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ANALYTIC CONFUSION MATRIX BOUNDS FOR FAULT DETECTION AND
ISOLATION USING A SUM-OF-SQUARED-RESIDUALS APPROACH

Dan Simon, Cleveland State University
Donald L. Simon, N.AS5.A Glenn Research Center

ABSTRACT

Given asystem which can fail in 1 of nn different ways,
a fault detection and isolation (FDI) algorithm uses sensor data
to determine which fault is the most likely to have occurred. The
effectiveness of an FDI algorithm can be quantified by a confusion
matrix, also called a diagnosis probability matrix, which indicates
the probability that each fault is isolated given that each fault has
oceurred. Confusion matrices are often generated with simulation
data, particularly for complex systems. In this paper, we perform
FDI using sum-of-squared residuals (SSRs). We assume that the
sensor residuals are s-independent and Gaussian, which gives
the SSRs chi-squared distributions. We then generate analytic
lower, and upper bounds on the confusion matrix elements. This
approach allows for the generation of optimal sensor sets without
numerical simulations. The confusion matrix bounds are verified
with simulated aircraft engine data,

Index Terms—Aircraft turbofan engine, chi-squared distribu-
tion, confusion matrix, diagnosis probability matrix, fault detec-
tion and isolation.

ACRONYM

C—MAPSS  Commercial modular aero-propulsion

system simulation
CCR Correct classification rate
CNIE Correct no-fault rate
FDI Fault detection and isolation
FNR False negative rate
FPR False positive rate
HPC High pressure compressor
HPT High pressure turbine
LPC Low pressure compressor
LPT Low pressure turbine
581 Sum of squared residual
TNR True negative rate
TPR True positive rate
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NOTATION
CCR of fault ¢
Marginal CCR of fault ¢ relative to fault y

Marginal detection rate of fault ¢ relative to
fault 5

Chi-squared pdf

Noncentral chi-squared pdf

Chi-squared CDF

Noncentral chi-squared CDF

Number of sensors used to detect a fault
Cardinality of Y;

Cardinality of J;

Probability that no fault is detected given that
fault § occurred

Probability that fault ¢ is isolated given that no
fanlt occurred

Probability that fault 7 is isolated given that fault
4 oceurred

Marginal misclassification rate of fault ¢ given
that fault 7 occurred

Marginal misclassification rate of fault 2 relative
to fault § given no fault

Number of possible fanlt conditions

Core speed

Bypass duct pressure
LPC outlet pressure
HPC outlet pressure

Normalized residual of the ith fault detection
algorithm
Fault detection threshold

LPC outlet temperature

HPC outlet temperature

HPT outlet temperature

Fuel flow

Residual of the ith sensor

Sensors unique to algorithm i

Normalized residual of the jth sensor in ¥;

Sensors common to two fault detection
algorithms
Normalized residual of the jth sensor in ¥,
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Y, Normalized residual of the jth sensor in J;
Jhi Mean of
o; Standard deviation of g

1. INTRODUCTION

ANY different methods of fault detection and isolation

(FDI) have been proposed. Frequency domain methods
include monitoring resonances [1], or modes [2]. Filter-based
methods include observers [3], unknown input observers [4],
Kalman filters [3], particle filters [6], sliding mode observers
[7]1, I, filters [8], and set membership filters [9]. There are
also methods based on computer intelligence [10] that include
fuzzy logic [11], neural networks [12], genetic algorithms [13],
and expert systems [14]. Other methods include those based on
Markov models [15], system identification [16], wavelets [17],
Bayesian inference [18], control input manipulation [19], and
the parity space approach [20]. Many other FDI methods have
also been proposed [21], some of which apply to special types
of systems.

The parity space approach to FDI compares the sensor
residual vector to nominal user-specified fault vectors, and the
closest fault vector is isolated as the most likely fault. If the
sensor residual vectors are Gaussian, the parity space approach
allows an analytic computation of the confusion matrix. The
FDT approach that we propose is philosophically similar to the
parity space approach, but instead of using fault vectors, we use
sum-of-squaredresiduals (SSRs)todetect and isolate a fault. Our
approach is chosen because of its amenability to a new statistical
method for the calculation of confusion matrix bounds.

A preliminary version of this paper was published as a tech-
nical report [22]. This paper has corrected proofs and expanded
simulation results.

If sensor residuals are Gaussian, the SSRs have a chi-squared
distribution [23]. This allows for the specification of SSR
bounds for fault detection, which have a known false negative
rate (FNR), and false positive rate (FPR). We can also compare
the SSRs for each fault type to determine which fault is most
likely to have occurred, and then find analytic bounds for
faunlt isolation probabilities. Our FDI algorithm is new, but the
primary contribution of this paper is to show how confusion
matrix element bounds can be derived analytically. The FDI
algorithm that we propose is fairly simple, but the confusion
matrix analysis that we develop is novel, and its ideas may be
adaptable to other FDT algorithms.

Our approach is to first specify the magnitude of each fault
that we want to detect, along with a target FPR. For each fault,
we then find the sensor set that gives the largest true positive rate
(TPR) for the given FPR. Then we use statistical approaches to
find confusion matrix bounds. The confusion matrix bounds are
the outputs of this process. We cannot specify desired confusion
matrix bounds ahead of time; the bounds are the s-dependent
variables of the sensor selection process.

