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Observability of atmospheric glories and supernumerary
rainbows

James A. Lock

Department of Physics, Cleveland State University, Cleveland, Ohio 44115

Received December 19, 1988; accepted July 7, 1989

The finite spatial coherence width of sunlight at the Earth imposes restrictions on the production of scattering
phenomena based on the interference of light waves. With the spatial coherence properties of sunlight taken into
account, the visibility of the supernumerary rainbow sequence adjacent to the primary rainbow and the radii of the
water droplets that produce the optimum glory intensity were calculated. A substantial reduction was found in the
contrast of all the supernumeraries beyond the first few, and the peak observability of the glory occurred for water
droplets with radii between 10 and 20 ,um.

1. INTRODUCTION

A number of light-scattering effects that occur in the atmo-
sphere are produced by the constructive and destructive
interference of light waves. Among the most well known of
these are supernumerary rainbows and the glory. In order
to study these phenomena in a controlled laboratory envi-
ronment, water droplets", 2 and air bubbles 3 4 were illuminat-
ed with laser light, and the intensity and polarization of the
resulting rainbows and glories were measured. A number of
differences in the observability of these wave-interference
phenomena exist when they are examined in the laboratory
as opposed to when they occur naturally in the atmosphere.
The observability of natural glories and supernumerary
rainbows depends on many factors, which can be classed
broadly as either physical or physiological. The physical
factors influence the contrast of the wave-interference pat-
tern before the scattered light enters the eye of the observer.
Among these factors are surface-wave damping on the water
droplet, the spatial coherence properties of sunlight, multi-
ple scattering within the cloud or rain shower, and the distri-
bution of the sizes of the water droplets in the atmosphere.
The physiological factors include color perception and color
threshold discrimination within the observer's visual sys-
tem. For example, because the sun is a white-light source,
to calculate the colors perceived by an observer requires that
the chromaticity coordinates of the interference pattern be
integrated over all the visible wavelengths present in the
light scattered from a single target.5 This washes out the
colors observed in a white-light interference pattern and
reduces the fringe contrast perceived.6 The perceived con-
trast is reduced further when the chromaticity coordinates
of the interference pattern are integrated over the size distri-
bution of the scattering targets.

One of the chief physical factors influencing glory and
supernumerary observability is the spatial coherence width
of sunlight at the Earth. The laser light used in the labora-
tory has a large degree of spatial and temporal coherence.
Such coherence is standardly assumed in the Mie-theory
analysis of scattering phenomena. On the other hand, sun-
light possesses only a small degree of spatial and temporal
coherence. For a droplet of a given size, this places a limit

on the number of supernumerary rainbows that can be pro-
duced adjacent to the primary rainbow. It also places a
limit on the size of water droplets that can produce a glory.
The purpose of this paper is to estimate these limits and to
emphasize their physical interpretation.

The spatial coherence properties of sunlight can be mod-
eled with the following simple physical picture. Consider an
extended light source S a distance z from the scattering
target. It has a radius s and is composed of independent
radiators. Consider a single wavelength X of the light emit-
ted by the source. A wave front of light from the extended
source arriving at the scattering target consists of many
isoplanatic patches, with the average diameter7

(1.1)

The phase of the light within each patch is constant, and it
varies randomly among different patches. For the case of
sunlight, d 40 ,m at the location of the Earth.8 When a
wave front of sunlight scatters from the target, two scattered
light rays arriving at the position of the observer exhibit
interference if they originate from within the same iso-
planatic patch on the incident wave front. They do not
exhibit interference if they originate in different patches.
Supernumerary rainbows and the glory may be thought of as
being produced by the interference of light rays that enter
the water droplet at different locations on its surface. If the
distance between the incident light rays producing the su-
pernumeraries or the glory is larger than d, the rays are
incoherent with respect to one another, and wave interfer-
ence does not occur. By quantitatively calculating the visi-
bility of atmospheric supernumerary rainbows and the glory,
one can test the validity of this simple physical picture.

