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A comparison of filtering approaches for aircraft engine health estimation 


Dan Simon 

C/CO'f!/olld Slate Unil'trsily. Dtportmtnl q[Eleclriro/ £IIginu ring. S,if...dl Hall Room 112. 2121 Euclid AI·t"'~. C/f!I,tlond, OH 44115. USA 

I. Introduction 

The application considered in this paper is aircraft turbofan 
engine health parameter esti mation (I I. Health parameters rep­
resent engine component efficiencies and fl ow capacities. The 
performance of a gas turbine e ng ine deteriorates over time. This 
deterioration reduces the fue l economy of the engine. Airli nes 
periodically collect engine data in order to evaluate the health 
of the engine and its components. The health evaluation is then 
used 10 determine mai ntenance schedules. Re liable health eval­
uations are used to anticipate future mai ntenance needs. This 
offers the benefits of improved safety and reduced operating 
costs. The money-saving potential of such health evaluations 
is substantial, but only if the evaluations are reliable. The data 
used to perform health evaluations are typically collected dur­
ing Hight and later transferred to ground-based computers for 
post-fli ght analysis. Data are collected each fli ght at the same 
engine operating points and corrected to account for variability 
in ambient conditions. Various algorithms have been proposed 

to monitor engine health. such as weighted least squares 12), ex­
pert systems 131 . Kalman filters and neural networks (4] . fuzzy 
logic 15 1. and genetic algorithms L6J. 

Kalman fi lte r based approaches seem to be the most com­
monly used methods for aircraft engine health estimation. but 
up to thi s point in time a systematic comparison of these tech­
niques has not been presented . Thi s paper g ives a comparison 
of the estimation accuracy and computational effort of various 
Kalman fi lter based approaches to ai rcraft engine health esti ­
mation . Note that smoothing does not provide any improvement 
over tiltering because the health parameters that we estimate are 
modeled as constant biases [71 . 

We emphasize that in this paper we are confining the prob­
lem to the estimation of engine health parameters in the pres­
ence of degrndation only. There are specific engine faults that 
can result in abrupt shifts in filter estimates. possibly even in­
dicating an apparent improvement in some engine components. 
An actual engine performance monitoring system would need 
to include additional logic to detect and isolate such faults, as 
discussed in [8]. 

This paper is organized as fo llows. Section 2 presents a re­
view of the LKF, the EKF, and the UKF. Section 3 discusses 



      

     

   

   
 

    
 

 
 

 
    

 
 

 
 

 

 

    

     

    

    

   

   
 

  

 

      

   

 

     

   

 
    

   
 

 
 

 
 

 
 

 
 

 

 

     

     

     

   

   

   

    

 

the problem of turbofan health parameter estimation, along with 
the dynamic model that we use in our simulation experiments. 
Although the health parameters are not state variables of the 
model, the linearized dynamic model is augmented in such a 
way that a Kalman filter can estimate the health parameters as 
shown in previous publications [9,10]. Section 4 presents some 
simulation results based on a nonlinear turbofan model. We 
see in this section that the EKF and UKF both estimate engine 
health significantly better than the LKF. However, the EKF re­
quires computational effort that is an order of magnitude higher 
than the LKF, and the UKF requires computational effort this is 
yet another order of magnitude higher than the EKF. Section 5 
presents some concluding remarks and suggestions for further 
work. 

2. State estimation for nonlinear systems 

In this section we first summarize the standard Kalman fil­
ter equations. We then review three extensions of the standard 
Kalman filter to nonlinear systems: the LFK, the EKF, and the 
UKF. Details can be found in [7]. 

2.1. The Kalman filter 

Consider the discrete linear time-invariant system given by 

x(k + 1) = Ax(k) + Bu(k) + w(k), 

y(k) = Cx(k) + v(k) (1) 

where k is the time index, x is the state vector, u is the 
known control input, y is the measurement, and {w(k)} and 
{v(k)} are noise input sequences. The problem is to find 
an estimate x(k + 1) of x(k + 1) given the measurements ˆ 
{y(0), y(1), . . . , y(k)}. We assume that the following standard 
conditions are satisfied. 

