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Maxwell’s Equations 

II.  
0

ρ
ε

∇ ⋅ =E  

This is the second part of a multi-part production on Maxwell’s equations of electromagnetism.  

The ultimate goal is a definitive explanation of these four equations; readers will be left to judge 

how definitive it is.  A note:  for certain reasons, figures are being numbered sequentially 

throughout this series, which is why the first figure in this column is numbered 8.  I hope this 

does not cause confusion. Another note:  this is going to get a bit mathematical.  It can’t be 

helped:  models of the physical universe, like Newton’s second law F = ma, are based in math.  

So are Maxwell’s equations. 

 

 

Enter Stage Left:  Maxwell 

 James Clerk Maxwell (Figure 8) was born in 1831 in Edinburgh, Scotland.  His unusual 

middle name derives from his uncle, who was the 6th Baronet Clerk of Penicuik (pronounced 

“penny-cook”), a town not far from Edinburgh.  Clerk was, in fact, the original family name; 

Maxwell’s father, John Clerk, adopted the surname Maxwell after receiving a substantial 

inheritance from a family named Maxwell.  By most accounts, James Clerk Maxwell (hereafter 

referred to as simply “Maxwell”) was an intelligent but relatively unaccomplished student. 

 He began blossoming in his early teens, however, becoming interested in mathematics 

(especially geometry).  He eventually attended the University of Edinburgh and, later, 

Cambridge University, where he graduated in 1854 with a degree in mathematics.  He stayed on 

for a few years as a Fellow, then moved to Marischal College in Aberdeen.  When Marischal 

merged with another college to form the University of Aberdeen in 1860, Maxwell was laid off 



(an action for which U. of A. should still be kicking themselves, but who can foretell the future?) 

and he found another position at King’s College London (later the University of London).  He 

returned to Scotland in 1865, only to go back to Cambridge in 1871 as the first Cavendish 

Professor of Physics.  He died of abdominal cancer in November 1879 at the relatively young 

age of 48; curiously, his mother died of the same ailment and at the same age, in 1839. 

 Though he had a relatively short career, Maxwell was very productive.  He made 

contributions to color theory and optics (indeed, the first photo in Figure 8 shows Maxwell 

holding a color wheel of his own invention) and actually produced the first true color photograph 

as a composite of three images.  He made major contributions to the development of the kinetic 

molecular theory of gases, as the “Maxwell-Boltzmann distribution” is named partially after him.  

He also made major contributions to thermodynamics, deriving the relations that are named after 

him and devising a thought experiment about entropy that was eventually called “Maxwell’s 

demon.”  He demonstrated mathematically that the rings of Saturn could not be solid, but must 

instead be composed of relatively tiny (relative to Saturn, of course) particles – a hypothesis that 

was supported spectroscopically in the late 1800s but finally directly observed the first time 

when the Pioneer 11 and Voyager 1 spacecraft passed through the Saturnian system in the early 

1980s (Figure 9). 

 Maxwell also made seminal contributions to the understanding of electricity and 

magnetism, concisely summarizing their behaviors with four mathematical expressions known as 

Maxwell’s equations of electromagnetism.  He was strongly influenced by Faraday’s 

experimental work, believing that any theoretical description of a phenomenon must be grounded 

in phenomenological observations.  Maxwell’s equations essentially summarize everything about 

classical electrodynamics, magnetism, and optics, and were only supplanted when relativity and 



quantum mechanics revised our understanding of the natural universe at certain of its limits.  Far 

away from those limits, in the realm of classical physics, Maxwell’s equations still rule just as 

Newton’s equations of motion rule under normal conditions. 

 

 A Calculus Primer 

 Maxwell’s laws are written in the language of calculus.  Before we move forward with an 

explicit discussion of the first law, here we deviate to a review of calculus and its symbols. 

 Calculus is the mathematical study of change.  Its modern form was developed 

independently by Isaac Newton and German mathematician Gottfried Leibnitz in the late 1600s.  