The effect of an incoherent-light source on wave interfer-
ence can be described quantitatively as follows. Consider
one of the independent radiators within the source. If the
single radiator acted as a source for diffraction or scattering
from the target of radius a, the diffracted or scattered inten-
sity, as a function of the coordinate ro on the viewing screen a
distance z0 behind the target in the far scattering zone, takes
the form

0740-3232/89/121924-07$02.00 © 1989 Optical Society of America
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I0(ro) = l 2i 2 G2(a)F(Kxm ° (1.2)

where K and m are constants, Iin, is the incident intensity,
and

27ra
x X . (1.3)

The factor F in Eq. (1.2) contains the interference pattern
characterizing the diffraction or scattering. The geometric
scaling factor G is the cross-sectional area of the region on
the target surface that is pierced by the incident rays respon-
sible for the interference. For example, if the target is a
circular aperture, then m = 1, K = 1, and the wave-interfer-
ence factor F for the diffracted intensity is

4j 2 (xro)

zo
(x Zo) (1.4)

Similarly, rays passing through the aperture at any location
contribute to the interference, giving

G = ra2. (1.5)

If the single independent radiator is replaced by the entire
incoherent extended source in the source plane having coor-
dinates r, the intensity on the viewing screen becomes a
convolution of the scattering pattern from a single radiator
with the finite extent of the incoherent source,9

effective blurring produced by the increasingly extended
interval of convolution. For small a, the increase in G domi-
nates the intensity. For large a, the contrast decrease of Fave
dominates. As a result, we expect that, when the diameter
of the portion of the target surface pierced by the rays re-
sponsible for interference is of the order of d, the wave
interference reaches its optimum observability. In Section
2 we apply this physical picture to supernumerary rainbows,
and in Section 3 we apply it to the glory.

2. VISIBILITY OF SUPERNUMERARY
RAINBOWS

The primary rainbow occurs when the scattering angle of the
rays that are incident upon a water droplet and make one
internal reflection within it before exiting possesses a rela-
tive minimum at' 0

OR = r + 2 arcsin(4 n) 4 arcsin(4fl 2 )1 2 (2.1)

where n is the index of refraction of the water droplet. The
rainbow ray that exits the droplet at this minimum scatter-
ing angle enters it with an angle of incidence of

= arcsin( (n )1/ 2 (2.2)

Both the rainbow ray and the incident rays infinitesimally
adjacent to it travel the same optical path length

LR = 2a[1 + 3 (n 1)1/2] (2.3)J d r, F[ (r +ri
S Z mk Z + i /

When we change to the scaled positions

Ro = Kx'- (1.7)
zo

and

riW = -Kxm i, (1.8)
Zi

and use a source with a circular geometry, Eq. (1.6) becomes

IO(RO) = 2" G(a)(Kxmy) 2 d2WA(W)F(R -W),

(1.9)

where the aperture function for the source AS(W) is

AS(W) = fI if WI < Kx ms/zi (1.10)
10 if 1W > Kxm s/z(

Applying the mean-value theorem to Eq. (1.9), we obtain

IO(RO) G 2 (a)irs 2Fave(R), (1.11)

where Fave is the average value of F resulting from the convo-
lution integral in Eq. (1.9) evaluated at the scaled viewing-
screen coordinate R. As a is increased, the geometric scal-
ing factor G increases, and more rays contribute to the dif-
fraction or scattering. At the same time, however, the
interference fringe contrast in Fave decreases because of the

from the plane tangent to the droplet and normal to the
entering rainbow ray to the plane tangent to the droplet and
normal to the exiting rainbow ray. As a result, the construc-
tive interference or focusing of a finite area of the initial
wave front in the direction of the primary rainbow is not
affected by the coherence properties of the source.

Pairs of incident rays at various distances to either side of
the rainbow ray exit the droplet after one internal reflection
with the scattering angle 0 > OR. They then travel parallel to
each other until they reach the position of a distant observer,
where they are brought together and interfere with each
other constructively, destructively, or at some condition in-
termediate between these two extremes." This interfer-
ence pattern observed on one side of the primary rainbow is
the supernumerary rainbow sequence.

