
Cleveland State University Cleveland State University 

EngagedScholarship@CSU EngagedScholarship@CSU 

Mechanical Engineering Faculty Publications Mechanical Engineering Department 

2-25-2008 

A Weighted Least-Squares Method for Inverse Dynamic Analysis A Weighted Least-Squares Method for Inverse Dynamic Analysis 

Antonie J. van den Bogert 
Cleveland State University, a.vandenbogert@csuohio.edu 

Anne Su 
Cleveland State University, a.su@csuohio.edu 

Follow this and additional works at: https://engagedscholarship.csuohio.edu/enme_facpub 

 Part of the Biomechanical Engineering Commons 

How does access to this work benefit you? Let us know! How does access to this work benefit you? Let us know! 

Original Citation Original Citation 
Antonie J. van den Bogert, Anne Su. (2008). A weighted least squares method for inverse dynamic 
analysis. Computer Methods in Biomechanics and Biomedical Engineering, 11(1), 3-9. 

This Article is brought to you for free and open access by the Mechanical Engineering Department at 
EngagedScholarship@CSU. It has been accepted for inclusion in Mechanical Engineering Faculty Publications by 
an authorized administrator of EngagedScholarship@CSU. For more information, please contact 
library.es@csuohio.edu. 

https://engagedscholarship.csuohio.edu/
https://engagedscholarship.csuohio.edu/enme_facpub
https://engagedscholarship.csuohio.edu/enme
https://engagedscholarship.csuohio.edu/enme_facpub?utm_source=engagedscholarship.csuohio.edu%2Fenme_facpub%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/296?utm_source=engagedscholarship.csuohio.edu%2Fenme_facpub%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
mailto:library.es@csuohio.edu


A weighted least squares method for inverse dynamic analysis*  
ANTONIE J. VAN DEN BOGERT†‡* and ANNE SU{§ 

†Department of Biomedical Engineering, Cleveland Clinic Foundation, Cleveland, OH, USA 
‡Orthopaedic Research Center, Cleveland Clinic Foundation, Cleveland, OH, USA 

{Department of Anthropology, State University of New York, Stony Brook, NY, USA 

Internal forces in the human body can be estimated from measured movements and external forces 
using inverse dynamic analysis. Here we present a general method of analysis which makes optimal use 
of all available data, and allows the use of inverse dynamic analysis in cases where external force data is 
incomplete. The method was evaluated for the analysis of running on a partially instrumented treadmill. 
It was found that results correlate well with those of a conventional analysis where all external forces 
are known. 

Keywords: Inverse dynamics; Gait analysis; Multibody dynamics; Ground reaction force 

1. Introduction 

The recursive Newton–Euler method is widely used for 

inverse dynamic analysis of human movement (Winter 

1979, Vaughan et al. 1992, van den Bogert 1994). These 

methods are applicable to multibody systems with a tree 

structure, with rigid body equations of motion being 

applied sequentially to each body segment, starting at 

distal segments where external loads are either zero or 

measured. The result is a full set of intersegmental load 

variables, i.e. a force and moment vector at each joint. 

This method is fast and easily implemented but has some 

undesirable properties. First, the results are dependent on 

the order in which the model is traversed. In lower 

extremity studies, the analysis is typically started at the 

feet, working towards the pelvis (Winter 1979). For the 

upper extremity, the analysis starts at the hands, working 

towards the shoulder (Fleisig et al. 1995). When 

estimating forces in the spine, it is not clear which of 

the two starting points is best (de Looze et al. 1992). 

Second, when the analysis is carried out for the entire 

human body, “residual loads” are needed at the final 

segment to satisfy the equations of motion, even when it is 

known that the final segment does not have contact with 

the environment. Kuo (1998) recognized that these 

shortcomings arise from the fact that the system of 

equations is overdetermined. For instance, if a 3D linked 

segment model has N-degrees of freedom (DOF), and all 

external forces are known or measured, there are N 
equations of motion and only N 2 6 unknown internal 

loads. The conventional method effectively solves this by 

discarding six of the equations, and the results will then 

depend on which six equations are eliminated. Further

more, all kinematic and force measurements that entered 

in those six equations remain unused, even if they contain 

potentially useful information. 