The goal of this paper is threefold. Our first goal is to present
our SSR-based FDI algorithm, which we do in Section II. Our
second goal is to derive confusion matrix bounds, which we
do in Section II1. Our third goal is to confirm the theory with

simulation results, which we do in Section IV using an aircraft
turbofan engine model. Section V presents some discussion, and
conclusions.

II. AN SSR-BASED FDI ALGORITHM

This section presents the background, and an overview of our
proposed SSR-based FDI algorithm for a static, linear system.
To perform FDI, sensor residuals are computed at each mea-
surement time, and the SSRs are used. If the sensor residuals are
Gaussian, then the SSRs have chi-squared distributions, which
allows the formulation of analytic bounds on the confusion ma-
trix elements as discussed in Sections II[-A-ITT-C.

A. Sensor Residuals, and Chi-Squared Distributions

The residual of the 7th sensor is denoted as 1;, and is a mea-
surement of the difference between the sensor output and its
nominal no-fault output. In the no-fault case, y; has a zero ex-
pected value. In the fault case, the mean of y; is p;. In either
case, the standard deviation of w; i8 ;. The mean pi; depends
on which fault oceurs. But for simplicity of notation, we do not
indicate that s-dependence in our notation. An SSR is given as

k
S X bl (1)
=1

1) No-Fault Condifion: Inthe no-fault case, y; has a zero ex-
pected value. If each y; is a s-independent zero-mean Gaussian
random variable, then S is a random variable with a chi-squared
distribution [23]. We use the notation f{wx, k&), and F(u, k) to
denote its pdf, and CDF respectively. We use a user-specified
threshold T' to detect a fault.

8 >T — fault detected
S < T — no fault detected.

Note that fault isolation is a different issue than fault detection.
Detection of fault ¢ means that S, > 7 for fault detection
algorithm ¢. However, it may be that S5; > T; for more than one
value of ¢. In that case, multiple faults have been detected, and
a fault isolation algorithm is required to isolate the most likely
fault.

The true negative rate (TNR) for fault ¢ is the probability that
S; < T; given that there are no faults. The FPR for fault ¢ is the
probability that S; > T, given that there are no faults. These
probabilities are given as

TNR(T,. k) = F(T,. k)
FPR(T;, k) =1 — F(15 k). (2)

Fig. 1 illustrates TNR, and FPR for a chi-squared SSR, The TNR
is the area to the left of the user-specified threshold 7" = 25, and
the FPR is the area to the right of the threshold.

2) Fault Condition: If a fault occurs, then the 1; terms in (1)
will not, in general, have a mean value of zero. In this case,
S has a noncentral chi-squared distribution [23], and we use
Sl &k, A), and Fx, k, A) to denote its pdf, and CDF, where A
is given as

k
A= Z,uf/crf
i=1
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Fig. 1. Illustration of a chi-squared pdf of an SSR with & = 10 sensors.
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Fig. 2. Illustration of a noncentral chi-squared pdf of an SSR with & = 10
sensors, and A = 40.

The TPR is defined as the probability that fault ¢ is correctly
detected (S; > T;) given that it occurs. This approach does
not take fault isolation into account. The FNR is defined as the
probability that fault 7 is not detected (S; < T;) given that it
occurs. These probabilities can be written as

FNR; = F(T;, k, \)
TPR; =1 - F(T;, k, A). 3)

Fig. 2 illustrates TPR, and FNR for a chi-squared SSR. The FNR
is the area to the left of the user-specified threshold 1" = 20, and
the TPR is the area to the right of the threshold.

B. Confusion Matrix

A confusion matrix specifies the likelihood of isolating each
fault, and can be used to quantify the performance of an FDI al-
gorithm. A typical confusion matrix is shown in Table I. The
rows correspond to fault conditions, and the columns corre-
spond to fault isolation results. The element in the ith row and
gth column is the probability that fault j is isolated when fault
1 occurs. Ideally, the confusion matrix would be an identity ma-
trix, which would indicate perfect fault isolation.

TABLE I
TYPICAL CONFUSION MATRIX FORMAT, WHERE THE ROWS CORRESPOND
TO FAULT CONDITIONS, AND THE COLUMNS CORRESPOND TO FAULT
ISOLATION RESULTS

Fault 1  Fault 2 Fault n  No fault
Fault 1 CCR; Moy My Moy
Fault 2 Mlg CCRZ A{nz Afog
Fault n My, Moy, CCR,, My,
No fault My My Mg CNR

C. Summary of SSR-Based FDI Algorithm

Our FDI approach is to first specify the magnitude of each
fault that we want to detect, along with a maximum allowable
FPR. For each fault, we then find the sensor set that gives the
largest TPR for the given FPR. This idea can be seen by exam-
ining Figs. 1 and 2. For a given fault, we will obtain different
Figs. 1 and 2 for each possible sensor set. Given a particular
Fig. 1 for a specific sensor set, we obtain a detection threshold
T that corresponds to our allowable FPR. Given a particular
threshold 7', we obtain a TPR from Fig. 2. Intuitively we want to
use sensors with large fault signatures in our FDI algorithm, and
this result leads to the algorithm shown in Fig. 3 for selecting a
sensor set for each fault.

