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TECHNICAL NOTE  

DYNAMIC ANALYSIS OF SPACE-RELATED LINEAR AND 
NON-LINEAR STRUCTURES 

P. A. BOSELA,t F. 1. SHAKERt and D. G. FERTIS§  

tDepartment of Engineering Technology, Cleveland State University, Cleveland, OH 44115, U.S.A.  
tNASA Lewis Research Center, Structural Systems, Dynamics Branch, Cleveland, OR 44135, U.S.A.  

§Department of Civil Engineering, University of Akron, Akron, OR 44325, U.S.A.  

Abstract-In order to be cost-effective, space structures must be extremely light-weight, and subsequently, 
very flexible structures. The power system for Space Station 'Freedom' is such a structure. Each array 
consists of a deployable truss mast and a split 'blanket' of photo-voltaic solar collectors. The solar arrays 
are deployed in orbit, and the blanket is stretched into position as the mast is extended. Geometric stiffness 
due to the preload make this an interesting non-linear problem. 

The space station will be sUbjected to various dynamic loads, during shuttle docking, solar tracking, 
attitude adjustment, etc. Accurate prediction of the natural frequencies and mode shapes of the space 
station components, including the solar arrays, is critical for determining the structural adequacy of the 
components, and for designing a dynamic controls system. 

This paper chronicles the process used in developing and verifying the finite element dynamic model 
of the photo-voltaic arrays. Various problems were identified in the investigation, such as grounding effects 
due to geometric stiffness, large displacement effects, and pseudo-stiffness (grounding) due to lack of 
required rigid body modes. Various analysis techniques, such as development of rigorous solutions using 
continuum mechanics, finite element solution sequence altering, equivalent systems using a curvature basis, 
Craig-Bampton superelement approach, and modal ordering schemes were utilized. This paper empha-
sizes the grounding problems associated with the geometric stiffness. 
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NOTATION 

factor defined by eqn (13) 
arbitrary constants in eqn (10) 
differential operator with respect to position 
differential operator with respect to time 
modulus of elasticity 
axial strain 
input force vector at the beginning of a step 
applied transverse force 
factor defined by eqn (14) 
moment of inertia 
stiffness matrix 
elastic stiffness matrix 
geometric stiffness matrix 
length 
moment 
change in moment 
mass per unit length 
axial force 
pseudo-force necessary for equilibrium 
force vector, output force vector at the end of a 
step 
kinetic energy 
displacements at the node points 
longitudinal displacement 
strain energy due to axial load 
strain energy due to bending 
transverse displacement 
shear 
change in shear 
potential of the external loads 
change in volume 
axis defined by Fig. I 
axis defined by Fig. I 

f3 1/2 the angle of rotation 
{) factor defined by eqn (ll) 
£ factor defined by eqn (12) 
() angle of rotation 
11 stress 

INTRODUCTION 

NASA's Space Station 'Freedom' consists of various 
modules supported by a space truss. Power for the space 
station will be provided by a deployable system of split 
blanket photo-voltaic arrays, which will have two degree of 
freedom rotational capabilities in order to track the sun 
during its orbit. The arrays are designed to be operated in 
a zero-gravity environment. 

NASA Lewis Research Center, along with its contractors, 
have the responsibility for developing a verified finite 
element dynamics model of the solar arrays, which could be 
combined with the other space station substructures for 
both structural and dynamic control studies. The develop-
ment of the model necessitated the use ofunique procedures, 
and rigorous analytical checks. 

The procedure included the following: 

I. Development of an idealized model of the solar arrays, 
and derivation of a unique solution for the response fre-
quencies for the idealized array cantilevered from the space 
truss, using equations developed from continuum mech-
anics [I). 

2. Comparison of the frequencies from the 
MSCfNASTRAN finite element dynamic model of the 
idealized array with the rigorous solution from continuum 
mechanics [2). 

3. Refinement of the finite element mesh. 
4. Rigid body mode checks of the finite element models. 



5. Various parameter studies involving the amount of 
tension in the blanket, rigidity of the blanket tip beam, type 
of elements used, etc. 

6. Craig-Bampton approach for appending rigid body 
modes to substructures (superelements) (3). 

7. Modal ordering schemes for identifying 'important' 
modes. 

8. Study of grounding effects due to lack of rigid body 
mode capabilities [41. 

A detailed summary of the project was presented in (5). 
It sho:Jld be noted that this study is ongoing at the present 
time. This paper will be restricted to the grounding problems 
associated with the ~eometric stiffness due to blanket pre-
load. 