Kuo (1998) proposed an alternative method which 

solves joint moments from the overdetermined system of 

motion equations for the entire system, while satisfying 

the boundary conditions for a postural control task. The 

method finds a set of joint moments that best agrees (in the 

least squares sense) with all available measurements of 

kinematics and external forces. Redundancy in the system 

of equations is attractive when certain measurements are 

unreliable, or even unavailable such as in instrumented 

treadmills with only vertical force transducers. With 

complete data, Kuo (1998) demonstrated about a 30% 

noise reduction when compared to the conventional 

recursive analysis. The method was applicable only to a 

2D system jointed to the ground, and was therefore, not 

suitable for gait analysis. 

Here we present a further development of this least 

squares inverse dynamics (LSID) method that is no longer 

restricted to 2D systems jointed to ground. The method 
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was implemented as a general software tool that allows 

arbitrary 3D or 2D models to be defined using markers on 

the subject and generates and solves the kinematic and 

dynamic equations automatically. The method can 

produce an optimal solution for any inverse dynamics 

problem as long as the number of unknown load variables 

does not exceed the number of DOF. The utility of the 

method will be demonstrated on an analysis of running 

with incomplete ground reaction force (GRF) data. 

2. General methodology 

2.1 Kinematic analysis 

First, a skeleton model is defined with N DOF and 

generalized coordinates q ¼ (q1 . . . qN)T. Assuming  known  

joint axes, the position r ¼ (x, y, z)Tand orientation R of each 

body segment can be computed using forward kinematics as 

functions of q. If a marker i is placed at a known position p in 

the segment’s reference frame, the global coordinates ri of 

the marker are therefore a known function of q: 

ri ¼ rðqÞ þ RðqÞ · pi ; f iðqÞ ð1Þ 

If M markers are placed on the skeleton and their global 3D 

coordinates are measured, the optimal (least squares) 

estimate for the skeleton pose q can be obtained by  

minimizing 

M X 
2

FðqÞ ¼  kri 2 f iðqÞk ð2Þ 
i¼1 

Note that in 3Ds, the right hand side is a sum of 3M squares. 

A unique minimum exists if 3M $ N and 3m £ N the 

Jacobian matrix J ¼ ›f/›q is non-singular. This method is 

commonly referred to as global optimization (Lu and 

O’Connor 1999), where global refers to the fact that the 

entire skeleton is modeled, rather than isolated bones as in 

conventional rigid body motion analysis (Challis 1995). If an 

appropriate skeleton model and marker set is used, global 

optimization requires fewer markers and produces more 

robust results than conventional rigid body methods (Lu and 

O’Connor 1999, Roux et al. 2002). 

In our implementation (Mocap Solver 6.19, Motion 

Analysis Corp., Santa Rosa, CA), equation (2) is minimized 

using the LMDIF code for nonlinear least squares problems 

(Moré et al. 1980) which is available from MINPACK at 

http://www.netlib.org. We also have obtained good results 

with the Levenberg–Marquardt solver in Numerical 

Recipes (Press et al. 1992) which is faster but somewhat 

less robust in situations where J is near-singular. 

2.2 Dynamic analysis 

After adding mass properties to the skeleton model, its 

equations of motion can be derived as: 

M·q€ ¼ AðqÞ·tu þ BðqÞ·tk þ cðq; q_ Þ; ð3Þ 

where M is a mass matrix, tu is a vector of unknown forces 

and moments, tk is a vector of known forces and moments, 

and c are the gravitational, centrifugal and Coriolis effects. 