Although Newton’s version was used heavily in his influential Principia Mathematica (in which 

Newton used calculus to express a number of fundamental laws of nature), it is Leibnitz’s 

notations that are commonly used today.  An understanding of calculus is fundamental to most 

scientific and engineering disciplines. 

 Consider a car moving at constant velocity.  Its distance from an initial point (arbitrarily 

set as a position of 0) can be plotted as a graph of distance from zero versus time elapsed.  

Commonly, the elapsed time is called the independent variable and is plotted on the x axis of a 

graph (called the abscissa) while distance traveled from the initial position is plotted on the y axis 

of the graph (called the ordinate).  Such a graph is plotted in Figure 10.  The slope of the line is a 

measure of how much the ordinate changes as the abscissa changes; that is, slope m is defined as 

  

For the straight line shown in Figure 10, the slope is constant, so m has a single value for the 

entire plot.  This concept gives rise to the general formula for any straight line in two 

dimensions, which is 



 y = mx + b 

where y is the value of the ordinate, x is the value of the abscissa, m is the slope, and b is the y-

intercept, which is where the plot would intersect with the y axis.  Figure 10 shows a plot that has 

a positive value of m.  A plot with a negative value of m; it would be going down, not up, as you 

go from left to right.  A horizontal line has a value of 0 for m; a vertical line has a slope of 

infinity. 

 Many lines are not straight.  Rather, they are curves.  Figure 11 gives an example of a 

plot that is curved.  The slope of a curved line is more difficult to define than that of a straight 

line because the slope is changing.  That is, the value of the slope depends on the point (x, y) of 

the curve you’re at.  The slope of a curve is the same as the slope of the straight line that is 

tangent to the curve at that point (x, y).  Figure 11 shows the slopes at two different points.  

Because the slopes of the straight lines tangent to the curve at different points are different, the 

slopes of the curve itself at those two points are different. 

 Calculus provides ways of determining the slope of a curve, in any number of dimensions 

(Figure 11 is a two-dimensional plot, but we recognize that functions can be functions of more 

than one variable, so plots can have more dimensions [a.k.a. variables] than two).  We have 

already seen that the slope of a curve varies with position.  That means that the slope of a curve 

is not a constant; rather, it is a function itself.  We are not concerned about the methods of 

determining the functions for the slopes of curves here; that information can be found in a 

calculus text.  Here, we are concerned with how they are represented. 

 The word that calculus uses for the slope of a function is derivative.  The derivative of a 

straight line is simply m, its constant slope.  Recall that we mathematically defined the slope m 

above using “∆” symbols, where ∆ is the Greek capital letter delta.  ∆ is used generally to 



represent “change”, as in ∆T (change in temperature) or ∆y (change in y coordinate).  For straight 

lines and other simple changes, the change is definite; in other words, it has a specific value. 

 In a curve, the change ∆y is different for any given ∆x because the slope of the curve is 

constantly changing.  Thus, it is not proper to refer to a definite change because – to overuse a 

word – the definite change changes during the course of the change.  What we have to do is a 

thought experiment:  we have to imagine that the change is infinitesimally small over both the x 

and y coordinates.  This way, the actual change is confined to an infinitesimally small portion of 

the curve:  a point, not a distance.  The point involved is the point at which the straight line is 

tangent to the curve (Figure 11). 

 Rather than using “∆” to represent an infinitesimal change, calculus starts by using “d”.  

Rather than using m to represent the slope, calculus puts a prime on the dependent variable as a 

way to represent a slope (which, remember, is a function and not a constant).  Thus, for a curve 

we have for the slope y′: 

  

as our definition for the slope of that curve. 