GROUNDING 

The ~pace station solar arrays were modeled utilizing 
MSC ·l'IASTI{Al'I. As a routine c~eck, the stiffness matrices 
generated by the model were multiplied by a matrix of 
rigid body modes. and large pseudo-forces were. developed 
(grounding). The cause of this 'grounding' phenomenon was 
examined. 

Finite element solves non-linear problems of the form 

[[K,.) + [K.ll{u} = {R: - {F}, 

where [K,) ;s the elastic stiffness matrix, and [K.) is the 
geometric. or initial stress stiffness matrix. 

[K,] is a function of the pre-load. Thus, it equals zero for 
a lin.:ar problem. [K,.) possesses the required rigid body 
modes. However. [K,) lacks the capacity for rigid body 
rotation. Hence. an erroneus stiffening, or 'grounding', 
occurs when a pre-loaded beam deforms. 

The traditional. or consistent geometric stiffness matrix, 
developed by Martm (6) and others. is 

6/5L 1/10 -6/5L 

1/10 11110 2L/15 -, 10 -L/30 . 
K.=P 

-6/51. -(/10 6/51- -1/10 

1/10 =L/3/ -1110 21. lIS 

This matrix does not posses rigid body rotation capabili-
ties. Various refinements to the geometric stiffness have been 
developed which contain higher order terms [6--8). However, 
none of these possess all the rigid b<>dy mode~. Bosela (4) 
developed a modified [Kg) with complete rigid body modes 
when used with an exact rigid body rotation matrix, but [K.] 
lost some of its rigid body capabilities. 

Closer examination of the traditional formulation of [Kg) 
indicated that there is a load imbalance in the represen-
tation, and that pseudo-forces occur to maintain equi-
librium (Fig. I). 

In (9), Collar and Simpson indicate that the lack of rigid 
body rotation capabilities for [Kg] is not a problem, because 
the energy representation is correct. It can be shown that it 
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is correct to p2 terms, but error does occur, as a function of 
p4. For large rigid body rotation, as will occur with the solar 
arrays, this is significant. 

It should be noted that as long as the pre-load P is 
assumed to remain horizontal during rotation, work will be 
done by the force. Thus, true rigid body rotation cannot 
occur. In order for the strain energy to equal zero, the force 
P Il"ust change its orientation as the beam rotates (i.e. a 
follower force). 

RIGOROUS SOLUTION OF PRE-LOADED BEAM 

Suppose we have an axially loaded beam in space sub-
jected to a time varying transverse loading (Fig. 2). The 
kinetk energy is 

T= i --dx. 
L m(v')2 

o 2 
(I) 

The strain energy due to bending is 

VB = fE; (v")2dx. (2) 

The strain energy due to axial load is 

vA=~f(jeadVOI. (3) 

Letting d Vol = dA dx and applying non-linear elasticity 
yields 

Neglecting axial displacement and higher order terms yields 

VA = fL!:: [(t' ')2») dx. (5)Jo 2 

The p('tenti~l of the externr.l loads is 

V ~~ - j'FP:. I)V dx + V !,(O, I)  
J  

Applying Hamilton's principle, and performing the vari-
ation, yields 

1:'[f [Elv"c5(v") + Pv'c5(v') - mvc5(v) - F(x, t)c5(v)] dx 

+ Vo c5v(O, t) + Mo c5v'(O, t) - VL c5v(L, t) 


- ML c5v'(L, t)J dt = O. (7)  

P'  

p  

Fig. I. P' represents pseudo-forces required for eqUilibrium. 
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Fig. 2. Beam in tension and differential element. 

Integrating by parts yields the differential equation 

d2/dx 2(El d2v/dx 2) - P d2t'/dx2+ m d2v/dt 2= F(x, I), (8) 

which agrees with Clough (10), after a sign change required 
to express the axial force in tension instead of compression. 
This is also in agreement with Shaker [II). 