A and B are coefficient matrices. After using spline 

smoothing (Woltring 1986) to obtain first and second 

derivatives of q(t), the only remaining unknowns are tu. In  

order to avoid inconsistency in frequency content between 

the force and motion measurements, force measurements 

tk are smoothed with the same spline filter (van den Bogert 

and de Koning 1996, Bisseling and Hof 2006). If, as is 

typically the case in whole body models, the number of 

unknown forces and moments in tu is less than the number 

of equations (number of DOF) N, the system of equations 

is overdetermined and a linear least squares method can be 

used. Unlike in the kinematic analysis, weighting is 

required because here the N equations may have different 

error levels, scaling relationships, or units of measure

ment. We first rewrite (3) as: 

A·tu ¼ b þ e ð4Þ 

where 

b ¼ BðqÞ·tk þ cðq; q_ Þ2 M·q€ ð5Þ 

and e is a vector of residual errors. The weighed least 

squares solution is: 

[ ]
tu ¼ arg min ðA·tu 2 bÞTW Að ·tu 2 bÞ ; ð6Þ 

tu 

where the weighting matrix W is the inverse of the 

covariance matrix of the error vector e. 

In order to find the covariance matrix, we consider that 

the noise in q(t) is small, while the error in first and second 

derivatives can be substantial even after optimal 

smoothing (Woltring 1985). We therefore assume that 

the matrix A does not contribute to e, and we only consider 

the error in b which is the result of the propagation of 

measuring errors in tk, q, q_ , and q€ . There are strong 

correlations between the elements of b, because of the 

coefficient matrices and because of the whole body 

kinematic solution in which each marker coordinate 

contributes to each generalized coordinate. We can, 

therefore, not assume that the covariance matrix is 

diagonal. An analytical derivation would be intractable, so 

we use Monte Carlo simulation to estimate the covariance 

matrix from errors in raw data. The raw data are the 

marker coordinates ri and the force measurements on 

which tk depends. We assume normally distributed errors 

sr (mm) in each marker coordinate, and normally 

distributed errors st (N or Nm) in measured force and 

moment variables. We take one typical recording of the 

motion of interest, perturb each sample of raw data with 

normally distributed random numbers with standard 

deviations sr and st , and propagate the data through the 

kinematic analysis, spline smoothing, and finally through 

equation (5). This is done a number of times on the same 

motion data to obtain a large number of perturbed vectors 

http://www.netlib.org


b from which the covariance matrix COV is then 

estimated as: 

Nf Np X X1   
COVij ¼ ðbikl 2 bikÞ bjkl 2 bjk ð7Þ 

NpNf k¼1 l¼1 

where bik is the unperturbed ith element of b in sample k, 

and bikl is the kth perturbation of this variable. Nf is the 

number of frames (samples), and Np is the number of 

perturbations applied to each frame. We use Np ¼ 50. 

Once the covariance matrix is known, we compute its 

square root S using Cholesky factorization, such that 

S·ST ¼ COV. Equation (6) is now equivalent to: 

  S21tu ¼ arg min ðA·tu 2 bÞk; ð8Þ 
tu 

Equation (7) was solved using the DGGGLM General 

Linear Regression solver which is available from the 

LAPACK library at http://www.netlib.org. DGGGLM is 

based on QR decomposition of the matrices A and S 
(Golub and Van Loan 1989). 

2.3 Equations of motion 

There are many ways to derive equations of motion in 

the form (3). We used the SD/Fast software (PTC, 

Needham, MA) to generate the equations of motion. 

SD/Fast produces a triangular mass matrix which is 

advantageous for forward dynamics but has no particular 

advantage here because the mass matrix is never 

inverted. We obtain the mass matrix M using the 

SD/Fast function SDMASSMAT. SD/Fast also has a 

function SDFRCMAT which computes the right hand 

side of (3) for given kinematic state ðq; q_ Þ and applied 

forces. The latter function was used to obtain first the 

column vector cðq; q_ Þ, by setting all forces to zero, and 

then to obtain the columns of matrices A and B by 

successively applying a unit force in each component of 

tu or tk, while keeping all other components zero. A new 

M, A, B and c is thus computed in each sample of the 

movement. A more general symbolic manipulation 

method, such as Autolev (Online Dynamics, Sunnyvale, 

CA), would be able to extract A, B and c directly which 

would be more efficient. 

