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PHYSICAL REVIE% 8 VOLUME 42, NUMBER 4

Random-field Blume-Capel model: Mean-field theory

1 AUGUST 1990

Miron Kaufrnan and Michael Kanner
Department ofPhysics, Cleveland State University, Cleveland, Ohio 44115

(Received 27 February 1990)

The global phase diagram of the Blume-Capel model in a random field obeying the bimodal sym-

metric distribution is determined by using the mean-field method. The phase diagram includes an

isolated ordered critical end point and two lines of tricritical points. A new phase emerges for
strong enough random fields: the ferromagnetic-nonmagnetic phase. It is argued that such a phase
occurs in three dimensions.

I. INTRODUCTION

Quenched randomness causes first-order transitions to
be replaced by continuous transitions in two dimensions,
and the tricritical temperature to be lowered in higher di-
mensions. This was recently shown by Hui and Berker'
and Aizenman and Wehr by using respectively position-
space renormalization-group techniques and rigorous
methods. It is our goal in this paper to further study the
effect of random fields on a tricritical phase diagram by
employing the mean-field approximation, which is a
reasonable approximation for high dimensions, and it is
exact for the equivalent-neighbor lattice.

The simplest spin model exhibiting a tricritical phase
diagram in the absence of randomness is the Blume-Capel
model. This model and its generalizations were used to
simulate the thermodynamics of a variety of systems such
as UO2 and 'He-"He mixtures, ' and it has been studied
extensively with a variety of techniques: mean-field, '

position-space renormalization group, ' and other
methods. In this paper we study the Blume-Capel rnod-
el in the presence of a random magnetic field, which takes
two values +H with equal probability.

The Blume-Capel model includes two thermodynamic
fields: the temperature T and the crystal field D conju-
gated to —s, where s is the spin, which can take three
values, +1 and 0. At zero temperature there are two
phases: the ferromagnetic phase (trt =—(s ) =+1,
Q = (s ) =1) for small D, and the nonmagnetic phase
(m =0, Q =0) for large D. These phases coexist at some
intermediate value of D. When the bimodal random field
+H is turned on, a novel phase emerges: the mixed
ferromagnetic-nonmagnetic phase, m =+—,', Q =

—,'. In
the plane H, D, for intermediate values of H, this phase
occupies a buffer separating the ferromagnetic and non-
magnetic phases. Thus the emergence of the mixed phase
can be viewed as a new manifestation of the weakening of
the first-order transitions by the randomness: the jump in
m from +1 to 0 is replaced by two smaller jumps: +1 to
+—,

' and +—,
' to 0.

We believe that the emergence of the mixed phase is
not a mere artifact of the mean-field approximation, and
should also occur in three dimensions. At low tempera-
tures and large D the nonmagnetic phase (m =0, Q =0)
is stable, while at low temperatures and large H the

paramagnetic phase (rrt =0, Q=1) is stable. A direct
transition between these planes, for large values of both
H and D, is unlikely because it will involve a discontinui-
ty in Q but no discontinuity in m. A continuous transi-
tion (Q decreases from unity to zero in the paramagnetic
phase} could hold in two dimensions. In three dimen-
sions however, we expect the emergence of the new phase
between the paramagnetic and nonmagnetic phases to al-
low for jumps in both m and Q at the two phase boun-
daries.

The mixed ferromagnetic-nonmagnetic phase persists
for arbitrarily large H provided the crystal field D is also
large. The existence of long-range order (

~
m

~
)0) for un-

bounded values of the random-field strength is also ob-
served in the Ising model in a trimodal random-field, '

but not for the bimodal" and Gaussian distributions.
We find in the three-dimensional parameter space

T, H, D that there are two noncontiguous tricritical lines.
The first starts at the pure Blume-Capel tricritical
point ' and shows a monotonic decrease of the tricritical
temperature when H is increased from zero. This is a
manifestation of the weakening of first-order transitions
by random fields. ' The second line which starts at the
Aharony tricritical point of the Ising model in a binary
random field, D = —ac, does not show this simple behav-
ior but exhibits an extremurn corresponding to a double
tricritical point. Thus moderate to large randomness has
a subtler and more complicated effect than weak random-
ness on the phase diagram. In the same context we note
the occurrence of reentrance phenomena and of non-
monotonic dependence of the densities m and Q on the
thermodynamic fields.

Besides the tricritical points the global phase diagram
also includes the following multicritical points: a line of
ordered critical points' (two coexisting critical phases)
and an isolated ordered critical end point (coexistence of
two critical phases and a disordered phase).

The remainder of this article contains the solution of
the Blurne-Capel model with a bimodal random field in
Sec. II, and our conclusions in Sec. III.