[ ]
E x(0) = x̄(0) 

[ ] [ ]
E w(k) = E v(k) = 0 

[( )( )T ]
E x(0) − x̄(0) x(0) − x̄(0) = P +(0) 

[ ]
E w(k)wT (m) = Qδkm [ ]
E v(k)vT (m) = Rδkm [ ]
E w(k)vT (m) = 0  (2)  

where E[·] is the expectation operator, x̄ is the expected value 
of x, and δkm is the delta function. The Kalman filter equations 
are given by 

P(k)  = AP +(k − 1)AT + Q 
( )

K(k)  = AP(k)CT CP(k)CT + R −1 

ˆ Fx+
x(k) = ˆ (k − 1) + Bu(k)
 
( )+ x(k) + K(k)  x(k) x̂ (k) = ˆ  y(k) − C ̂  

( )
P +(k) = I − K(k)C  P(k)  (3) 

where the filter is initialized with x̂+(0) = x̄(0), and P +(0) 
given above. x̂+(k) is the a posteriori state estimate at time k, 
and P +(k) is its covariance. x̂(k) is the a priori state estimate at 

time k, and P(k)  is its covariance. The Kalman filter is widely 
used both for its practical success and for its attractive theoreti­
cal properties [7,11]. 

2.2. The linearized Kalman filter 

Now suppose that we have the nonlinear system model 
( )

x(k + 1) = f x(k), u(k), k + w(k) 
( )

y(k) = h x(k), k + v(k) (4) 

where f (·), and h(·) are general nonlinear functions. We use 
Taylor series to expand these equations around a nominal con­
trol ¯ x(k), and a nominal output ¯u(k), a nominal state ¯ y(k). This  
gives the following approximately correct linear system. 

fx(k + 1) = Afx(k) + Bfu(k) + w(k) 

fy(k) = Cfx(k) + v(k) (5) 

The f quantities in the above equations are defined as devi­
ations from the nominal trajectory: fx = x − x̄, fu = u − ū, 
and fy = y − ȳ. We assume that the control u(k) is known per­
fectly so that fu(k) = 0. The matrices on the right side of (5) 
are given as 

∂f 
A = 

∂x  
∂f 

B = 
∂u  
∂f 

C = (6)
∂u  

and all partial derivatives are evaluated at the nominal state, 
control, and noise values. These matrices are called Jacobians. 
Now we can use a Kalman filter to estimate the deviation fx(k) 
of the state from its nominal value. The LKF is therefore given 
as 

P(k)  = AP +(k − 1)AT + Q 
( )

K(k)  = AP(k)CT CP(k)CT + R −1 

+fx(k) ˆ = Afx̂ (k − 1) + Bfu(k) 

fy(k) = y(k) − ȳ(k) 
( )+fx̂ (k) = x(k) + K(k)  fy(k) − Cf ˆf ˆ x(k)
 

+ +
 x̂ (k) = x̄(k) + fx̂ (k) 
( )+P (k) = I − K(k)C  P(k)  (7) 

Jacobian calculations are performed as often as required in 
order to give the desired tradeoff between computational effort 
and filtering accuracy. The effort for a Jacobian calculation for a 
nonanalytic system depends on the specific system. First, a sim­
ulation with the states set equal to the current estimates needs 
to be run until the system reaches steady state. Then a series of 
short simulations needs to be run, one for each component of 
the control, state, and health parameter vectors. The perturba­
tions (from nominal) in the state derivatives and outputs need 
to be measured for each individual control, state, and health pa­
rameter perturbation. The ratios of these perturbations are then 
used to obtain the A, B , and C matrices [12]. 



