - F(Tj - y, k" A,))] ely. (21) 


If Yq is empty, but Y j and 1";. are not empty, lben 

(22) 

If Y, is empty, but Yq and Y, are not empty, lben 

If 1";. is empty, but 1";[ and Yj are not empty, lben 

JV1iQ = [1- F(Tj, kj)] F(T'l' k'l' A'l) 

+/T~ [1 - F(y, h jllf(y + T'l - T j , kq, A'l)ely. (24) 

Proof Equation (21) can be obtained using Lemmas 5,6, 
7, and 10, which are in lbe Appendix. Equation (22) can be ob
tained using Lemmas 5, 7, and 11. Equation (23) follows from 
(20), and lbe .9-independence of Y'l ' and Ye . Equation (24) fol
lows from Lemmas 5, 6, and 11. 

The preceding lemma leads to lbe following results for lbe 
fault misc1assification rate. 

Theorem 5: If we have n > 2 fault detection algorilbms, 
and fault q occurs, lbe probability lbat fault j will be incorrectly 
detected and isolated can be bounded as 

11"]iJ_ljq.< 'vI'"" 

Proof See lbe Appendix. 
Theorem 6: The probability AIuq lbat no fault is detected 

when fault q occurs can be bounded from above as 

Proof See lbe Appendix. 

D. Summary of Confusion Matrix Bounds 
Recall the confusion matrix in Table 1. The rows correspond 

to fault conditions, and the columns correspond to fault isola-
tion results. The element in the ith row and jth column is the 
probability lbat fault j is isolated when fault i occurs. The pre
vious sections derived the following bounds. 

CNR is lbe probability lbat a no-fault condition is cor
rectly indicated given that no fault occurs, and its lower, 
and upper bounds are given in Theorem 1. 
AliU fori E [1, n] is lbeprobability lbatfaull'i is incorrectly 
isolated given that no fault occurs, and its upper bound is 
given in Theorem 2. 
CCIl, for i E [1, n] is lbe probability lbat fault i is cor
rectly isolated given that it occurs, and its lower, and upper 
bounds are given in Theorems 3 and 4. 

lvI" for i,j E [1, n], and i oF.i is lbe probability lbatfault 
i is incorrectly isolated given that fault ,j occurs, and its 
upper bound is given in Theorem 5. 
l\;!oi for i E [1, n] is lbe probability lbat no fault is isolated 
given that fault i occurs, and its upper bound is given in 
Theorem 6. 

E. Computational Effort 

Usually, confusion matrices are obtained through simula-
tions. To derive an experimental confusion matrix with n faults, 
the number of matrix elements that need to be calculated is 
on the order of '11,

2 . Also, the required number of simulations 
for each matrix element calculation is on the order of u. This 
size is because, as the number of possible faults increases, the 
number of simulations required to obtain the same statistical 
accuracy increases in direct proportion. Therefore, the compu-
tational effort required for the experimental determination of a 

3confusion matrix is on the order of n . 

The bounds derived in this paper also require computational 
3effort that is on the order of n . This size is because each of 

the bounds summarized in Section III-D required computational 
effort on the order of n, and the number of matrix elements is on 
the order of 11,2. Note that this size does not include the sensor 
selection algorithm shown in Fig. 3, which requires the off-line 
solution of a discrete minimization problem. 

N. SIMULATION RESULTS 

In this section, we use simulation results to verify the theoret-
ical bounds of the preceding sections. We consider the problem 
of isolating an aircraft turbofan engine fault, which is modeled by 
lbe NASA Commercial Modular Aero-Propulsion System Sim
ulation (C-MAPSS) [25]. There are five possible faults lbat can 
occur: fan, low pressure compressor (LPC), high pressure com-
pressor (HPC), high pressure turbine (HPT), and low pressure 
turbine (LPT). These five faults entail shifts of bolb efficiency, 
and flow capacity from nominal values. The fault magnitudes lbat 
we try to detect are 2.5% forlbe fan, 20% for lbeLPC, 2% forlbe 
HPC, 1.5% forlbe HPT, and 2% forlbe LPT. These magnitudes 
were chosen to give reasonable fault detection ability. 

The available sensors, and their standard deviations are shown 
in Table II. Recall lbat our FDI algorilbm assumes lbat lbe sensor 
noises are 8-independent. In reality, they may have some correla-
tion. For example, iflbe aircraft is operating in high humidity, all 
ofthe pressure sensors may be slightly biased in a similar fashion. 
However, the sensor noise correlation is a second order effect, 
and so we make lbe simplifying but standard assumption lbat 
the correlations are zero. This assumption is conceptually sim-
ilar to our simplifying assumption of Gaussian noise. 