Note that, although the sensor selection algorithm is logical,
it is not necessarily optimal for FDI. The sensor selection algo-
rithm in Fig. 3 is executed once for each fault that we want to
detect. After we have selected a sensor set for each fault, any
SSR that is greater than its threshold is considered to have been
detected. If more than one SSR is greater than its threshold, the
SSR that is largest relative to its threshold is isolated as the most
likely fault. The FDI algorithm is summarized in Fig. 4. The
strategy of isolating a fault using relative SSR values is a rea-
sonable ad-hoc approach, but is not necessarily optimal.

III. CONFUSION MATRIX BOUNDS

This section derives analytic confusion matrix bounds for our
SSR-based FDI algorithm. Section III-A deals with the no-fault
case, and derives bounds for the correct no-fault rate (CNR),
which is the probability that no fault is detected given that no
fault occurs. It also derives bounds for the FPR, which is the
probability that one or more faults are detected given that no
fault occurred. Finally, it derives an upper bound for the no-fault
misclassification rate, which is the probability that a given fault
is isolated given that no fault occurred. Section III-B deals with
the fault case, and derives bounds for the correction classifica-
tion rate (CCR), which is the probability that a given fault is
correctly isolated given that it occurred. Section III-C also deals
with the fault case, and derives upper bounds for the fault mis-
classification rate, which is the probability that an incorrect fault
is isolated given that some other fault occurred. Section III-D
summarizes the bounds, and their use in the confusion matrix;
and Section ITI-E discusses the required computational effort.

A. No-Fault Case

1) Correct No-Fault Rate: First, suppose that only two fault
detection algorithms, ¢, and 7, are running. Algorithm ¢ at-



Specify the maximum allowable FPR for a given fault

Initialize the sensor set to the empty set
for ¢ = 1 to number of sensors

Add the sensor with the ith largest fault signature to the sensor set
Use Fig. 1 to find the detection threshold corresponding to the specified FPR
Use Fig. 2 to find the TPR corresponding to the detection threshold

next ¢

Select the sensor set that has the largest TPR

Fig. 3. Sensor selection algorithm for a specific fault.

for j = 1 to number of fault possibilities
Compute the SSR. S; as shown in (1)
next j
If §; < Tj for all j
Indicate that no faults have occurred
else
Isolated fault p = argmax, (Sp — Tp)
end if

Fig. 4. SSR-based FDI algorithm.

tempts to detect fault ¢ using k, sensors, and threshold 7},. We
use the notation
Y; = {sensors unique to algorithm i}
Y. = {sensors common to algorithms ¢ and j}
YV; ={all sensors used by algorithm i} = {Y;, Y.}
ki =1Yi
kia = |Vil.
We use the notation V;; to denote the jth normalized residual of

the sensors used in algorithm 4, with similar meanings for Y;;,
and Y,;. That is,

Si= Y Vi=Y VE+Y V3.
i i !

Now suppose that there are n > 2 fault detection algorithms. In
this case, we can write the correct no-fault rate (CNR), which
is the probability that all of the SSRs are below their detection
thresholds given that no fault occurred.

“)

CNR = P[(S1 < T1), -, (Sn < Tp)]. )

Theorem 1: The CNR can be bounded as

[ITNR(T;, ki) < CNR < min TNR(T;, ki)

=1

where TN R(T;, k;) is given in (2).
Proof: See the Appendix.

2) Fault Misclassification Rates in the No-Fault Case: Given
that no fault occurred, the probability that fault ¢ is incorrectly
isolated is called the misclassification rate, M;q. In this section,
we derive upper bounds for this probability.

Suppose that we have only two fault detection algorithms: g,
and 7. Given that no fault occurred, the probability that fault
q is isolated is called the marginal misclassification of fault ¢
relative to fault 7, and is given as

Mqo,j = P[(Sq > Ty),(Sg =Ty > Sj = Tj)].-

Lemma 1: If neither Y, Y}, nor Y, are empty, then

Myo,; = /_ (L= F(ys k)] [F(y+T5 =Ty, k) f(Ty =y ke)
+ [y +Tj = Ty k) (1 = F(Ty =y, ko)l dy. - (6)

If Y, is empty, and Y; and Y. are not empty, then
Myo,; = F(T; = Ty, ;) [1 = F(Ty, k)] ©)
If Y; is empty, but Y, and Y, are not empty, then

Myoj = [1 = F(Ty = Ty, ko)l [1 = F(Tj, k)]

T,
+ /T . (L= F(y, k) f(Ty =y, ke) dy. (8)

If Y, is empty, but Y, and Y; are not empty, then
Myo,; = [L = F(Tq, k)| F(T}, k)

+/ 1= F(y k) fy + Tj — Ty k) dy. (9)

T,

Proof: Equation (6) can be obtained using Lemmas 5, 6, 7
and 10, which are listed in the Appendix. Equation (7) follows
from the s-independence of Y;, and Y... Equation (8) can be ob-
tained using Lemmas 5, 7, and 11. Equation (9) can be obtained
using Lemmas 5, 6, and 11. QED

The preceding lemma leads to the following result for the
fault misclassification rate in the no-fault case.