    
	 

       

       
 

 

    

 
    

    

   
 

 

   
  

 

  

 
   

 

      

   	 

  
  

 

 


	      

       
 

    
      

 
     

 
	 

       

 

 

 	 
 

  
   

 

 

    
     

      

 

 
  

2.3. The extended Kalman filter 

The LKF summarized in the preceding section is based on 
linearizing the nonlinear system around a nominal state trajec­
tory. Since the Kalman filter estimates the state of the system, 
we can use the Kalman filter estimate as the nominal state tra­
jectory. This is a boot strap approach. We linearize the nonlinear 
system around the Kalman filter estimate, and the Kalman fil­
ter estimate is based on the linearized system. This is the idea 
of the EKF. The EKF for the nonlinear system of (4) starts with 
the following time update equations. 

P(k)  = AP +(k − 1)AT + Q 
+x(k)ˆ = f 

(
x̂ (k − 1), u(k − 1), k − 1

) 
(8) 

The Jacobian in the preceding equation is given as 

∂f (x̂+(k − 1), u(k − 1), k − 1)
A =		 (9)

∂x  

Next the EKF performs the following measurement update 
equations. 

( )−1 
K(k)  = P(k)CT CP(k)CT + R 

[ ( )]+ x̂ (k) = ˆ 	  ˆx(k) + K(k)  y(k) − h x(k), k 
( )

P +(k) = I − K(k)C  P(k)  (10) 

where the Jacobian is given as 

∂h(  ̂x(k), k) 
C =		 (11)

∂x  

As with the LKF, the estimation accuracy and computational 
effort of the EKF increase with the frequency of the Jacobian 
calculations. Most of the computational effort is due to the sys­
tem simulation that is required to obtain f (x̂, u, k) in (8), and 
h(x̂(k), k) in (10), and the system simulations that are required 
to obtain the Jacobians A and C. 

2.4. The unscented Kalman filter 

The EKF discussed in the previous section is the most widely 
applied state estimation algorithm for nonlinear systems. How­
ever, the EKF is notoriously difficult to tune and often gives 
unreliable estimates if the system or measurement nonlineari­
ties are severe. This is because the EKF relies on linearization 
to propagate the mean and covariance of the state. 

An unscented transformation is based on two fundamental 
principles [13]. First, it is easier to perform a nonlinear trans­
formation on a single point rather than an entire pdf (probability 
distribution function). Second, it is not too hard to find a set of 
individual points in state space whose sample pdf approximates 
the true pdf of a state vector. 

Taking these two ideas together, suppose that we know the 
mean x̄(k) and covariance P(k)  of a vector x(k). The UKF 
(unscented Kalman filter) finds a set of deterministic vectors 
called sigma points whose sample mean and covariance are 
equal to x̄(k) and P(k). We then apply our known nonlinear 
system function f (x,u, k)  to each deterministic vector to ob­
tain transformed vectors. The sample mean and covariance of 

the transformed vectors will give a good estimate of the true 
mean and covariance of x(k + 1). The UKF can be summarized 
as follows [14,15]. 

1. We have an n-state discrete time nonlinear system given by 

x(k + 1) = f (x,u, k)  + w(k) 

y(k) = h(x, k) + v(k)	 (12) 

where w(k) and v(k) are zero mean, independent random 
noise processes with covariances Q and R respectively. 

2. The UKF is initialized as follows. 
[ ]+ x̂ (0) = E x(0)
 
[( )( )T ]
+	 + +P	 (0) = E x(0) − x̂ (0) x(0) − x̂ (0) (13) 

3. The following time update equations are used to propagate 
the state estimate and covariance from one measurement 
time to the next. 
(a) Choose the following sigma points 

(i) + (i) x̂ (k − 1) = x̂ (k − 1) + x̃ , i  = 1, . . . ,2n 
()˜(i)	 )

x	 = nP +(k − 1) , i  = 1, . . . , n
i 

˜(n+ () )

x i) = −  nP +(k − 1) , i  = 1, . . . , n  (14)


i √ 
A refers to the square root of the matrix A. That is, √ √ √ 

( A)T A = A, and ( A)i refers to the ith row of √ 
A. (The Cholesky factorization routine in Matlab can 

be used to find a matrix square root.) 
(b) Use the known nonlinear system equation to transform 

the sigma points into x̂(i)(k) vectors as follows. 
(	 )

(i) (i) x̂	 (k) = f x̂ (k − 1), u(k − 1), k − 1 (15) 

(c) Combine the x̂(i)(k) vectors to obtain the a priori state 
estimate. 