The fault influence coefficient matrix shown in Table III was 
generated using C-MAPSS, and is based on [26]. The numbers 
in Table III are lbe partial derivatives of lbe sensor outputs wilb 
respect to the fault conditions, normalized to the fault percent-
ages discussed above, and normalized to one standard deviation 
of the sensor noise. 

We used the algorithm shown in Fig. 3 to select sensors for 
each fault wilb a maximum allowable FPR of 0.0001. As an ex
ample, consider the fan fault with the normalized fault signatures 



TABLE IT 

AIRCRAFT ENGINE SENSORS, AND STANDARD DEVIATIONS AS A PERCENTAGE 


OF THEIR NOMINAL VALUES 


Symbol Description Standard deviation 

Nc Core speed 0.25 

P15 Bypass duct pressure 0.50 
P24 LPC outlet pressure O.GO 
Ps::Hl HPC outlet pressure 0.50 
T24 LPC outlet temperature 0.20 
T:30 HPC outlet temperature 0.17 
T48 HPT outlet temperature 0.5:3 
WI Fuel How 0.75 

TABLE III  
FAULT SIGNATURES OF FIVE DIFFERENT FAULT CONDITIONS, WITH MEAN 

SE'ISOR VALUE RESIDUALS NORMALIZED TO ONE STANDARD DEVIATION 


Sensors 

Nc Plfi P24 Ps:1O T24 T :1O T4il Wf 
Fan 0.80 2.10 1.80 4.05 0.4:1 0.49 1.21 :1.40 
LPC 0.00 0.00 4.80 1.20 :1.20 0.20 0.80 0.27 
HPC 0.72 0.08 0.::\2 0.64 0.54 5.2:3 ::\.08 UiO"ouite { 
HPT 0.9G 0.12 0.:19 :1.27 0.72 2.G:1 4.40 2.18 
LPT 1.20 0.12 0.60 3.56 0.90 3.34 0.03 2.32 

TABLE IV 

POTENTIAL SENSOR SETS FOR DETECTING A FAN FAULT 


Sensors Detection threshold T] TPR] 
Ps:10 15.1 0.5G:J 
Ps::\O. Wf 18.4 0.865 
Ps:10. Wf, T:10 21.1 0.92G 
Ps:10. Wf, T:10. P15 2:1.5 0.949 
Ps;'lO. Wf, T;'lO. PIG. P24 25.7 0.959 
Ps:10. Wf, T:10. P15. P24. T48 27.9 0.958 
Ps:10. Wf, T:10. P15. P24. T48, Nc 29.9 0.952 
Ps:10. Wf, T:10. P15. P24. T48, Nc. T24 :11.8 0.942 

shown in Table III. The sensors with the largest fault signatures in 
descending order are Ps30, Wf, T30, PIS, P24, T48, Nc, and T24. 
This gives eight potential sensor sets for detecting a fan fault: 
the first potential set uses only sensor Ps30, the second poten
tial set uses Ps30 and Wf, and so on. The potential sensor sets, 
along with their detection thresholds, and TPRs, are shown in 
Table IV. Table IV shows that using five sensors gives the largest 
TPR given the constraintthatFPR :S 0.0001. The thresholds were 
determined by constraining FPR :S 0.0001. Using five sensors 
gives the largest TPR subject to the FPR constraint. 

This process described in the previous paragraph was re
peated for each fault shown in Table III. The resulting sensor 
sets are shown in Table V. Note that, given a FPR constraint, the 
detection threshold is a function only of the number of sensors 
in each sensor set; the detection threshold is not a function of 
the specific fault signatures. This result is illustrated in Fig. 1, 
where it is seen that f(:r:, k) is a function only of x, and k (the 
number of sensors). 