3. Example of application 

3.1 Problem statement 

We will consider the inverse dynamic analysis of a 

running movement. Three dimensional joint moments 

are thought to be relevant to injury prevention and 

rehabilitation (Ferber et al. 2003). In the conventional 

gait laboratory, with a force platform in the ground, it is 

not possible to collect the required data continuously 

while the patient runs at their mechanical and metabolic 

steady state. Treadmill running is therefore an attractive 

paradigm but this does not allow full 6-component GRF 

(3D force and moment) to be recorded, which is required 

for conventional recursive inverse dynamic analysis 

when starting at the feet. A relatively inexpensive option 

is an instrumented treadmill with a force platform under 

the belt (GaitWay, Kistler, Amherst NY). This 

instrumentation only measures three of the 6 external 

load variables: vertical force and center of pressure. 

There is, however, currently no method for inverse 

dynamic analysis that can use such partial instrumenta

tion. This inverse dynamic problem, however, fits nicely 

into the least squares framework presented above. With 

an N-DOF linked segment model in 3Ds, there will be 

N 2 6 unknown internal loads, 3 unknown external 

loads, and n equations of motion. The number of 

equations (n) exceeds the number of unknowns (n 2 3). 

We will demonstrate the utility of the least squares 

method on this problem. 

3.2 Instrumentation and protocol 

Twenty-eight reflective markers were placed on a 44 

year old male subject (figure 1). Markers were tracked 

with six Falcon cameras (Motion Analysis Corp., Santa 

Rosa, CA) and EVa 5.2 software at 240 frames per 

second. GRF data were collected with an AMTI force 

plate (OR6-5 #4048, Advanced Mechanical Technology 

Inc., Watertown, MA) at 1000 samples per second. Data 

were collected during standing, followed by 23 trials of 

running at the subject’s preferred speed. The subject was 

instructed to vary running style between trials, in order 

to test the ability of the inverse dynamic analysis to 

detect these variations. 

Figure 1. Marker set and skeleton model. Numbers indicate the number 
of DOF assigned to each of the body segments. 

http://www.netlib.org


    

3.3 Data processing 

From the marker coordinates during standing, a twelve-

segment skeleton model (figure 1) was generated with 29 

DOF: six for trunk position and orientation, three for a 

spherical joint between pelvis and trunk, three for each 

spherical joint at hip and shoulder, one for each hinge joint 

at elbow and knee and two for the rotations in each ankle 

(van den Bogert et al. 1994). Positions and orientations of 

joint axes were based on existing methods (Isman and 

Inman 1969, Bell et al. 1990, Vaughan et al. 1992). 

Segment mass properties were computed from total body 

mass and segment lengths using the methods of de Leva 

(1996). Equations of motion were generated using 

SD/Fast as described in section 2.1. Data from the 

running trials were processed using the methods presented 

in sections 2.1–2.3. Specifically, the spline smoothing of 

q(t) and tk(t) was performed using a quintic spline filter 

(Woltring 1986) with a cutoff frequency of 8 Hz. After 

smoothing, force and motion variables were resampled at 

a frame rate of 240 Hz, starting at heel strike of each trial, 

for a total of 100 frames (417 ms). In each trial, the inverse 

dynamic analysis was performed three ways: 

(1)	 Using full GRF data (FULLGRF). This represents the 

situation with 29 equations (one for each DOF) and 

23 unknowns (one for each joint moment). The 

covariance matrix was generated from the assump

tion of 1 mm error in all marker coordinates and 0.1 N 

and 0.1 Nm error in GRF and moment data, 

respectively. 

(2)	 Without using GRF measurements (NOGRF). This 

represents the situation with 29 equations and 29 

unknowns (one for each joint moment, and the six 

unknown GRF variables). This is not an over

determined system and results are independent of the 

covariance matrix. 

(3)	 Using partial GRF data, simulating the instrumented 

treadmill in which only the vertical force and center 

of pressure are measured (FzMxy). This represents 

the situation with 29 equations and 26 unknowns 

(joint moments and three unknown GRF variables). 

The covariance matrix was generated from the 

assumption of 50 mm error in all marker coordinates 

and 0.1 N and 0.1 Nm error in GRF and moment data. 

Solution (1) is the best possible solution with all 

available data and will be used as the “gold standard”. 