In the geometrical ray model for rainbow production, if is
the angle of incidence of a light ray upon the droplet and

= OR + e,

then, for small , the scattering angle of the ray is

0 = OR + ae + 3E + E
4 + 0(E5),

where

3 4-n 2 \1/2
I I4 kn2 _1 /

n +8
16(n 2 - 1)

and

(2.4)

(2.5)

(2.6)

(2.7)

IO(ro) = Inc G 2 (a)
~02
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17n -8 (4-n 2 1/2

Equation (2.5) may be inverted to give

( = L) 2/ + 5 2a - - )O3/2 + 0(12) (2.9)

for the two geometrical rays t+ and t_ exiting the droplet in
the 0 direction parallel to each other, where

= 0 - 0 (2.10)

The optical path lengths of the t± rays between the planes
tangent to the droplet at their entrance and exit are

L() = LR + a(4 - n) : a (4 )/ 2 (P)32

+a 112 -56 2 - i1 +Q(2 5+ a (ln-6( I)¢2 + (0,5/2). (2.11)
Constructive interference of the t+ and t_ rays occurs when
the difference between their path lengths satisfies

LQ+) - L() = NX (2.12)

for an integer N ' 0, with N = 0 representing the primary
rainbow and N > 1 representing the supernumerary se-
quence, or when

= 3 (3)1/3 (4 - n')1/6 INX 2/3
4 (n 2 - 1)1/2 v- a (213

The separation 6 of the incident t+ and t_ rays before they
enter the droplet is

nominal spatial coherence width of sunlight at the Earth, the
Sun's incoherence should greatly reduce the visibility of all
but the first few supernumeraries.

The extent of the reduction of supernumerary visibility as
a result of the finite size of the Sun may be determined
quantitatively from Eq. (1.9). As is shown above, the radial
extent Ar of the portion of the surface of the droplet that is
responsible for the constructive interference producing the
primary rainbow or each supernumerary rainbow at one
location on the viewing screen is proportional to a . It can
also be shown easily that the polar coordinate angular inter-
val AO of the portion of the droplet surface that gives con-
structive interference at one location on the viewing screen is
proportional to a-1/2. Thus the droplet surface area that is
responsible for rainbow production at one viewing-screen
location is'4

G = (Wr)(rAO) a: a7 6 . (2.15)

Using Airy's cubic wave-front model to evaluate the wave-
interference factor F in Eq. (1.2), one obtains' 5

F(xo, yo) = Ai2(-KX2/3 °) (2.16)

where

K = (2)2/3 (n2 1)1/2

3 (4 n 2)1/6 
(2.17)

where the rectangular coordinates (xo, yo) are measured with
respect to the ray-optics position of the primary rainbow in
one localized region of the rainbow arc and where Ai is the
Airy integral,'6

6 = a sin + -a sin _. (2.14) Ai(-u) = (31/3 f cos 2 Lv3 - (12)13 vu]dv.

For small e and A', the separation is proportional to a
2

/
3

.

It was shown recently that the oblateness of falling rain-
drops causes the observed supernumerary rainbows to be
produced by water droplets only of radii near a 250 /,m.1

2'1 3

Using this radius with X = 0.55,Mm and n = 1.33 in Eqs. (2.9),
(2.13), and (2.14), one obtains the separations of the pairs of
incident rays that produce the constructive-interference su-
pernumerary rainbows. These separations are given in Ta-
ble 1. Since the separations for N > 2 are beyond the 4 0-jim

Table 1. Characteristics of Supernumerariesa

N (m) V

1 34.93 0.656
2 44.25 0.491
3 50.90 0.368
4 56.25 0.294
5 60.83 0.235
6 64.87 0.184
7 68.52 0.127
8 71.86 0.059
9 73.87 0.030

10 77.86 0.015

a The supernumerary rainbow orders N for a water droplet of radius 0.25
mm, the initial separation 6 of the two incident geometrical rays that produce
the supernumerary, and the supernumerary visibility factor defined in Eq.
(2.21). For N > 2, the separation a exceeds the nominal spatial coherence
width of sunlight.