2n "1 ˆ(i)x(k)ˆ = x (k)	 (16)
2n 

i=1 

(d) Estimate the a priori estimation error covariance as fol­
lows. 

2n
1 "( ) )T(i) (i) P(k)  = x̂ (k) − x̂(k) (x̂ (k) − x̂(k) + Q

2n 
i=1 

(17) 

4. Implement the following measurement update equations. 
(a) Choose sigma points x̂(i)(k) as follows. 

(i) (i) x̂	 (k) = x̂(k) + x̃ , i  = 1, . . . ,2n 

˜(i) () )
x	 = nP (k) , i  = 1, . . . , n

i 

˜(n+ () )

x i) = −  nP (k) , i  = 1, . . . , n  (18)


i 

(b) Use the known	 	nonlinear measurement equation to 
transform the sigma points into ŷ(i)(k) vectors (pre­
dicted measurements) as follows. 

( )
(i) (i) ŷ	 (k) = h x̂ (k), k	 (19) 



   

 

    
 

      
     

 

  

    
        

 

     

   


       

  

  

 

     

(c) Combine the 	ŷ(i)(k) vectors to obtain the predicted 
measurement. 

2n "1 ˆ(i)y(k)ˆ = y (k)	 (20)
2n 

i=1 

(d) Estimate the covariance of the predicted measurement 
as follows. 

2n
1 "( )( )T(i) (i) Py(k) = ŷ (k) − ŷ(k) ŷ (k) − ŷ(k) + R 

2n 
i=1 

(21) 

(e) Estimate the covariance between ˆ y(k) as fol­x(k) and ˆ 
lows. 

2n
1 "( )( )Tˆ(i) ˆ(i)Pxy(k) = x (k) − x̂(k) y (k) − ŷ(k) 

2n 
i=1 

(22) 

(f) The measurement updates are performed as follows. 

K(k)  = Pxy(k)Py 
−1(k) 

( )+ x̂ (k) = x̂(k) + K(k)  y(k) − ŷ(k)
 
+
P	 (k) = P(k)  − K(k)Py(k)KT (k) (23) 

It can be shown that the EKF estimate of the state matches 
the true mean of the state correctly up to the first order, but the 
UKF estimate is correct up to the third order. It can also be 
shown that both the EKF and the UKF approximate the covari­
ance of the state estimate up to the third order. However, the 
error of the UKF approximation of the covariance is generally 
smaller than that of the EKF [14]. 

The UKF equations look more difficult than the LKF or the 
EKF. However, the UKF does not require any Jacobian calcu­
lations. Jacobian calculations of nonanalytic systems are often 
prone to numerical difficulties. The biggest computational dif­
ficulty of the UKF is the matrix square root that is required, and 
the system simulations of (15) and (19). 

If computational effort is a primary consideration, then a 
smaller number of sigma points can be chosen. The above al­
gorithm uses 2n sigma points, where n is the size of the state 
vector. The spherical UKF was developed with the goal of bal­
ancing computational savings and numerical stability [14,16] 
and uses only (n + 2) sigma points. 

Another way to reduce the computational effort of the UKF 
is to skip the time update equation for the sigma points and 
simply use the most recent sigma points in the succeeding equa­
tions. This is an ad-hoc modification of the UKF that saves 
a lot of computational effort at the expense of the theoretical 
integrity of the filter. However, the measurement y(k) is still 
used at each time step to update the a posteriori sigma points as 
shown in (23), so this approximation may not result in too much 
degradation of the filter performance. This is especially true for 
the case of health parameter estimation because the health pa­
rameters are modeled as constant biases (even though the rest 
of the state vector is still modeled as time varying). 