For a beam in space, the moment and shear at the end 
points must equal zero. Thus, the boundary conditions are 

Pt" 
Elv"(O, I) = Elv"(L, t) = v"'(O, t) - El (0, t) 

Pv' 
=v"'(L, I) - El (L, I) =O. (9) 

Choose a solution of the form 

v(x) = DI sin(!5x) + D 2 cos(h) 

+ DJ sinh(lx) + D4 cosh(lx). (10) 

where 

!5 = [(a 4 + g4/4)1!2 - g2/2) (II) 

l =(a 4 + g4/4)1/2 +g2/2) (12) 

(13) 

g2 = P/El. (14) 

Applying the boundary conditions at x = 0, and after much 
mathematical manipUlation, yields 

v(x) '= DJ [~ sin!5x + sinh lXJ 

+ D.[fzcos !5x + cosh lXl (IS) 

Applying the boundary conditions at x = L, and after more 
mathematical manipUlations, yields 

DJ (!5 J cosh lL _!5 J cos !5L) + D.(lJ sin!5L +!5 l sinh lL). 

(16) 

Expressing eqn (IS) and eqn (16) into matrix form, 
setting the determinant equal to zero, and after more 

mathematical manipulations, 
equation is obtained 

p --X,U 

the following characteristic 

±2a6(cosh lL cos!5L - I) + (£6 - (j6)sinh EL sin <'iL = O. 
(17) 

Using eqn (13), this can be expressed as 

By observation, when w = 0, a = 0, and <5 = O. Letting 
sin(O) = 0 yields 

(19) 

The wJ term indicates that there must be three zero roots of 
'w', which suggests the three required rigid body modes. 

CONCLUSION 

Lack of complete rigid body mode capabilities is inherent 
in the physical representation of the pre-tensioned beam 
problem currently used to formulate the geometric stiffness 
matrix. This lack of complete rigid body mode capabilities 
invalidates the rigid body mode check for non-linear prob-
lems, and adversely impacts the use of traditional finite 
element techniques to predict dynamic response of pre-
loaded structures unless the missing rigid body modes are 
somehow appended on to the structure, such as by the 
Craig-Bampton technique. 

The rigorous solution of the axially-loaded beam with 
free/free boundary conditions developed in this paper may 
lend itself to the development of a new geometric stiffness 
matrix for a beam element with full rigid body capabilities. 

Acknowledgement-This research was supported by re-
search grant NAG 3-1008, with NASA Lewis Research 
Center. 

REFERENCES 

I. 	F. J. Shaker, Free-vibration characteristics of a large 
split-blanket solar array in a I G field. NASA TN 
D-8376 (1976). 



2. 	 K. S. Carney and F. J. Shaker, Free-vibration charac-
teristics and correlation of a space station split-blanket 
solar array. NASA TM 101452 (1989). 

3. 	 R. R. Craig, Jr and M. C. C. Bampton, Coupling 
of substructures for dynamic analysis. AIAA Jnl 6, 
1313-1319 (1968). 

4. 	P. A. Bosela, Limitations of current nonlinear finite 
element methods in dynamic analysis of solar arrays. 
MSC Users Conference, Los Angeles, CA. March 
(1989). 

5. 	 K. Carney, J. Chien, D. Ludwiczak, P. Bosela and 
F. Nekoogar, Photovoltaic Array Modeling and Normal 
Modes Analysis. NASA Lewis Research Center, 
Structural Dynamics Branch, Space Station Freedom 
WP04. Response Simulation and Structural Analysis, 
September (1989). 

6. 	 H. C. Martin and G. F. Carey, Introduction to Finite 
Element Analysis. McGraw-Hili (1973). 

7. 	 P. V. Marcal, The effect of initial displacements on 
problems of large deflection and stability. Division of 
Engineering, Brown University, Department of Defense 
Contract SD-86, ARPA E54 (1967). 

8. 	 D. M. Purdy and J. S. Przemieniecki, Influence of 
higher-order terms in the large deflection analysis 
of frameworks. Air Force Institute of Technology, 
Wright-Patterson Air Force Base, Ohio. 

9. 	 A. R. Collar and A. Simpson, Matrices and Engineering 
Dynamics. Halsted Press, New York (1987). 

10. 	R. W. Clough and J. Penzien, Dynamics of Structures. 
McGraw-Hill (1975). 

11. 	 F. J. Shaker, Effect of axial load on mode shapes and 
frequencies of beams. NASA TN D-8109 (1975). 

libuser
Typewritten Text
Post-print standardized by MSL Academic Endeavors, the imprint of the Michael Schwartz Library at Cleveland State University, 2014


	Dynamic Analysis of Space-Related Linear and Nonlinear Structures
	Original Citation

	PII: 0045-7949(92)90335-W