 We hinted earlier that functions may depend on more than one variable.  If that is the 

case, how do we define the slope?  First, we define a partial derivative as the derivative of a 

multi-variable function with respect to only one of its variables.  We assume that the other 

variables are held constant.  Instead of using a “d” to indicate a partial derivative, we use the 

lowercase Greek delta “δ”.  It is also common to explicitly list the variables being held constant 

as subscripts to the derivative, although this can be omitted because it is understood that a partial 

derivative is a one-dimensional derivative.  Thus we have 
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spoken as “the partial derivative of the function f(x,y,z,…) with respect to x.”  Graphically, this 

corresponds to the slope of the multi-variable function f in the x dimension, as shown in Figure 

12. 

 The total derivative of a function, df, is the sum of the partial derivatives in each 

dimension; that is, with respect to each variable individually.  For a function of three variables, 

f(x,y,z), the total derivative is written as 

 d d d df f ff x y z
x y z

∂ ∂ ∂
= + +
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where each partial derivative is the slope with respect to each individual variable and dx, dy, and 

dz are the finite changes in the x, y, and z directions.  The total derivative has as many terms as 

the overall function has variables.  If a function is based in three-dimensional space, as is 

commonly the case for physical observables, then there are three variables and so three terms in 

the total derivative. 

 When a function typically generates a single numerical value that is dependent on all of 

its variables, it is called a scalar function.  An example of a scalar function might be 

 F(x,y) = 2x – y2 

According to this definition, F(4,2) = 2·4 – 22 = 8 – 4 = 4.  The final value of F(x,y), 4, is a 

scalar:  it has magnitude but no direction. 

 A vector function is a function that determines a vector, which is a quantity that has 

magnitude and direction.  Vector functions can be easily expressed using unit vectors, which are 

vectors of length 1 along each dimension of the space involved.  It is customary to use the 

representations i, j, and k to represent the unit vectors in the x, y, and z dimensions, respectively 



(Figure 13).  Vectors are typically represented in print as boldfaced letters.  Any random vector 

can be expressed as, or decomposed into, a certain number of i vectors, j vectors, and k vectors 

as is demonstrated in Figure 13.  A vector function might be as simple as 

 F = xi + yj 

in two dimensions, which is illustrated in Figure 14 for a few discrete points.  Although only a 

few discrete points are shown in Figure 14, understand that the vector function is continuous.  

That is, it has a value at every point in the graph. 

 One of the functions of a vector that we will have to evaluate is called a dot product.  The 

dot product between two vectors a and b is represented and defined as 

 a·b = |a||b|cosθ 

where |a| represents the magnitude (that is, length) of a, |b| is the magnitude of b, and cosθ is the 

cosine of the angle between the two vectors.  The dot product is sometimes called the scalar 

product because the value is a scalar, not a vector.  The dot product can be thought of physically 

as how much one vector contributes to the direction of the other vector, as shown in Figure 15.  

A fundamental definition that uses the dot product is that for work, w, which is defined in terms 

of the force vector F and the displacement vector of a moving object, s, and the angle between 

these two vectors: 

 w = F·s = |F||s|cosθ 

Thus, if the two vectors are parallel (θ = 0º so cosθ = 1) the work is maximized, but if the two 

vectors are perpendicular to each other (θ = 00º so cosθ = 0), the object does not move and no 

work is done (Figure 16). 

 

More Advanced Stuff 











where we have made the appropriate substitutions to get the final expression.  We will rewrite 

this last expression as 

 
1

0

lim
div V o

q
V

ε
∆ → ∆=E  

The expression q1/∆V is simply the charge density at a point, which we will define as ρ.  This 

last expression becomes simply 

 
0

div ρ
ε

=E  

This equation is Maxwell’s first equation of electromagnetism.  It is also written as 

 
0

ρ
ε

∇ ⋅ =E  

Maxwell’s first equation is also called Gauss’ law, after Carl Friedrich Gauss, the German 

polymath who first determined it but did not publish it.  (It was finally published in 1867 after 

his death by his colleague William Weber; Gauss had a habit of not publishing much of his work, 

and his many contributions to science and mathematics were only realized posthumously.) 