We used the fault isolation method shown in Fig. 4, along 
with the theorems in the previous sections to obtain lower, and 
upper bounds for the confusion matrix as summarized in Sec
tion III-D. We also ran 100,000 simulations to obtain an exper
imental confusion matrix. Table VI shows the theoretical lower 
bounds of the diagonal elements of the confusion matrix. Lower 
bounds of the off-diagonal elements were not obtained because 
we are typically more interested in upper bounds of off-diagonal 

TABLE V 

SENSOR SETS FOR FAULT DETECTION GIVING THE LARGEST TPR FOR EACH 


FAULT GIVEN THE CONSTRAINT THAT FPR ::; 0.0001 


Fa ult Sensor set Detection threshold T TPR 
Fan Ps:30. Wf, T:30. P15. P 24 25.7 0.959 
LPC P 24. T24 18.4 0.943 
HPC T30. T48 18.4 0.970 
HPT T 48. P s30. T 30. WI 23.5 0.970 
LPT Ps30. T:30. WI 21.1 0.844 

TABLE VI 

LOWER BOUNDS OF DIAGONAL CONFUSION MATRIX ELEMENTS WHERE 

RowS SPECIFY THE ACTUAL FAULT CONDITION, AND COLUMNS SPECIFY 


THE DIAGNOSIS 


Fan LPC HPC HPT LPT No Fault 
Fan 0.6691 
1PC 0.9342 
HPC 0.8692 
HPT 0.9345 
1PT 0.6623 

No Fault 0.9992 

TABLE VII 

UPPER BOUNDS OF THE CONFUSION MATRIX ELEMENTS WHERE Rows SPECIFY 


THE ACTUAL FAULT CONDITION, AND COLUMNS SPECIFY THE DIAGNOSIS 


Fan LPC HPC HPT LPT No Fault 
Fan 0.7761 0.0000 0.0001 0.1115 0.1899 0.0408 
1PC 0.0076 0.9356 0.0000 0.0000 0.0000 o.om:) 
HPC 0.0097 0.0000 0.8936 0.0769 0.0160 o.(J::\m 
lIPT 0.0015 0.0000 0.0270 0.9445 0.0014 O.O:\()O 

1PT 0.0874 0.0000 0.00:10 0.1066 0.7422 0.1557 
No Fault 0.0000 0.0000 0.0000 0.0000 0.0001 0.9999 

TABLE VIII 

EXPERIMENTAL CONFUSION MATRIX USING SSR-BASED DI WHERE Rows 


SPECIFY THE ACTUAL FAULT CONDITION, AND COLUMNS SPECIFY THE 

DIAGNOSIS, BASED ON 100,000 SIMULATIONS OF EACH FAULT 


Fan LPC HPC HPT LPT No Fault 
Fan 0.7614 0.0000 0.0000 0.0:170 0.lfi77 0.0:1:18 
LPC 0.007:3 0.9354 0.0000 0.0000 0.0000 0.057:3 
HPC 0.0051 0.0000 0.8875 0.071::1 0.0074 0.0288 
HPT O.OOlEi 0.0000 0.0276 0.9422 0.0011 0.0275 
LFT 0.08:n 0.0000 0.0015 o.ml9::l 0.6680 0.1481 

No Fault 0.0000 0.0000 0.0000 0.0000 0.0001 0.9997 

elements. Table VII shows the theoretical upper bounds of the 
confusion matrix. Table VIII shows the experimental confusion 
matrix. These tables show that the theoretical results derived in 
this paper give reasonably tight bounds to the experimental con
fusion matrix values. 

Recall that we used a FPR of 0.000 I to choose our sensor 
sets, and detection thresholds. Therefore, the first five elements 
in the last row of Table VII are guaranteed to be no greater than 
0.0001. Further, the element in the lower right corner of Table VI 
is guaranteed to be no greater than 1 - 5(0.0001) = 0.9995. 

Note that it is possible for an element in the experimental con
fusion matrix in Table VIII to lie outside the bounds shown in 
Tables VI and VII (for example, see the numbers in the fourth 
row, and first column in Tables VII and VIII). This result is true 
because the numbers in Table VIII are experimentally obtained 
on the basis of a finite number of simulations, and are guaranteed 
to lie within their theoretical bounds only as the number of simu
lations approaches infinity. In fact, that is one of the strengths of 



TABLE IX 

EXPERIMENTAL CONFUSION MATRIX USING THE PARITy-SPACE ApPROACH 
FOR FD!, BASED ON 100,000 SIMULATIONS OF EACH FAULT 

Fan LPC HPC HPT LPT No Fault 

Fan 0.9421 0,0001 0,0000 0,0000 0,0000 OJ)1i79 
Ll'C 0,0002 0.8210 0,0000 0,0000 0,0000 0,1789 
HPC 0,0000 0,0000 0.9072 0,0000 O,OOOG 0,0922 
HPT 0,0000 0,0000 0,0000 0.9360 0,0000 0,0640 
LPT 0,0000 0,0000 0,0014 0,0000 0.7301 0,2685 

No Fault 0,0000 0,0000 0,0000 0,0000 0,0000 0.9999 

the analytic method proposed in this paper. The analytic bounds 
are definite, but simulations are subject to random effects. Also, 
simulations can give misleading conclusions if the simulation 
has errors. One common simulation error is the non-random
ness of commonly used pseudorandom number generators [27]. 