Theorem 2: 1f we have n > 2 fault detection algorithms, the
probability that fault ¢ is isolated given that no fault occurred
can be bounded as

Myo < min My ;
J#q

where M ; is given by one of (6)—(9) for each j.
Proof: See the Appendix.



B. Correct Faull Classification Rales

Given that some fault occurs, we might isolate the correct
fault, or we might isolate an incorrect fault. The probability of
isolating the correct fault is called the correct classification rate
{CCR). In this section, we derive lower, and upper bounds for
the CCR.

1) Lower Bounds for the Correct Classification Rate: Sup-
pose we have only two fault detection algorithms, ¢ and j, and
fault g occurs. Consider the probability that 5, is larger than 5,
relative to their thresholds. We call this probability the marginal
detection rate D, ;. Note that we are not considering whether
or not the SSRs exceed their threshold; we are only considering
how large the SSRs are relative to their thresholds. The marginal
detection rate is given as

Dy =P[(S; — 1) > (S5 — T;)] (10)

(Z Yy -T,+ Tj) > ZYE] - an

Lemma 2: If neither ¥, nor ¥ are empty, then

By = / (1—Fly+T,—Tj. kg Ay)) fly k) dy (12)
0

=P

where
Ay =) Vil (13)
If ¥, is empty, and Y; is not empty, then
Dyj = F(T5 =Ty ky)- (14)
If ¥; is empty, and Y, is not empty, then
Blap=1 — FN Ty~ T By Ky ). (15)

Proof: Equation (12) can be obtained using Lemmas 5, and
6, which are in the Appendix. Equations (14), and (15) follow
from (11). QED
The preceding lemma leads to the following result for the
correct fault isolation rate.
Theorem 3: If wehaven > 2 fault detection algorithms, and
fault ¢ occurs, the probability that fault ¢ is correctly isolated is
bounded as

CCR, > TPR, || Pus-
a#F

Proof: See the Appendix.

2) Upper Bounds for the Correction Classification Rate:
Next, we find an upper bound for the CCR. To begin, suppose
that we have only two fault detectors: algorithms ¢, and j.
Given that fault g occurs, the probability that it is comrectly
isolated is called the marginal CCR. This CCR can be written
as

CCRy; = P{(SG*TG > 8 =T5). (8> Tq)]
P

Z}fq?i > 1Max ( Yﬁ +71, =T, T~ Z }/CE;)] .
i i

i

Lemma 3. If neither Y, Y}, nor Y. are empty, then

Bl :f [1— #(y, kg, Ag)]

—x
X [Fly+T; — T k) fT, — yh ke, M)
+ fly+ T — Ty ky)

S (I - F(r]q - U1'l”01)\0))] ’]y (16)

where A, is defined analogously to A,, shown in (13). I[f ¥, is
empty, but ¥; and ¥, are not empty, then

CORy = F(T; — Ty k) [1 = F(Ty ke A)]. AT

If Y; is empty, but ¥;; and Y, are not empty, then

CORy; = [1 — F(Ty = Tj, kg, A\ [L = F(T5, kg, A)]

T,
+: / (L= F (3. bgo A F(Ty =y, ke, A)dy. (18)
st

If' Y. is empty, but ¥, and ¥; are not empty, then

CORyy = [1— BT, ks A5 F(T50kyp)
+ / (L= F(y. by A Flut+ L5 - Ty, ky)dy. (19)
JT,

a4

Proof: Bquation (16) can be obtained using [.emmas 5, 6,
7, and 10, which are in the Appendix. Equation (17) follows
from the s-independence of Y}, and ¥.. Equation (18) can be
obtained using Lemmas 5, 7, and 11. Equation (19) can be ob-
tained using Lemmas 3, 6, and 11. QED
The preceding lemma leads to the following result for the
correct fault isolation rate.
Theorem4: If we have n > 2 fault detection algorithms, and
fault ¢ occurs, the probability that fault ¢ is correctly detected
and isolated can be bounded as

CCOR, <min CCR,;.
i#y

i#
Proof: See the Appendix.

C. Fault Misclassification Rates

In this section, we derive upper bounds for the probability that
a fault is incorrectly isolated. If fault ¢ occurs, the probability
that fault 7 is detected and isolated is called the misclassification
rate M;,.

First, suppose that we have two fault detection algorithms: g,
and j. The misclassification rate can then be written as

M, =P[8;-T;>5,—T,).(8;>T;)]

Fl
> Yismax (ZK,%H}TQ,T_,ZK%)]
i i i

(20)

=P

where the prime symbol on A

; , denotes that only two detection
algorithms are used.



