2015

TMCO1 mediates cancer cell migration through regulating microtubule assembling

Pau Romaguera Llacer
Cleveland State University

Qiaoxia Zheng
Cleveland State University

Qiaoyun Zheng
Cleveland State University

Follow this and additional works at: https://engagedscholarship.csuohio.edu/u_poster_2015

How does access to this work benefit you? Let us know!

Recommended Citation

https://engagedscholarship.csuohio.edu/u_poster_2015/17
TMCO1 mediates cancer cell migration through regulating microtubule assembling

College of Sciences and Health Professions

Student Researchers: Pau Romaguera Llacer, Qiaoxia Zheng, and Qiaoyun Zheng

Faculty Advisor: Aimin Zhou

Abstract

Transmembrane and coiled-coil domains 1 (TMCO1) is highly conserved in amino acid sequence among species and ubiquitously expressed in all human tissues. Homozygous frameshift mutation in TMCO1 causes distinctive craniofacial dysmorphism, skeletal anomalies, and mental retardation. However, its physiological functions, particularly in cancer biology, are largely unknown. In this study, we have found that knock down of TMCO1 in HeLa cells, a human cervical cancer cell line, and U2OS cells, an osteosarcoma cell line, remarkably inhibited their migratory capability; TMCO1 was highly expressed in the cells of the invasive front of high grade lung cancer and metastatic cancer cells in the clinical specimens, and lung cancer cells at the metastatic bone site in our animal model; Immunohistostaining revealed that TMCO1 was co-localized with microtubules and was able to be co-sedimentated with microtubules in the presence of paclitaxel and GTP; and deficiency of TMCO1 in cells dramatically increased acetylation of tubulin. Further investigation demonstrated that TMCO1 impacted microtubule dynamics, which is closely correlated with cancer metastasis, TBA drug response and therapeutic prognosis. Our findings provide not only new mechanistic insights into cancer metastasis, but also critically evaluate the significance of TMCO1 as a novel target for therapeutic treatment of the disease.

1Institute of Molecular Medicine, Beijing University, China