The locations of the relative maxima of F are determined by
the stationary-phase approximation. They are found to be
at

Yo = ,6 3 (3)1/3 (4 - n) 6 [ 4 (2.19)
Zo 4 (n 2 - 1)1/2 [ a J

in this wave-optics model, in agreement with our prior ray-
optics prediction of Eq. (2.13). With a single independent
radiator serving as the light source, the supernumerary in-
tensity on the viewing screen as a function of the scaled
position,

Yo = KX2 13yO/zO, (2.20)

is given by Eq. (2.16) and is shown in Fig. 1.
The convolution integral of Eq. (1.9) for the supernumer-

ary rainbow region was calculated as a function of Yo for G
and F as given in Eqs. (2.15) and (2.16), respectively. The
resulting intensity is shown in Fig. 2. The contrast of the
supernumerary rainbows is reduced considerably from that
of Fig. 1. The values of the fringe visibility,

V= max -mi,
IM. + mi.

(2.21)

for the supernumeraries of Fig. 2 are given in Table 1, for
which background light in the supernumerary region was not

(2.18)

James A. Lock
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0 8
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Fig. 1. Intensity in the supernumerary rainbow region of coher
light (X = 0.55 m) scattered by a water droplet as a function of 
scaled position Y defined in Eq. (2.20). The primary rainb
intensity is normalized to unity.

a 250pm

'0

0 ei;{ 

0 8 16

YO

Fig. 2. Intensity in the supernumerary rainbow region of sunlight
( = 0.55 m) scattered by a 250-Atm-radius water droplet as a
function of the scaled position Y. The primary rainbow intensity is
normalized to unity. The difference from Fig. 1 arises from the
partial spatial coherence of sunlight.

recent years, many beautiful rainbow photographs were
published. In almost all of them, only one or two supernu-
meraries at best are visible, in general agreement with the
results in Table 1. Occasionally, as in the photos in Refs. 13
and 20, as many as three or four supernumeraries can be
seen.

In obtaining the results in Table 1 and Figs. 1 and 2, we
used the wave-interference model of Eq. (2.16) rather than
the exact Mie scattering theory. Mie theory predicts the
polarization dependence of the rainbow and also the level of
background light upon which the primary rainbow and su-
pernumeraries appear. For a 250-Am-radius water droplet,
the supernumerary-to-background intensity ratio in the
dominant polarization is 100:1, whereas it is only 5:1 for
unpolarized light. This background was omitted in our cal-

LJ culations of Eq. (2.21), and physically it is largely removed if
16 the rainbow appears in front of dark clouds or landscape and

is observed through a polarizing filter. Our results in Table
1 and Figs. and 2 correspond to this method of observation.

ent
the
ow 3, VISIBILITY OF THE GLORY

Van de Hulst was the first to conjecture that the dominant
mechanism in the production of the glory for reasonably
small water droplets is the interference of light rays that
enter the water droplet at its outer edge, make one internal
reflection within it, and exit in the backscattered direction.2'
The exiting effective toroidal wave front in this model gives
rise to the wave-interference factor

F = (c, + c2)2Jo2(-) (C - C2)2j22G-9) (3.1)

in Eq. (1.2), where K = 1, m = 1, where cl and 2 are the
products of transmission and internal reflection coefficients
of the incident transverse magnetic and transverse electric
fields, and where the radial coordinate r on the viewing
screen is measured with respect to the backscattered direc-
tion. This wave-interference factor is plotted as a function
of the scaled radial coordinate R in Fig. 3 for22

cl = -0.2,

C2 = 1.0. (3.2)

Since waves from the entire circumference of the droplet
contribute to glory interference, and since the radial width
Ar of the edge region of the droplet is proportional to a113 , the
geometric scaling factor in Eq. (1.2) is23

G = 2ra(Ar) oc a4
/3

taken into account. Similar convolution integrals over the
solar disk were performed previously.2,3",7 -19 However, it
appears that a quantitative measure of supernumerary ob-
servability that is due to source incoherence was not made
previously.