Lemma 4: If neither ¥, ¥, nor Y. are empty, then

[ 1= Pl

Ll =)

X [Fly+ Ty = Tj kg M) (T — 9, ke, A
+ fly+ T, — Tj kg Ay

MY, =

Ja

x (1= F(T; — y.key An))] dy. (21)
If ¥, is empty, but ¥; and ¥, are not empty, then
My = 1= B(Ty — Ty k)l [L — BTy bes Ao)]
= fT (1= Fly. k)] F(T5 — ke, Aoy, (22)
P
If' ¥; is empty, but ¥, and ¥, are not empty, then
M, = F(T, — Tj, ke Ag) [1 = F(Tj, kes Xo)]. (23)

If ¥, is empty, but ¥, and Y; are not empty, then
M}, = [~ F(Ty, k)] F(Ty. ks Ag)

+ / [L— Fly. k)] fly + Ty — Ty, kg Ag)dy.  (24)
vy
Proof: Bquation (21) can be obtained using Lemmas 5, 6,
7, and 10, which are in the Appendix. Equation (22) can be ob-
tained using Lemmas 3, 7, and 11. Equation (23) follows from
{20), and the s-independence of Yy, and Y. Bquation (24) fol-
lows from Lemmas 3, 6, and 11.

The preceding lemma leads to the following results for the
fanlt misclassification rate.

Theorem 5: If we have n > 2 fault detection algorithms,
and fault ¢ occurs, the probability that fault § will be incorrectly
detected and isolated can be bounded as

M;

da < qu'

Proof: See the Appendix.
Theorem 6: The probability M, that no fault is detected
when fault ¢ occurs can be bounded from above as

AMT[)q S F(,Tq-, kqa: Aqn;u)-
Proof: See the Appendix.
D. Summary of Confusion Matrix Bounds

Recall the confusion matrix in Table I. The rows correspond
to fault conditions, and the columns correspond to fault isola-
tion results. The element in the ¢th row and jth column is the
probability that fault § is isolated when fault ¢ occurs. The pre-
vious sections derived the following bounds.

+ CNR is the probability that a no-fault condition is cor-

rectly indicated given that no fault occurs, and its lower,
and upper bounds are given in Theorem 1.

+ Mg fori € [1,n]istheprobability that fault ¢ is incorrectly
isolated given that no fault occurs, and its upper bound is
given in Theorem 2.

+ CCR, for i € [L.n] is the probability that fault ¢ is cor-
rectly isolated given that it occurs, and its lower, and upper
bounds are given in Theorems 3 and 4.

o M, fori,j € [1,n],and ¢ # j is the probability that fault
i is incorrectly isolated given that fault j occurs, and its
upper bound is given in Theorem 5.

o My, for¢ € [1,n] is the probability that no fault is isolated
given that fault ¢ occurs, and its upper bound is given in
Theorem 6.

E. Computaiional Effort

Usually, confusion matrices are obtained through simula-
tions. To derive an experimental confusion matrix with » faults,
the number of matrix elements that need to be calculated is
on the crder of n?. Also, the required number of simulations
for each mafrix element calculation is on the order of n. This
size is because, as the number of possible faults increases, the
number of simulations required to obtain the same statistical
accuracy increases in direct proportion. Therefore, the compu-
tational effort required for the experimental determination of a
confusicn matrix is on the order of n”.

The bounds derived in this paper also require computational
effort that is on the order of n3, This size is because each of
the bounds summarized in Section I11-D required computational
effort on the order of n, and the number of matrix elements is on
the order of n2. Note that this size does not include the sensor
selection algorithm shown in Fig. 3, which requires the off-line
solution of a discrete minimization problem.

IV. SIMULATION RESULTS

In this section, we use simulation results to verify the theoret-
ical bounds of the preceding sections. We consider the problem
of isolating an aircraft turbofanengine fault, which is modeled by
the NASA Commercial Modular Aero-Propulsion System Sim-
ulation (C-MAPSS) [25]. There are five possible faults that can
occur: fan, low pressure compressor (LPC), high pressure com-
pressor (HPC), high pressure turbine (HPT), and low pressure
turbine (LPT). These five faults entail shifts of both efficiency,
and flow capacity from nominal values. Thefault magnitudes that
welry to detect are 2.5% for the fan, 20% for the LPC, 2% for the
HPC, 1.5% for the HPT, and 2% for the LPT. These magnitudes
were chosen to give reasonable fault detection ability.

The available sensors, and their standard deviations are shown
in Table II. Recall that our FDI algorithm assumes that the sensor
noises are s-independent. Inreality, they may have some correla-
tion. For example, if the aircraft is operating in high humidity, all
of the pressure sensors may be slightly biased in a similar fashion.
However, the sensor noise correlation is a second order effect,
and so we make the simplifying but standard assumption that
the correlations are zero. This assumption is conceptually sim-
ilar to our simplifying assumption of Gaussian noise.

The fault influence coefficient matrix shown in Table 11T was
generated using C-MAPSS, and is based on [26]. The numbers
in Table [T are the partial derivatives of the sensor outputs with
respect to the fault conditions, normalized to the fault percent-
ages discussed above, and normalized to one standard deviation
of the sensor noise.