3. Turbofan engine health monitoring 

Fig. 1 shows a schematic representation of a turbofan en­
gine [17]. A single inlet supplies airflow to the fan. Air leaving 
the fan separates into two streams: one stream passes through 
the engine core, and the other stream passes through the annular 
bypass duct. The fan is driven by the low pressure turbine. The 
air passing through the engine core moves through the com­
pressor, which is driven by the high pressure turbine. Fuel is 
injected in the main combustor and burned to produce hot gas 
for driving the turbines. The two air streams combine in the aug­
mentor duct, where additional fuel is added to further increase 
the air temperature. The air leaves the augmentor through the 
nozzle, which has a variable cross section area. 

The simulation used in this paper is a software package 
called MAPSS (Modular Aero Propulsion System Simulation). 
In this section we summarize the model and the linearization 
process without going into the details that are provided else­
where [17,18]. MAPSS is written using Matlab Simulink. The 
MAPSS engine model is based on a low frequency, transient, 

Fig. 1. Schematic representation of a turbofan engine. 



        

    

     

   
 

 

 

  
 

 

   

Table 1 
MAPSS turbofan model states and nominal values 

State Nominal value 

LPT rotor speed 7264 RPM 
HPT rotor speed 12 152 RPM 
Average hot section metal temperature 1533◦ R 

Table 2 
MAPSS turbofan model controls and nominal values 

Control Nominal value 

Main burner fuel flow 2454 lbm/hr 
Variable nozzle area 343 in2 

Rear bypass door variable area 154 in2 

Table 3 
MAPSS turbofan model health parameters and nominal values. Booster tip ef­
ficiency would normally be an additional health parameter, but it is not yet 
implemented in MAPSS 

Health parameter Normalized value 

Fan airflow capacity 1 
Fan efficiency 1 
Booster tip airflow capacity 1 
Booster hub airflow capacity 1 
Booster hub efficiency 1 
High pressure turbine airflow capacity 1 
High pressure turbine efficiency 1 
Low pressure turbine airflow capacity 1 
Low pressure turbine efficiency 1 

performance model of a high-pressure ratio, dual-spool, low-
bypass, military-type, variable cycle, turbofan engine with a 
digital controller. The controller update rate is 50 Hz, and the 
component level model balances the mass/energy equations of 
the system at a rate of 2500 Hz. The three state variables used 
in MAPSS are low-pressure rotor speed, high-pressure rotor 
speed, and the average hot section metal temperature (measured 
from aft of the combustor to the high pressure turbine). 

The discretized time invariant equations that model the tur­
bofan engine can be summarized as follows. 

[ ]
x(k + 1) = f x(k), u(k), p(k) + wx(k) 

p(k + 1) = p(k) + wp(k) 
[ ]

y(k) = g x(k), u(k), p(k) + v(k) (24) 

where k is the time index, x is the 3-element state vector, u is 
the 3-element control vector, p is the 9-element health para­
meter vector, and y is the 9-element measurement vector. The 
noise terms and health parameter degradations are not modeled 
in MAPSS but have been added to the model for the prob­
lem studied in this paper. The health parameters change slowly 
over time. Between measurement times their deviations can be 
approximated by the zero mean noise wp(k) (although in our 
study the health parameters only changed once per flight). The 
noise term wx(k) represents inaccuracies in the system model, 
and v(k) represents measurement noise. A Kalman filter can be 
used with (24) to estimate the state vector x and the health pa­
rameter vector p. Since the system model is not available in 

Table 4 
MAPSS turbofan model measurements, nominal values, and signal-to-noise ra­
tios. SNR is defined here as the nominal measurement value divided by one 
standard deviation of the measurement noise 

Measurement Nominal value SNR 

LPT exit pressure 19.33 psia 100 
LPT exit temperature 1394◦ R 100 
Percent low pressure spool rotor speed 63.47% 150 
HPC inlet temperature 580.8◦ R 100 
HPC exit temperature 965.1◦ R 200 
Fan exit pressure 17.78 psia 200 
Booster inlet pressure 20.19 psia 200 
HPC exit pressure 85.06 psia 100 
Core rotor speed 12 152 RPM 150 

analytical form, the Jacobian calculations need to be performed 
numerically. See [12] for Jacobian calculation details and trade­
offs for the turbofan health estimation problem. 