II. MODEL AND SOLUTION

At each site of the equivalent-neighbor lattice (the
mean-field model} there is a spin s, =+1,0. The Hamil-
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P(H; )= —,'[5(H; H)—+5(H, +H)], (2)

where H ~0 measures the strength of the random field
and 5 is the Dirac 5 function.

In the thermodynamic limit the quenched averaged
free energy per spin is

1f=—min 4(m), (3)

where

4= —,'Jm2 —(lnIl+e I 2cosh[J(m+H;)]I ) . (4)

The quenched average ( . ) in Eq. (4) is performed by
using the distribution in Eq. (2). The value of m which
minimizes 4 is the average site magnetization (s; ) while
the average of s, is

e 2cosh[J(m +H;)]
1+e 2 cosh[J(m +H; )]

tonian associated with the W spins is

W—/T= ps;s, J—D gs; +J QH s;,J
t, J t

where J=1/T. The magnetic field H; is distributed ac-
cording to the bimodal distribution:

the ferromagnetic phase (m =+1, Q =1,f =D —
—,'); the

nonmagnetic phase (m =0, Q =0, f =0); the paramag-
netic phase (m =0, Q =1, f =D H—); the
ferromagnetic-nonmagnetic phase [m =+—,', Q =

—,',
f =,'(D H——

—,
' )]. By comparing the energies we deter-

mine the phase diagrams shown in Fig. 1.
In the ferromagnetic-nonmagnetic phase half of the

spins are equal to zero and the other half are equal to + 1

{or —1). The emergence of this phase can be viewed as a
manifestation of the weakening effect of randomness on
first-order transitions: the jump, m =+1 to m =0, at
small H & —,

' is replaced by two smaller jumps, m =+1 to
m =+—,

' and m =+—,
' to m=0, at —,

' &0 & —,'. For even

stronger randomness H & —,
' the ferromagnetic phase is

replaced by the paramagnetic phase. A reentrance
phenomenon, or nonmonotonic dependence of densities,
takes place in this regime: lowering D the magnetization
is first 0, then +—,', then 0 again.

A. Zero temperature

The ground-state energies determine the phase dia-
gram at zero temperature or J = ~. We find four phases:

0.5-

0

-0.5-

0.5

FIG. 1. The zero-temperature phase diagram. The four
phases: ferromagnetic (F), nonmagnetic (NM), paramagnetic
(P), and ferromagnetic-nonmagnetic (F-NM) are separated by
lines of first-order transitions.

FIG. 2. Projections of the two tricritical lines along the D
axis in (a) and along the T axis in (b).
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FIG. 3. Phase diagram for D = —5 with a tricritical point C.
The dashed line represents first-order transitions and the solid
one is a line of critical points.

FIG. 4. Phase diagram for D =0.4 with a tricritical point C
and an ordered critical point B . The dashed lines represent
first-order transitions and the solid one is a line of critical
points.

B. Tricritical points

We list the entities on the phase diagram by using
Griffiths' notation system A—one-phase point (disor-
dered phase, m =0), A —two-phase point (ordered
phase, (s;) =+~m~), A —three-phase point (coexistence
of ordered and disordered phases), A —four-phase point
(coexistence of two ordered phases), A —five-phase
point (coexistence of two ordered phases and the disor-
dered phase), B—critical point, B —ordered-critical
point (coexistence of two critical phases), C—tricritical
points, B A —ordered-critical end point (coexistence of
two critical phases and the disordered phase).

The location of the tricritical points is determined by
expanding 4(m) in powers of m:

0.75

0.3?5-

0
I

0.2 OA

4(m) —4(0)=a2m +a„m +a6m (6)

The fields az, a4, and a6 depend on 1, H, and D accord-
ing to

T

J 1a= —+Nu —m2

FIG. 5. Phase diagram for D =0.47 with two tricritical
points —C and an ordered critical point B . The dashed lines

represent first-order transitions and the solid one is a line of
critical points.

g4a~=, [6w u —12w u+w~(4u+3) —w],

g6a6=, [ 120w u —360w u +w (120u +270u)

—w (150u +30)+w (16u+15)—w],

where

(7)

0.375

u =tanh (JH),

w =e 2 cosh( JH) [1+e 2 cosh( JH) ]
and J =1/T. The tricritical points C occur at a2 =a4=0
and a6 & 0. We checked' that a6 & 0 in the entire T,H, D
space and thus there is no fourth-order point in this rnod-
el.

