Synthesis of Sialic Acid Derivatives and Their Immune Cells Modulation

Joseph Keil
Cleveland State University

Lei Yuan
Cleveland State University

Yu Zhao
Cleveland State University

Follow this and additional works at: https://engagedscholarship.csuohio.edu/u_poster_2017

Part of the Chemistry Commons

How does access to this work benefit you? Let us know!

Recommended Citation
https://engagedscholarship.csuohio.edu/u_poster_2017/20

This Book is brought to you for free and open access by the Undergraduate Research Posters at EngagedScholarship@CSU. It has been accepted for inclusion in Undergraduate Research Posters 2017 by an authorized administrator of EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.
Synthesis of Sialic Acid Derivatives and Their Immune Cells Modulation

College of Sciences and Health Professions

Student Researchers: Joseph Keil, Lei Yuan, and Yu Zhao

Faculty Advisor: Xue-Long Sun

Abstract

The exterior cell surfaces of macrophages express a dense layer of glycans which are often terminated by sialic acid. Sialic acid is an acidic monosaccharide whose presence on the terminal ends of glycans affects cellular function and properties. In particular, due to its hydrophilic and electronegative features, SAs play important roles in both physiological and pathological processes, such as in regulating cellular interactions with ligands, microbes and neighboring cells and in controlling cellular activation, differentiation, transformation and migration. In this study two sialic acid derivatives were synthesized and characterized, the 5 amine derivative and the 9 amine derivative. This study proposes that by treating cells with amine derivates of sialic acid it is possible to modify the native sialic acid expressed on the cell surface of macrophage, also known as sialylation status and its functionality accordingly. In the studies, the quantification of sialic acid were conducted by using both LC-MS/MS. We also hope to find information regarding the specific mechanisms that are involved in sialic acid binding events as well as possible cellular consequence due to sialic acid binding events. By modifying the sialylation status of macrophage cells it may eventually be possible to modify cellular functions and properties.