For systems with constant parameters appended to the 
state vector, the minimum number of observations required to 
achieve system observability is equal to the number of con­
stant parameters [19,20]. Although the health parameters are 
not truly constant as seen in (24), they are modeled with infinite 
time constants and small amounts of artificial process noise. So 
since we want to estimate nine health parameters, we need at 
least nine measurements. 

The states, controls, health parameters, and measurements 
are summarized in Tables 1–4, along with their values at the 
nominal operating point considered in this paper, which is a 
power lever angle of 21◦ at sea level static conditions (zero alti­
tude and zero Mach). Table 4 also shows typical signal-to-noise 
ratios for the measurements, based on NASA experience and 
previously published data [21]. Sensor dynamics are assumed 
to be high enough bandwidth that they can be ignored in the 
dynamic equations. In Tables 1–4 we use the acronyms LPT for 
Low Pressure Turbine, HPT for High Pressure Turbine, LPC for 
Low Pressure Compressor, and HPC for High Pressure Com­
pressor. 

4. Simulation results 

We simulated the filtering methods discussed in this paper 
using Matlab. We measured a steady state three second burst 
of open-loop engine data at 100 Hz during each flight. These 
routine data collections were performed over 50 flights at the 
single operating point shown in Tables 1, 2, and 4. The en­
gine’s health parameters were initialized to the values shown in 
Table 3 and then deteriorated a small amount once each flight 
(i.e., once every 300 time steps). The signal-to-noise ratios were 
determined on the basis of NASA experience and previously 
published data [21] and are shown in Table 4. In the Kalman 
filters we used a one-sigma state process noise equal to 0.005% 
of the nominal state values to allow the filter to be responsive to 
changes in the state variables. We also set the one sigma process 
noise for each component of the health parameter to a small 
percentage of the nominal parameter value. The values that we 
used were obtained by tuning. They were small enough to give 
reasonably smooth estimates, and large enough to allow the fil­



    

  
 

  

 

 

  
 

 

   

 

 
 

  

Table 5 
Health parameter estimation errors (percent) and standard deviations of the LKF and EKF, averaged over all flights and all health parameters. The estimation error 
is measured as |(p − p̂)/pf |, where  p is the true health parameter value, p̂ is the estimated health parameter value, and pf is the health parameter value at the end 
of the simulation 

Number of Jacobian calculations 

1  2  4  8  17  50  

Linearized Kalman filter 5.7 ± 1.2 4.8 ± 0.9 3.5 ± 0.7 3.3 ± 0.8 3.7 ± 1.0 3.9 ± 1.0 
Extended Kalman filter 2.9 ± 0.6 3.2 ± 1.1 2.9 ± 0.5 3.0 ± 0.9 2.5 ± 0.7 2.7 ± 0.7 

ter to track slowly time-varying parameters. Although a number Table 6 

of approaches have been proposed for covariance tuning in the 
Kalman filter [7], our results were obtained with simple ad-hoc 
manual tuning. 

For each simulation and each health parameter, we generated 
a random number pim(N) from a uniform distribution between 
1% and 4%, where i is the health parameter number (between 
1 and 9), m is the simulation run number, and N is the index 
of the final flight. We then simulated a linear-plus-exponential 
degradation of the health parameter such that the final health 
parameter value was pim(N). The initial health parameter es­
timation errors were zero. These health parameter degradation 
profiles were therefore random but were representative of turbo­
fan performance data reported in the literature [22]. The health 
parameter degradation at flight k can be written as 

pim(k) = pim(N) (
e−k/150 − 1 − k/600

) 
(25) 

e−N/150 − 1 − N/600 

This gives a pim(k) profile that looks mostly exponential early 
in the engine’s service cycle (small values of k) and looks 
mostly linear later in the engine’s service cycle (large values 
of k). 

4.1. Performance results 

We ran between 20 and 60 Monte Carlo simulations for each 
filter, depending on how long it took the variance of the results 
to reach steady state (as graphically observed). Each simula­
tion consisted of 50 flights, health parameter degradations with 
random magnitudes, and different random measurement noise. 
Tables 5 and 6, along with Figs. 2–4, show the average perfor­
mance of the filters. 