To summarize the SSR-based FDI algorithm, the user speci
fies the maximum FPR for each fault, and then finds the sensor 
set that has the largest TPR given the FPR constraint. Analytic 
confusion matrix bounds are then obtained using the theory in 
this paper. If the results are not satisfactory, the user can it
erate by changing the maximum FPR constraint. For example, 
if a TPR is too small, then the user will have to increase the 
FPR constraint. If the confusion matrix bounds of fault isolation 
probabilities are not satisfactory, the user will have to iterate on 
the FPR constraints to obtain different confusion matrix bounds. 

We also generated FDI results using the parity space approach 
[20] to explore the relative performance of our new SSR-based 
FDI approach. The parity space approach uses all sensors for all 
fault detectors, and we set the detection thresholds to achieve an 
FPR of 0.0001 to be consistent with the SSR-based approach. 
Results are shown in Table IX. A comparison of Tables VIII 
and IX shows that the parity space approach generally performs 
better than the SSR-based approach, although the results are 
comparable. The confusion matrix in Table VIII for the SSR
based algorithm has a condition number of 1.83, while the ma
trix in Table IX for the parity space approach has a condition 
number of 1.65. This result shows that the confusion matrix for 
the parity space approach is about 9.8% closer to perfect than 
the confusion matrix for the SSR-based approach. 

V. CONCLUSION 

This paper has introduced a new FDI algorithm, and derived 
analytical confusion matrix bounds. The main contribution of 
this paper is the generation of analytic confusion matrix bounds, 
and the possibility that our methodology could be adapted to 
other FDI algorithms. Usually, confusion matrices are obtained 
with simulations. Such simulations have several potential draw
backs. First, they can be time consuming. Second, they can give 
misleading conclusions if not enough simulations are run to 
give statistically significant results. Third, they can give mis
leading conclusions if the simulation has errors (for example, if 
the output of the random number generator does not satisfy sta
tistical tests for randomness). The theoretical confusion matrix 
bounds derived in this paper do not depend on a random number 
generator, and can be used in place of simulations. 

Further work in this area could follow several directions. 
First, the tightness of the confusion matrix bounds could be 

quantified. This paper derives bounds, but does not guarantee 
how loose or tight those bounds are. Second, the bounds could 
be modified to be tighter. Third, bounds could be attempted for 
methods other than the FDI algorithm proposed here. The fault 
isolation method we used isolates the fault that has the largest 
SSR relative to its detection threshold, Other fault isolation 
methods could normalize the relative SSR to its standard devia
tion, or could normalize the SSR to its detection threshold. Our 
FDI method is static, which means that faults are isolated using 
measurements at a single time. Better fault isolation might be 
achieved if dynamic system information is used. 

ApPENDIX 

We use the following lemmas to derive the results of this 
paper. We use the notation J x (w), and Fx (w) to denote the pdf, 
and CDF of the random variable :r evaluated at w. If the random 
variable is clear from the context, we shorten the notation to 
J(x), and F(x) respectively. These lemmas can be proven using 
standard definitions, and results from probability theory [24]. 

Lemma 5: The probability that a realization of the random 
variable x is greater than a realization of the random variable y 
is given as 

P(x > y) = I: 1= J(x, y)dxdy 

where J(x, y) is the joint pdf of x, and y. If x, and yare s-in
dependent, this result can be written as 

P(x > y) = I: [l= Jx(W)dW] Jy(z)dzI: [1 - Fx(z)] Jy(z)dz, 

Lemma 6: If y = T + :/:, where :1: is a random variable, and 
T is a constant, then 

Jy(W) = Jx(w - T) 
Fy(w) =F';,,(w - T). 

Lemma 7: If y = T - :D, where:D is a random variable, and 
T is a constant, then 

Jy(W) = J",(T - w) 
Fy(w) = 1 - Fx(T - w). 

Lemma 8: If z = min(x, y), where x and yare s-independent 
random variables, then 

Jz(W) = f,,(w) (1- Fy(w)) + Jy(w) (1- F';,,(w)). 