We used the algorithm shown in Fig. 3 to select sensors for
each fault with a maximum allowable FPR of 0.0001. As an ex-
ample, consider the fan fault with the normalized fault signatures



TABLE II
AIRCRAFT ENGINE SENSORS, AND STANDARD DEVIATIONS AS A PERCENTAGE
OF THEIR NOMINAL VALUES

Symbol Description Standard deviation

Ne Core speed 0.25

P15 Bypass duct pressure 0.50

P24 LPC outlet pressure 0.50
Ps30 HPC outlet pressure 0.50

T24 LPC outlet temperature 0.20

T30 HPC outlet temperature 0.17

T48 HPT outlet temperature 0.53

Wi Fuel flow 0.75

TABLE III
FAULT SIGNATURES OF FIVE DIFFERENT FAULT CONDITIONS, WITH MEAN
SENSOR VALUE RESIDUALS NORMALIZED TO ONE STANDARD DEVIATION

Sensors

| Ne P15 P24 Ps30 T24 T30 T48 Wi

Fan [0.80 2.10 1.80 4.05 043 049 1.21 3.40

LPC|0.00 0.00 4.80 1.20 3.20 0.20 0.80 0.27

Faults HPC|0.72 0.08 0.32 0.64 054 523 3.08 1.60

HPT[0.96 0.12 0.39 327 0.72 2.63 4.40 2.18

LPT(1.20 0.12 0.60 3.56 0.90 3.34 0.03 2.32

TABLE IV
POTENTIAL SENSOR SETS FOR DETECTING A FAN FAULT

Sensors Detection threshold 77 TPR,
Ps30 15.1 0.563
Ps30, Wf 18.4 0.865
Ps30, Wi, T30 21.1 0.926
Ps30, Wi, T30, P15 23.5 0.949
Ps30, Wi, T30, P15, P24 25.7 0.959
Ps30, Wt, T30, P15, P24, T48 27.9 0.958
Ps30, Wi, T30, P15, P24, T48, Nc 29.9 0.952
Ps30, Wi, T30, P15, P24, T48, Nc¢, T24 31.8 0.942

shown in Table III. The sensors with the largest fault signatures in
descending order are Ps30, Wf, T30, P15, P24, T48, Nc, and T24.
This gives eight potential sensor sets for detecting a fan fault:
the first potential set uses only sensor Ps30, the second poten-
tial set uses Ps30 and Wf, and so on. The potential sensor sets,
along with their detection thresholds, and TPRs, are shown in
Table IV. Table IV shows that using five sensors gives the largest
TPR given the constraint that FPR < 0.0001. The thresholds were
determined by constraining FPR < 0.0001. Using five sensors
gives the largest TPR subject to the FPR constraint.

This process described in the previous paragraph was re-
peated for each fault shown in Table III. The resulting sensor
sets are shown in Table V. Note that, given a FPR constraint, the
detection threshold is a function only of the number of sensors
in each sensor set; the detection threshold is not a function of
the specific fault signatures. This result is illustrated in Fig. 1,
where it is seen that f(z, k) is a function only of x, and % (the
number of sensors).

We used the fault isolation method shown in Fig. 4, along
with the theorems in the previous sections to obtain lower, and
upper bounds for the confusion matrix as summarized in Sec-
tion ITI-D. We also ran 100,000 simulations to obtain an exper-
imental confusion matrix. Table VI shows the theoretical lower
bounds of the diagonal elements of the confusion matrix. Lower
bounds of the off-diagonal elements were not obtained because
we are typically more interested in upper bounds of off-diagonal

TABLE V
SENSOR SETS FOR FAULT DETECTION GIVING THE LARGEST TPR FOR EACH
FAULT GIVEN THE CONSTRAINT THAT FPR < 0.0001

Fault  Sensor set Detection threshold T TPR
Fan Ps30, Wi, T30. P15, P24 25.7 0.959
LPC P24, T24 18.4 0.943
HPC T30, T48 18.4 0.970
HPT T48, Ps30, T30, Wf 23.5 0.970
LPT Ps30, T30, Wf 21.1 0.844

TABLE VI
LOWER BOUNDS OF DIAGONAL CONFUSION MATRIX ELEMENTS WHERE
ROWS SPECIFY THE ACTUAL FAULT CONDITION, AND COLUMNS SPECIFY
THE DIAGNOSIS

| Fan LPC HPC HPT LPT  No Fault
Fan 0.6691
LPC 0.9342
HPC 0.8692
HPT 0.9345
LPT 0.6623
No Fault 0.9992
TABLE VII

UPPER BOUNDS OF THE CONFUSION MATRIX ELEMENTS WHERE ROWS SPECIFY
THE ACTUAL FAULT CONDITION, AND COLUMNS SPECIFY THE DIAGNOSIS

| Fan LPC HPC HPT LPT No Fault
Fan 0.7761 0.0000 0.0001  0.1115  0.1899 0.0408
LPC ]0.0076  0.9356 0.0000  0.0000  0.0000 0.0573
HPC ]0.0097  0.0000 0.8936 0.0769  0.0160 0.0303
HPT [0.0015  0.0000  0.0270 0.9445 0.0014 0.0300
LPT |0.0874  0.0000  0.0030  0.1066 0.7422  0.1557
No Fault|0.0000  0.0000  0.0000  0.0000  0.0001 0.9999
TABLE VIII