We can make some interesting observations from the tables 
and the figures. Table 5 and Fig. 2 shows that the performance 
of the LKF steadily improves as the frequency of the Jacobian 
calculations increases. This improvement continues until the Ja­
cobian calculations are performed once every three flights (i.e., 
17 Jacobian calculations over 50 flights). There does not appear 
to be any improvement if the frequency of the Jacobian calcu­
lations increases to more than once every three flights. 

Table 5 and Fig. 3 show improvement in the performance of 
the EKF as the frequency of the Jacobian calculations increases. 
However, the improvement is not as large as with the LKF. This 
is because the LKF is more approximate than the EKF, so there 
is more room for improvement in the performance of the LKF. 

Table 6 and Fig. 4 show that the performance of the UKF is 
independent of the number of sigma points, and independent of 
the number of sigma point updates per time step. Theoretically, 

Health parameter estimation errors (percent) of the unscented Kalman filters, 
averaged over all flights and all health parameters. The estimation error is mea­
sured as |(p − p̂)/pf |, where  p is the true health parameter value, p̂ is the 
estimated health parameter value, and pf is the health parameter value at the 
end of the simulation 

Number of 
sigma points 

Number of sigma point updates 
per time step 

1 2 

n + 2 
2n 

2.7 ± 0.5 
2.7 ± 0.6 

2.4 ± 0.4 
2.7 ± 0.5 

the UKF with the full set of sigma points and two sigma point 
updates per time step should outperform the other UKFs. How­
ever, in practice we do not see any improvement. After using 
the near-minimum number (n + 2) of spherical sigma points, 
the use of additional sigma points exceeds the point of dimin­
ishing returns due to the relatively mild nonlinearities of the 
turbofan health estimation problem. 

We can compare the linearized, extended, and unscented 
Kalman filters by comparing Tables 5 and 6, and Figs. 2–4. 
We see that the EKF clearly outperforms the LKF, although 
the improvement in performance becomes less dramatic as the 
number of Jacobian calculations increases. The performance of 
the UKF appears to be about the same as that of the EKF. 

Note that the Kalman filter works well only if the assumed 
system model matches reality fairly closely. The method pre­
sented in this paper, by itself, will not work well if there are 
large sensor biases or hard faults due to severe component 
failures. A mission-critical implementation of a Kalman filter 
should always include some sort of additional residual check 
to verify the validity of the Kalman filter results [23], partic­
ularly for the application of turbofan engine health estimation 
considered in this paper [1]. 

4.2. Computational effort 

Now we consider the computational effort of the filters. 
A simulation of the MAPSS software discussed here requires 
about 30 s of computational effort on a 1.5 GHz PC with 256 
MB of RAM. This simulates 4 s of aircraft engine dynamics, 
which is long enough to allow the engine to reach steady state 
after a small change in the health parameters. A Jacobian calcu­
lation requires about 90 s of computational effort. This involves 
the simulation of 4 s of aircraft engine dynamics, along with 16 
short 0.1 s simulations to obtain the perturbations that are used 
to generate the Jacobians. 



  

 

  

  
 

  

 

 

Fig. 2. Linearized Kalman filter estimation errors and standard deviations. 

The computational effort of the LKF is dominated by the 
effort required for Jacobian calculations, and is therefore equal 
to the number of Jacobian calculations multiplied by 90 s. This 
can be written as 

EL = 90Nj (26) 

where Nj is the number of Jacobian calculations. 
The EKF requires one system simulation plus Jacobian cal­

culations. For our 50 flight simulation, the EKF therefore re­
quires 50 × 30 s, plus the number of Jacobian calculations 
multiplied by 90 s. This can be written as 

EE = 1500 + 90Nj (27) 

The UKF can be implemented with 2n sigma points or n + 2 
sigma points, where n = 12 is the total number of states in the 
system (after augmentation of the nine health parameters to the 
three-element state vector). Furthermore, it can be implemented 
with either one or two sigma point updates per time step. For 
our 50 flight simulation with a 30 s simulation time, the UKF 
therefore requires 

Eu = 1500NuNσ (28) 

where Nu is the number of sigma point updates per time step 
(either 1 or 2) and Nσ is the number of sigma points (either 14 
or 24). 