 In the next installment, we will expand on our discussion by looking at Maxwell’s second 

equation.  In that case, we will be concerned with our old friend magnetism. 
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Figure 8.  James Clerk Maxwell as a young man and an older man. 

http://upload.wikimedia.org/wikipedia/commons/a/ac/YoungJamesClerkMaxwell.jpg�
http://upload.wikimedia.org/wikipedia/commons/5/57/James_Clerk_Maxwell.png�


 

 

 

 

 

 

Figure 9.  Maxwell proved mathematically that the rings of Saturn couldn’t be solid objects, but 

were likely an agglomeration of smaller bodies.  This image of a back-lit Saturn is a composite 

of several images taken by the Cassini spacecraft in 2006.  Depending on the reproduction, you 

may be able to make out a tiny bluish dot in the 10 o’clock position just inside the second 

outermost diffuse ring – that’s Earth. 



 

 

 

 

 

Figure 10.  A plot of a straight line, which has a constant slope m, given by ∆y/∆x. 

 



 

 

 

 

 

Figure 11.  A plot of a curve, showing (with the thinner lines) the different slopes at two different 

points.  Calculus helps us determine the slopes of curved lines. 



 

 

 

 

 

 

 

 

 

Figure 12.  For a function of several variables, a partial derivative is a derivative in only one 

variable.  The line represents the slope in the x direction. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13.  The definition of the unit vectors i, j, and k, and an example of how any vector can 

be expressed in terms of how many of each unit vector. 
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Figure 14.  An example of a vector function F = xi + yj.  Each point in two dimensions defines a 

vector.  Although only twelve individual values are illustrated here, in reality this vector function 

is a continuous, smooth function on both dimensions. 
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Figure 15.  Graphical representation of the dot product of two vectors.  The dot product gives the 

amount of one vector that contributes to the other vector.  Understand that an equivalent 

graphical representation would have the b vector projected into the a vector.  In both cases, the 

overall scalar results are the same. 
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Figure 16.  Work is defined as a dot product of a force vector and a displacement vector.  (a)  If 

the two vectors are parallel, they reinforce and work is performed.  (b)  If the two vectors are 

perpendicular, no work is performed. 
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Figure 17.  The geometric interpretation of a simple integral is the area under a function and 

bounded on the bottom by the x-axis (that is, y = 0).  (a)  For the function f(x) = x, the areas as 

calculated by geometry and integration are equal.  (b)  For the function f(x) = x2, the 

approximation from geometry is not a good value for the area under the function.  A series of 

rectangles can be used to approximate the area under the curve, but in the limit of an infinite 

number of infinitesimally-narrow rectangles, the area is equal to the integral. 
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Figure 18.  A multivariable function f(x,y) with a line paralleling the y axis. 

 



 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 19.  How far is the path around the circle?  A line integral can tell us, and it agrees with 

what basic geometry predicts (2πr). 
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Figure 20.  A surface S over which a function f(x,y) will be integrated. 
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Figure 21.  Flux is another word for amount of flow.  (a)  In a tube that is cut straight, the flux 

can be determined from simple geometry.  (b)  In a tube cut at an angle, some vector 

mathematics is needed to determine flux. 

 

F flow 

F flow 

n 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22.  What is the surface integral of a cube as the cube gets infinitely small? 
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Figure 23.  The divergence of the vector field F = xi + yj is 2, indicating a constant divergence, a 

constant spreading out, of the field at any point in the (x,y) plane. 
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Figure 24.  A non-constant divergence is illustrated by this one-dimensional field F = x2i whose 

divergence is equal to 2x.  The arrowheads represent length of the vector field at values of x = 1, 

2, 3, 4, etc.  The greater the value of x, the farther apart the vectors get – that is, the greater the 

divergence. 
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Figure 25.  It is an experimental fact that charges exert forces on each other.  That fact is 

modeled by Coulomb’s law. 
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Figure 26.  A charge in the center of a spherical shell with radius r has a normal unit vector equal 

to r, in the radial direction and with unit length, at any point on the surface of the sphere. 
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