Solutions (2) and (3) represent two options for analysis of 

running on the partially instrumented treadmill. Solution 

(2) can be found with existing recursive inverse dynamic 

analysis, starting at the hands and working towards the 

lower extremity. Solution (3) requires our weighted least 

squares method. 

The comparison between the three analyses will 

consider six variables of interest, the 3D joint moments 

at hip and knee which are thought to be relevant for 

overuse injury (Ferber et al. 2003). We will present the 

time histories of these variables during one typical trial, 

using all three solution methods. The ability of methods 

(2) and (3) to detect differences between trials was 

assessed by determining peak joint moments from each 

trial over the first 60 frames (250 ms) after heelstrike. Each 

of the methods (2) and (3) was compared to the “gold 

standard” result of method (1) and the differences between 

methods were quantified by the Pearson product-moment 

correlation coefficient 

P P P 
n xiyi 2 xi yi 

r ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð9Þ P P 2 P P 22	 2n x 2 xi n y 2 yii	 i 

and mean relative error 

  X1	  xi 2 yi   MRE ¼	 ð10Þ   n yi

where xi is the peak joint moment in trial i obtained with 

method X, and yi is the corresponding “gold standard” 

value obtained with the FULLGRF method. 

4. Results 

Figure 2 shows, for one typical trial, the three dimensional 

joint moments at the hip and knee, computed with all three 

methods. There is good agreement between the three 

methods for the flexion–extension moments. The agree

ment appears to be worst for the internal–external 

rotation, especially in the swing phase. 

Peak joint moments for all trials are shown in figures 3 

and 4 and the corresponding quantitative comparisons are 

reported in table 1. The partial instrumentation (FzMxMy) 

results which were produced using the LSID technique 

correlated well with FULLGRF results, except for the hip 

extensor moment. The error, however, in the hip extensor 

moment was only 13.5%, suggesting that the low 

correlation in this variable is due to small variations 

between trials. The opposite is true for the knee rotator 

moment, which has a large error of 47.2% but a high 

correlation coefficient. This shows that the error is mostly 

systematic (figure 4, bottom right) and that increases or 

decreases in this variable can still be detected well with 

partial GRF data. The NOGRF method (figure 3) had 

larger errors and lower correlations when compared to 

FULLGRF, especially for the knee adductor moment. 

NOGRF also systematically overestimated the hip 

abductor moment and underestimated the knee extensor 

moment. 

5. Discussion 

We have presented a general methodology for performing 

inverse dynamic analysis of multibody systems, which 

makes optimal use of the redundancy in kinematic and 

external force data. Compared to earlier versions of this 



Figure 2. Three dimensional joint moments at hip and knee during a representative running trial, obtained with each of the three inverse dynamics 
methods. Frame rate is 240 Hz and frame 1 represents heel strike. 

method (Kuo 1998), it is no longer required that the model 

is jointed to the ground. This, however, necessitated the 

use of a weighting matrix in solving the least squares 

problem. We derived this weighting matrix via Monte 

Carlo simulation of error propagation from estimated 

errors in raw measurements (marker trajectories and 

external forces). The method as presented here solves 

unknown actuator forces, joint moments and any unknown 

GRFs. Conventional recursive methods (Winter 1979) also 

solve the non-actuating reaction loads at each joint, which 

are useful in estimations of joint contact forces (van den 

Bogert 1994). In order to enable such applications of our 

methods, not demonstrated in this paper, we obtain the full 

6-component reaction loads at each joint by a single 

function call to the SD/Fast function SDREAC, after the 

actuating loads have been solved. In addition to the ability 

to utilize redundant measurements, the least squares 

method has the additional advantage over conventional 

methods that it is not limited to tree-structured multibody 

systems. 

There are also some limitations and disadvantages of 

this method. If certain regions of the multibody system 

have higher errors in model or measurements, it may be 

better not to use a whole body least squares method, but 

(if complete external force data are available) use a 

recursive method which models only the region of interest. 