Fig. 5 summarizes the computational effort of the linearized, 
extended, and unscented Kalman filters. It is seen that the LKF 
has the lowest computational effort, and the effort grows lin­
early with the number of Jacobian calculations. The EKF has 
an effort that is an order of magnitude larger than the LKF, 
although the efforts of the two filters get closer as the num­
ber of Jacobian calculations increases and the extra simulations 
required by the EKF becomes less dominant. The UKF has a 
computational effort that is another order of magnitude larger 
than the EKF. 

4.3. Discussion 

We have seen that the EKF and UKF provide similar perfor­
mance and both outperform the LKF. More frequent Jacobian 

Fig. 3. Extended Kalman filter estimation errors and standard deviations. 

Fig. 4. Unscented Kalman filter estimation errors and standard deviations. 

Fig. 5. Computational effort of the linearized, extended, and unscented Kalman 
filters. Note that the “number of Jacobian calculations” is not relevant for the 
UKF. 

calculations improve the performance of the LKF and EKF but 
also increase computational effort. Various approximations that 
are applied to the UKF to decrease computational effort do not 
degrade the performance of the UKF. 

The EKF requires computational effort that is an order of 
magnitude higher than the LKF, and the UKF requires compu­



  

 

 

tational effort that is yet another order of magnitude higher than 
the EKF. Overall it appears that the EKF is the best choice for 
aircraft engine health parameter estimation, with Jacobian cal­
culations about every three flights. This is our major conclusion 
and recommendation based on our simulation results. 

Now we discuss the reasons for the observed results. First, 
we know from our system model that an aircraft engine is 
highly nonlinear. This indicates that the EKF and UKF should 
outperform the LKF. For highly nonlinear systems we would 
also expect the UKF to perform better than the EKF. However 
for the aircraft engine system the nonlinearities are not severe 
enough, nor are the health parameter deviations large enough, 
to cause the UKF to perform better than the EKF. This all in­
dicates that the aircraft engine system is nonlinear, but not so 
nonlinear that extra computational effort (e.g., with a UKF or a 
computer intelligence based approach) is warranted. Once we 
get past the complexity of the EKF, we have reached a point of 
diminishing returns in our health estimation problem. 

Similar conclusions can be reached relative to the frequency 
of Jacobian calculations. With the LKF more frequent Jacobian 
calculations gain better performance because of its relative in­
ability to deal with nonlinearities. However with the EKF more 
frequent Jacobian calculations are probably not worth the effort 
because the EKF can handle the aircraft engine nonlinearities 
well enough already. 

5. Conclusion 

This paper has compared various Kalman filter based estima­
tion approaches for the evaluation of aircraft engine health. The 
engine dynamics are nonlinear enough to warrant the use of an 
extended Kalman filter (EKF), but not so nonlinear as to justify 
the extra computational expense of an unscented Kalman filter 
(UKF). The nonlinearities are significant enough to justify EKF 
Jacobian calculations every three nights or so, but Jacobian cal­
culations at a higher frequency are generally not worth the extra 
computational effort. 

It is natural to consider the use of higher order lineariza­
tion approaches to reduce the estimation errors that are due to 
nonlinearities. These approaches include the iterated EKF [24], 
the second order EKF [25], the Gaussian sum filter [26], the 
grid based filter [27, Chapter 6], and the more general particle 
filter [7]. However since the work presented in this paper in­
dicates that the aircraft engine nonlinearities are mild enough 
that the UKF does not provide much better performance than 
the EKF, it is doubtful that these other higher order approaches 
will result in much improvement either. 

Past work by the authors showed the advantages of con­
strained Kalman filtering for aircraft engine health estima­
tion [18]. The present paper has not considered constrained 
Kalman filtering, but it would be interesting to see how the con­
clusions of this paper might change with the addition of state 
constraints. 
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