It can be seen from Table 1 that, for N > 3, visibility
decreases to <0.3. The way in which fringe visibility trans-
lates into human observability depends on the physiological
factors mentioned in Section 1. However, in general, de-
creasing values of V correspond to decreasingly observable
situations. Thus the finite coherence width of sunlight at
the Earth places a stringent limit on the number of atmo-
spheric supernumerary rainbows that may be observed. In

(3.3)
for glory scattering.

Unfortunately, the index of refraction of water is such that
light rays incident at the edge region have a scattering angle
of only 0 = 1660 and cannot be backscattered. In order to
overcome this difficulty, it was conjectured that surface
waves created at the points of incidence, internal reflection,
and exit provide the missing 14° of scattering angle.2 4 Thus
the coefficients cl and 2 also include the amplitudes for the
creation and propagation of surface waves and are functions
of the droplet size rather than being strictly constants.25 It
was proved both experimentally26 and numerically26 27 that
light rays incident at the edge of the droplet are, in fact, a
large contributor to the glory interference pattern, and

James A. Lock
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-12 0 12

Ro

Fig. 3. Intensity in the glory region of coherent light ( = 0.55 m)
light scattered by a water droplet as a function of the scaled position
Ro defined in Eqs. (1.7) and (3.1). The backscattered intensity is
normalized to unity.

methods for calculating the surface-wave contribution to
glory amplitude were devised.2 3 2 >3' In particular, it was
found that the surface waves propagating along the droplet
circumference become increasingly damped as the size of the
droplet is increased, and as a result 23

C1 C2 a: exp(-0.4x1/ 3
). (3.4)

some wavelengths than for others. In addition, the ampli-
tude for backscattered axial rays also increases slowly with
particle size.32 However, when the diameter of the droplet
exceeds the coherence width of sunlight, the light rays enter-
ing at the right-hand edge of the droplet are incoherent with
the light rays entering at the left-hand edge. As a result, the
coherence width of sunlight at the Earth should decrease the
contrast of the glory interference pattern for a > 20 Am.
This limiting radius is above the x 100 limit for the appli-
cability of the geometrical ray model, and it is more restric-
tive than the surface-wave damping limit. In this small-
droplet-size regime, the 10th-order rainbow contribution is
almost an order of magnitude smaller than the van de Hulst
term and need not be considered.

In order to verify that the source coherence width limit is
indeed more restrictive, the glory intensity for the extended
source of Eq. (1.9) was calculated as a function of a and Ro by
using Eqs. (3.1) and (3.3) with

c = -0.2 exp(-0.4xl 3 ),

C2 = 1.0 exp(-0.4x'/ 3).

(3.8)

(3.9)

The amplitudes of these coefficients are the estimates given
by van de Hulst,2 2 and the exponential damping factor is the
value derived by Khare and Nussenzveig.2 3 In actuality, the
amplitudes as well are size dependent, but we decided to use
the constants of Ref. 22, since the angular dependence of the
glory pattern is only weakly dependent on the specific values
of cl and c2. As a measure of fringe observability, we chose
to examine the quantity

U = 8/3 exp(-08xl/ 3)V, (3.10)

Even for a perfectly coherent light source, surface-wave
damping places a limit on the size of water droplets that can
produce glories by the van de Hulst mechanism. First, the
droplet must be large enough that the geometrical ray model
for backscattering is reasonably accurate. This occurs for x
> 100. Second, since the contribution of the van de Hulst
term to the glory intensity is proportional to23

o 0 X8/
3 exp(-08x1/ 3 ),

100

(3.5)

the intensity produced by this mechanism reaches a relative
maximum at

x = 1000 (3.6)
U

or

a 88 Am. (3.7)

For increasing a below this maximum, the increase in the
participating portion of the surface area of the droplet pa-
rameterized by the geometric scaling factor causes more
light rays to contribute to glory scattering. As a result, in
this regime the glory appears brighter for increasing a.
Above this maximum, the damping of the surface waves
reduces the one-internal-reflection contribution to the glory
for increasing a. For particle radii larger than 88 ,m, the
structure of the backscattered intensity becomes complicat-
ed. At these large particle sizes, the 10th-order rainbow
contribution to the glory potentially dominates. However,
since the 10th-order rainbow extends over an angular inter-
val of more than 12.6° for the visible spectrum,1 0 its contri-
bution to backscattering will be much less important for

10

0 10 20 30

a (pm)

Fig. 4. Glory observability factor U of Eq. (3.10) for the first glory
ring (solid curve), the second glory ring (dashed curve), and the
third glory ring (dotted curve) as a function of the water droplet
radius.