EXPERIMENTAL CONFUSION MATRIX USING SSR-BASED DI WHERE ROWS
SPECIFY THE ACTUAL FAULT CONDITION, AND COLUMNS SPECIFY THE
DIAGNOSIS, BASED ON 100,000 SIMULATIONS OF EACH FAULT

| Fan LPC HPC HPT LPT  No Fault
Fan [0.7614 0.0000  0.0000  0.0370  0.1677 0.0338
LPC [0.0073 0.9354 0.0000  0.0000  0.0000 0.0573
HPC ]0.0051 0.0000 0.8875 0.0713  0.0074 0.0288
HPT |0.0016 0.0000 0.0276 0.9422 0.0011 0.0275
LPT [0.0831 0.0000 0.0015 0.0993 0.6680  0.1481
No Fault [ 0.0000  0.0000  0.0000  0.0000  0.0001 0.9997

elements. Table VII shows the theoretical upper bounds of the
confusion matrix. Table VIII shows the experimental confusion
matrix. These tables show that the theoretical results derived in
this paper give reasonably tight bounds to the experimental con-
fusion matrix values.

Recall that we used a FPR of 0.0001 to choose our sensor
sets, and detection thresholds. Therefore, the first five elements
in the last row of Table VII are guaranteed to be no greater than
0.0001. Further, the element in the lower right corner of Table VI
is guaranteed to be no greater than 1 — 5(0.0001) = 0.9995.

Note that it is possible for an element in the experimental con-
fusion matrix in Table VIII to lie outside the bounds shown in
Tables VI and VII (for example, see the numbers in the fourth
row, and first column in Tables VII and VIII). This result is true
because the numbers in Table VIII are experimentally obtained
on the basis of a finite number of simulations, and are guaranteed
to lie within their theoretical bounds only as the number of simu-
lations approaches infinity. In fact, that is one of the strengths of



TABLE IX
EXPERIMENTAL CONFUSION MATRIX USING THE PARITY-SPACE APPROACH
FOR FDI, BASED ON 100,000 SIMULATIONS OF EACH FAULT

Fan LPC HPC HPT LPT No Fault
Fan [0.9421 0.0001  0.0000  0.0000  0.0000 0.0579
LPC [0.0002 0.8210 0.0000  0.0000  0.0000 0.1789
HPC |0.0000 0.0000 0.9072 0.0000 0.0006 0.0922
HPT [0.0000 0.0000  0.0000 0.9360 0.0000 0.0640
LPT [0.0000 0.0000 0.0014 0.0000 0.7301 0.2685
No Fault| 0.0000  0.0000  0.0000  0.0000  0.0000  0.9999

the analytic method proposed in this paper. The analytic bounds
are definite, but simulations are subject to random effects. Also,
simulations can give misleading conclusions if the simulation
has errors. One common simulation error is the non-random-
ness of commonly used pseudorandom number generators [27].

To summarize the SSR-based FDI algorithm, the user speci-
fies the maximum FPR for each fault, and then finds the sensor
set that has the largest TPR given the FPR constraint. Analytic
confusion matrix bounds are then obtained using the theory in
this paper. If the results are not satisfactory, the user can it-
erate by changing the maximum FPR constraint. For example,
if a TPR is too small, then the user will have to increase the
FPR constraint. If the confusion matrix bounds of fault isolation
probabilities are not satisfactory, the user will have to iterate on
the FPR constraints to obtain different confusion matrix bounds.

We also generated FDI results using the parity space approach
[20] to explore the relative performance of our new SSR-based
FDI approach. The parity space approach uses all sensors for all
fault detectors, and we set the detection thresholds to achieve an
FPR of 0.0001 to be consistent with the SSR-based approach.
Results are shown in Table IX. A comparison of Tables VIII
and IX shows that the parity space approach generally performs
better than the SSR-based approach, although the results are
comparable. The confusion matrix in Table VIII for the SSR-
based algorithm has a condition number of 1.83, while the ma-
trix in Table IX for the parity space approach has a condition
number of 1.65. This result shows that the confusion matrix for
the parity space approach is about 9.8% closer to perfect than
the confusion matrix for the SSR-based approach.

V. CONCLUSION

This paper has introduced a new FDI algorithm, and derived
analytical confusion matrix bounds. The main contribution of
this paper is the generation of analytic confusion matrix bounds,
and the possibility that our methodology could be adapted to
other FDI algorithms. Usually, confusion matrices are obtained
with simulations. Such simulations have several potential draw-
backs. First, they can be time consuming. Second, they can give
misleading conclusions if not enough simulations are run to
give statistically significant results. Third, they can give mis-
leading conclusions if the simulation has errors (for example, if
the output of the random number generator does not satisfy sta-
tistical tests for randomness). The theoretical confusion matrix
bounds derived in this paper do not depend on a random number
generator, and can be used in place of simulations.

Further work in this area could follow several directions.
First, the tightness of the confusion matrix bounds could be

quantified. This paper derives bounds, but does not guarantee
how loose or tight those bounds are. Second, the bounds could
be modified to be tighter. Third, bounds could be attempted for
methods other than the FDI algorithm proposed here. The fault
isolation method we used isolates the fault that has the largest
SSR relative to its detection threshold. Other fault isolation
methods could normalize the relative SSR to its standard devia-
tion, or could normalize the SSR to its detection threshold. Our
FDI method is static, which means that faults are isolated using
measurements at a single time. Better fault isolation might be
achieved if dynamic system information is used.