For example, the inverse dynamic analysis of the lower 

extremity during gait is more reliable when the upper body 



Figure 3. Peak joint moments (in Nm) in all 23 trials, compared 
between the NOGRF method (no GRF data used) and the FULLGRF 
method, where full GRF data is available. Maximum moments were used 
for hip extensor and both internal rotator moments. Minimum moments 
were used for knee flexor and both adductor moments. 

Figure 4. Peak joint moments in all 23 trials, compared between the 
FzMxy method (partial instrumentation) and the FULLGRF method, 
where full GRF data is available. 

is not included in the model, because motion of visceral 

mass can not be measured reliably. However, if no full 

GRF data is available, such a partial body model is not an 

option. 

The hip and knee joint moments during running 

(figure 2) were consistent with other studies that used full 

force plate instrumentation (Winter 1983, Ferber et al. 
2003). Our results demonstrate that nearly the same results 

can be obtained with an instrumented treadmill in which 

only the vertical force and centre of pressure are measured 

(figure 4), except perhaps the extensor moment at the hip. 

Large errors were seen in the internal rotation moments 

during the swing phase (figure 2), when the true loads are 

zero, but the unmeasured GRF were given significantly 

non-zero estimates by the NOGRF and FzMxy methods. 

This problem could be avoided by considering these 

unmeasured variables to be known, and equal to zero, 

whenever the measured vertical GRF (Fz) is zero. 

In order to obtain good results with the LSID method, 

the measurement error estimates sr and st, required for 

the covariance matrix, may need to be tuned carefully. 

In this application, the FULLGRF results were robust and 

not sensitive to our choice of sr ¼ 1 mm and st ¼ 0.1 N 

and 0.1 Nm. However, the FzMxy analysis was sensitive 

to sr. Trial and error tuning showed that sr ¼ 50 mm 

produced good results, though no attempt was made to 

fully optimize this parameter. The value of 50 mm may 

seem large, as it is much larger than typical measuring 

errors in motion capture systems, but it does reflect the 

fact that many aspects of upper body motion, where most 

mass resides, were not modeled: spine and neck motion, 

scapulo-thoracic translation, wrist motion, and especially 

the motion of internal organs which can not be measured 

reliably. 

Table 1. Error measures for joint moments obtained with no force 
measurement (NOGRF) or partial force measurement (FzMxMy). Each 
result was compared to a “gold standard” where complete GRF data was 

used (FULLGRF). Mean relative errors (MRE) and correlation 
coefficients (r) were computed using equations (9) and (10). 

FzMxMy NOGRF 

Joint moment MRE (%) r MRE (%) r 

Hip extensor 13.5 0.379 11.4 0.263 
Hip adductor 9.4 0.827 16.9 0.735 
Hip rotator 9.4 0.645 12.4 0.653 
Knee flexor 4.4 0.942 12.8 0.663 
Knee adductor 11.7 0.946 58.4 0.002 
Knee rotator 47.3 0.887 49.6 0.526 



We have demonstrated the utility of the LSID method 

for analysis of running on a partially instrumented 

treadmill. This can be applied clinically to assist and 

evaluate gait retraining therapies with the goal of 

preventing overuse injuries in runners. Many such injuries 

are thought to be related to abnormal three dimensional 

joint moments (Ferber et al. 2003). The partially 

instrumented analysis (FzMxMy) has the capability of 

detecting changes in joint moments caused by changes in 

running technique. 

When analysing walking gait with similar methods, we 

obtained good results during single stance, but the double 

stance phase presents a problem, even if the feet are on 

separate force platforms that can measure vertical force 

and center of pressure. Although the number of unknowns 

(N-6 joint moments, plus 6 external force/moment 

variables) is, in this case, exactly equal to the number of 

equations N, the matrix A is singular and no unique 

solution exists. This can be understood by considering that 

the resultant horizontal GRF can be estimated from 

horizontal acceleration of the center of mass of the entire 

body, but the data contains no information on how this 

resultant force is distributed between the two feet. 

Minimal effort solutions can then be considered as an 

alternative (Vaughan et al. 1982). An application where 

the LSID method may be especially useful is the spine, 

where it will produce an optimal merging of the top–down 

and bottom–up methods which are currently the only 

available options (de Looze et al. 1992). 
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