In the T,H, D space the tricritical manifold contains
two noncontiguous lines. The first starts at the tricritical
point of the pure Blurne-Capel model: 8=0,
D =(ln4) l3, T =

—,'. The second line starts at the tricriti-

0 015
I

03'

FIG. 6. Phase diagram for D =0.492 with two tricritical
points C and an ordered critical point B'. The dashed lines

represent first-order transitions and the solid one is a line of
critical points. The gap between 8 and the first-order line A '
is about to be closed.
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SL?5

0.375-

1
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015
I

0.3 y
FIG. 7. Phase diagram for D =0.493 with two tricritical

points C and an A ' point. The dashed lines represent first-order
transitions and the solid one is a line of critical points.

cal point of the Ising model in a birnodal random field:"
D = —~, H =[ln(2+ v 3)]/3, T =

—,'. Projections of
these lines along D and T directions are shown in Fig. 2.
The first tricritical line exhibits the expected monotonic
decrease of T with H. However the second tricritical line
exhibits a monotonic dependence of T and D on H. It
has an extremum at T=—0.46, H—=0.41, D=—0, corre-
sponding to a double tricritical point (see Appendix A of
Ref. 7).

5

0
I

0% 03'
FIG. 8. Phase diagram for D =0.75 with two tricritical

points C. The dashed lines represent first-order transitions and
the solid one is a line of critical points.

C. Global phase diagram

We determine the phase diagram by numerically
minimizing 4 given in Eq. (4). We choose to present
two-dimensional slices, at fixed D, of the three-
dimensional parameter space. There are five topological-
ly different such two-dimensional phase diagrams.

For D & —,
' the phase diagram, Fig. 3, is topologically

equivalent to Aharony's phase diagram" for the Ising
model in a birnodal random field, which includes a tricrit-
ical point.

For —,
' ~ D ((ln4)/3 there is a line of 3 points ending

at a B point inside the ordered phase (see Fig. 4). Along
this line the ferromagnetic and ferro-nonmagnetic phases
coexist. At the ordered critical point the two phases
coalesce.

For D =(ln4)/3 a second tricritical point emerges as
H=O, T= —,

'. Thus for (ln4)/3 ~D &0.493 there are two

tricritical C points and one ordered critical B point, see
Figs. 5 and 6.

At D —=0.493 (slightly below this value), T=0. 1—4,
H=—0.24, there is an ordered-critical end point B A,
which viewed in the three-dimensional parameter space is
located at the intersection of the B line and the A sur-
face. To our knowledge this multicritical point has not
been observed in any previous theoretical or experimental
study. For 0.493 D & —,

' this rnulticritical point is re-

placed by an A' point, see Fig. 7. As D approaches —,',
the A point and the segment of A points below it ap-
proach the T=O axis.

For D —,
' the ferromagnetic-nonmagnetic phase is

separated from the disordered phase (m=O) by a phase
boundary consisting of two first-order transitions seg-
ments and a segment of critical points. There are two tri-
critical points in this case, see Fig. 8.

III. CONCLUSIONS AND DISCUSSION

We have determined the global phase diagram of the
Blume-Capel model in a bimodally distributed random
field by using the the mean-field approximation. The
highest-order rnulticritical entity is the tricritical point.
An ordered critical end point is also included in the phase
diagram

A novel phase, the ferromagnetic nonma-gnetic phase
emerges at sufticiently strong random fields. We believe
that this phase will also occur for realistic short-range in-
teractions in three dimensions. Indeed at low tempera-
tures and for large H the magnetic spins are favored over
the nonmagnetic ones and simultaneously are random-
ized by the random field: m=O, Q=1. At large D, on
the other hand, the nonmagnetic spins are favored:
m =0, Q=O. What happens in the intermediate region
H =D? We envision three scenarios: (i) the two phases
are separated by a special first-order transition where Q
jumps from 1 to 0 but m stays equal to 0; this dichotomy
in the behavior of the two densities makes this scenario
less likely; (ii) there is a continuous transition; Q varies
from 1 to 0 in the paramagnetic phase and m stays equal
to 0; this scenario could work in two dimensions where
randomness causes first-order transitions to be replaced
by continuous transitions; ' (iii) the ferromagnetic-
nonmagnetic phase emerges as a buffer between the
paramagnetic and the nonmagnetic phases and is separat-
ed from them by first-order transitions; this is the mean-
field behavior and we expect it holds in three dimensions.
It will be very interesting to check whether this phase
indeed emerges in three dimensions by using an alterna-
tive technique (Monte Carlo, renormalization group).

The effect of randomness on the tricritical points is
more complicated than anticipated. There are two non-
contiguous tricritical lines. On one of them the tricritical
temperature decreases monotonically with the strength of
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the random 6eld, as expected. On the second 1ine howev-

er, there is a double tricritical point located at an ex-
tremum on the tricritica1 line, i.e., nonmonotonic depen-
dence.
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