APPENDIX

We use the following lemmas to derive the results of this
paper. We use the notation f,(w), and F,(w) to denote the pdf,
and CDF of the random variable x evaluated at w. If the random
variable is clear from the context, we shorten the notation to
f(x),and F'(x) respectively. These lemmas can be proven using
standard definitions, and results from probability theory [24].

Lemma 5: The probability that a realization of the random
variable z is greater than a realization of the random variable y
is given as

Pz >y) = /_i /yoo [z, y)dzdy

where f(z,y) is the joint pdf of z, and y. If x, and y are s-in-
dependent, this result can be written as

Pe>y= [ [ A f:c(’w)dw] o (2)dz
= [T n-rensee

— o0

Lemma 6: If y = T + x, where x is a random variable, and
T is a constant, then

fy(w) = fo(w =T)
Fy(w) =Fg(w-T).

Lemma 7: If y = T — x, where x is a random variable, and
1" is a constant, then

fy(w) = fo(T — w)
Fy(w) =1 - Fp(T — w).

Lemma 8: If z = min(z, y), where = and y are s-independent
random variables, then

fo(w) = fa(w) (1 = Fy(w)) + fy(w) (1 = Fa(w)).

Lemma 9: If z = min(x, T'), where x is a random variable,
and 7 is a constant, then

_JF(w) w<T
Fz(w) - { 1 ) w 2 T
fo(w) w<T
fz(w) S 0 w>T
(1-F,(w)é(w—-T) w=T

where 6(+) is the continuous-time impulse function.



Femma 10: 1If z = max(x, ), where x and y are s-indepen-
dent random variables, then

Fow) = Fulw)Ey(w) + £ (w)Fe(w),

Lemma 11: 1If z = max(x, T7), where x is a random variable,
and T is a constant, then

Fz(?n',’) - {fi(’w) “ 2 T
) w< T
folw) w>T
fAw)= <0 w < T
Folu)b(w —"1) w="T.

Proof of Theorem 1: BEquation (5) gives the definition of
CNR as

CNR=P[(S1 <T).---.(8, <T,)]

where the T; are constant, and the S; are random variables.
If none of the fault detection algorithms have any sensors in
common, then each 5, is s-independent, which means that

CNR=P(S1 <T)) - P(S, < T,)

= ﬁTNR(ﬂ,ki).

1=1

If the algorithms have common sensors, then the S; terms are
positively s-dependent, which will increase the CNR. On the
other hand, if there is some s such that )/,,, is a superset of Y
for all & 2 wm, TNR(Tip, k) < INR(T;, k;) for all ¢ # m,
and Ty, < T, forall ¢ # m, then §,, < T}, = S; < T} for all

¢, which means that

CNR. = T'NR(7},, ki ).
QLD
Proof of Theorem 2: Given n > 2 fault detection algo-
rithms, the probability that fault ¢ is isolated given that no fault
occurred is the probability that 5, is greater than its threshold,
and also greater than all of the other SSRs relative to their
thresholds.

My =P[(S, > T,), (5, —T, > 8 —T;) for all j # ¢

min P[(Sy > 1), (8 — Ty > 85— 15)]
i#a ’

A

< min Myq ;.
i#q

QED
Proof of Theorem 3: First, we establish the positive s-de-
pendence [28, p. 145] of the random variables 5, — 5; for all
J # q. Consider inequalities S, — 5; > T, — T for j # q. It
follows from (4) that S, — &; is an increasing function of the
negative squared normalized residuals of the common sensors
of 5, and thus the random variables S, — S, § # g, are posi-

tively dependent.
Now note that, if fault ¢ cccurred, then the probability that .5,
is larger than S; relative to its threshold for all § # ¢ is given as

Dy =P (S, —1,>8; — i forallj #q) = [] Dy
i#q

where the inequality comes from the positive dependence of
S, — 84, 7 # g. The probability that fault ¢ is isolated given
that fault ¢ occurred can be written as

CCR, =P [(S, > T,) . (S, = Ty > S = T, for all j # q)]
> TPR, D,

where the inequality comes from the positive dependence of the
random variables Sg, and S, — 5y, § # «. QED

Proof of Theorem 4: If wehave n > 2 fault detection algo-
rithms, and fault ¢ occurs, the probability that fault g is correctly
detected and isolated is the probability that S, is greater than its
threshold, and also greater than all other SSRs relative to their
thresholds.

COR, =P [(8; > 1,).(8, — Ty > 5; — 15 Tor all § # ¢)]
< 1;21113 (8, b= L8, <5, &8 — T3]
I7q

< min CCOR;.
7
QFED
Proof of Theorem 5: (Given that we have n > 2 fault detec-
tion algorithms, the misclassification rate M, is bounded from

aboveby M. ; 4- S0 to obtain an upper bound for Mj,, we use one

of (21)—(24) as appropriate. This approach gives

My, =P85 > T3),(S; — Ty > S; — T3 for all i # §)]
<SPS > T3). (85 = Tj > 8y = Ty)]

<M.
T QLD
Proof of Theorem 6. The probability My, that no fault is

detected when fault ¢ occurs is given as
Mog="(8;<Tj lorall ) <P (S, <T,) £ (Ty. koo, Agu ).
QLD
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