Lemma 9: If z = min(x, T), where x is a random variable, 
and T is a constant, then 

Fz(w) = { Flx(w) 	 W < T  
w?T  

f,,(w) 	 W < T 
{fz (w) = 	 0 W > T 

(1 - Fx(w)) 8(w - T) W = T 

where 8 (.) is the continuous-time impulse function. 



Lemma 10: If z = rnax(:r, 11), where:r and 11 are B-indepen
dent random variables, then 

fz(W) =fx(w)Fy(w) + MW)fAw). 

Lemma 11: If z = max (:r, T), where :c is a random variable, 
and T is a constant, then 

F( 	 )_ {f~(w) w?'T 
.rW- 0 w<T 

JAw) w>T 
JAw) = () w < T{ F,(w)6(w - '/') w = T. 

Proof of Theorem 1: Equation (5) gives the definition of 
CNR as 

eNR = P [(S, < T, ), "', (Sn < Tn)] 

where the Ti are constant, and the Si are random variables. 
If none of the fault detection algoritlnns have any sensors in 
common, then each S; is ,<;- independent, which means that 

CNR = P(S, < T, ) ... P(Sn < Tn) 

= II 
n 

TNR(Ti' kilo 
i=l 

If the algorithms have common sensors, then the Hi terms are 
positively .,-dependent, which will increase the CNR. On the 
other hand, if there is some m such that Ym is a superset of Yi 
for all 'i '" rn, TKRCI;", km ) ::; TNRCli, k;) for all 'i '" rn, 
and Tm :::; Ti for all i #- In, then 8 m < Tm ====} Si < Ti for all 
'I, which means that 

CNR = TNRCI;", km )· 
QED 

Proof of Theorem 2: Given n > 2 fault detection algo
rithms, the probability that fault q is isolated given that no fault 
occurred is the probability that Sq is greater than its threshold, 
and also greater than all of the other SSRs relative to their 
thresholds. 

lvIyO 	=P [(Sy > Ty), (Sy - Ty > S) - Ti ) for alIi'" 'I] 
::; min r [(Sq > '/~), (Sy - '/~ > Sj - 'Ii)] 

.1¥-q 

:::; l~lill Alqo,J. 
Ji:-q 

QED 
Proof of Theorem 3: First, we establish the positive s-de

pendence [28, p. 145] of the random variables Sy - SJ for all 
j '" q. Consider inequalities S, - 8 j > T, - Tj for j '" q. It 
follows from (4) that Sy - Sj is an increasing function of the 
negative squared normalized residuals of the common sensors 
of Sj, and thus the random variables Sy - SJ,.i '" '1, are posi
tively dependent. 

Now note that, if fault q occurred, then the probability that S, 
is larger than Sj relative to its threshold for all j '" q is given as 

Dq = P(Sq -1~ > Sj -Tj lor all) '" q)?, II DqJ 
ji-q 

where the inequality comes from the positive dependence of 
8'1 - Sj, j '" q. The probability that fault q is isolated given 
that fault q occurred can be written as 

eeRy =P [(Sy > Ty), (Sy - Ty > SJ - Tj for alIi'" IJ)] 
?' TPRqDq 

where the inequality comes from the positive dependence of the 
random variables 8q , and 8q - 8 j ,.i '" q. QED 

ProofofTheorem 4: If we have n > 2 fault detection algo
rithms, and fault q occurs, the probability that fault q is correctly 
detected and isolated is the probability that 8, is greater than its 
threshold, and also greater than all other SSRs relative to their 
thresholds. 

CCRq = r [(Sy > '/~), (8q - '/~ > 8j - T j 1'01' all j '" q)] 
::; minP [(Sy > Ty), (Sy - Ty > SJ - Tj )] 

Ji-q 

~ 	minCCRqj . 
.1i-q 

QED 
ProofofTheorem 5: Given that we have n > 2 fault detec

tion algorithms, the misc1assification rate Aijq is bounded from 
above by lvljq. So to obtain an upper bound for Aljq , weuse one 
of (21)-(24) as appropriate. This approach gives 

Mjq = r [(Sj > 'Ii), (S, - 'Ii> 8i - 'Ii 1'01' all i '" j)] 
::; P [(S) > Tj ), (SJ - Tj > Sy - Ty)] 
~ ilI~j' 

QED 
Proof of Theorem 6: The probability A10q that no fault is 

detected when fault q occurs is given as 

QED 
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