James A. Lock
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0
-12 0 12

R,

Fig. 5. Intensity in the glory region of sunlight (A = 0.55 Am)
scattered by a 15-Mm-radius water droplet as a function of the scaled
position R. The backscattered intensity is normalized to unity.
The difference from Fig. 3 arises from the partial spatial coherence
of sunlight.

'0

0
-12 0

Fig. 6. Intensity in the glory region of sunlight (A = 0.55 Am)
scattered by a 30-Mm-radius water droplet as a function of the scaled
position Ro. The backscattered intensity is normalized to unity.
The difference from Fig. 3 arises from the partial spatial coherence
of sunlight.

where Vis the fringe visibility of Eq. (2.21). It was calculat-
ed for this situation from the result of the convolution inte-
gral of Eqs. (1.9), (3.1), and (3.3). This quantity is by no
means a unique measure of interference-fringe observabil-
ity, but it does include the important physical factors that
influence observability. In Fig. 4, U is plotted as a function
of the droplet radius for the first three glory rings. Again,
the background intensity that is due to backscattered axial
rays and high-order rainbows was not included. As is seen
in this figure, U attains a relative maximum for a 15 i, in
agreement with our simple picture of the coherence width
limitation of glory visibility. The intensity of the glory rings

as a function of the scaled position R0, calculated by using
Eqs. (1.9), (3.1), and (3.3), is shown in Figs. 5 and 6 for a 15-
,m-radius droplet and for a 30-Mm-radius droplet, respec-
tively. The first droplet size is at the relative maximum of
U, and the second is somewhat beyond it. This suggests
that, as is the case for supernumerary rainbows,121 8 in a wide
size distribution of water droplets the glory is produced
primarily by a small range of droplet radii.

When the unpolarized Mie scattered intensity is calculat-
ed as a function of the scattering angle near the backscat-
tered direction for a 15 m, the resulting intensity deviates
substantially from Fig. 3 in two respects. First, the glory
interference pattern is superposed upon a background light
intensity. The interference maximum-to-background in-
tensity ratio varies between approximately 3:1 and 10:1.
Second, the scattered intensity at a scattering angle of 1800
can be much larger or smaller than the prediction of Fig. 3,
depending on whether the droplet diameter is at a scattering
resonance or away from one.3 3 In any event, the angular
separation between the various Mie scattering maxima and
minima is the same as the angular separation shown in Fig. 3.
As a result, a convolution of the Mie intensity would de-
crease the contrast between these maxima and minima to
the same extent that they were decreased in Fig. 4. Al-
though the numerical values of U would be different for the
convolved Mie intensity from what they were in Fig. 4, they
would peak at roughly the same droplet radii, and our con-
clusion about the coherence width limitation to glory obser-
vability would be the same.

The average radii of the water droplets producing the
glories analyzed by van de Hulst were 14 m, and the radii of
the droplets producing the glory described by Bryant and
Jarmie34 were 9 m. It is of interest to compare these values
and the optimum droplet radii of Fig. 4 with the most proba-
ble radius of water droplets found in clouds and mists. The
most probable cloud droplet radius depends to some extent
on the cloud type and the location of the droplet within the
cloud. However, many measurements place the most prob-
able radius in the range of 5-12 m.35 36 Similar radii occur
for fog particles.3 7 3 8 It is a fortunate accident that the
optimum droplet radii for glory production are so close to
the most probable radius of cloud droplets. If the water
droplets in clouds were a factor of 4 larger or smaller, the
observation of a naturally occurring glory would be a rare
occurrence indeed.
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