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Maxwell’s Equations, Part VII 

 

This is the seventh (and perhaps last) installment of a series of columns on Maxwell’s equations 

of electrodynamics.  In previous columns (available at Spectroscopy’s website, 

www.spectroscopyonline.com/The+Baseline+Column), we have covered history, the background 

of the first three equations, and the mathematics underlying them.  Here we will present the 

fourth equation, and after reaching it we’ll see how light is described in terms of these four 

mathematical expressions. 

 

David W. Ball 

 

Ampère’s law 

 One of the giants in the development of the modern understanding of electricity and 

magnetism was the French scientist André-Marie Ampère (1775 – 1836).  He was one of the first 

to demonstrate conclusively that electrical current generated magnetic fields.  (1 – 3)  For a 

straight wire, Ampere demonstrated that the magnetic field’s effects were centered on the wire 

carrying the current, were perpendicular to the wire, and were symmetric about the wire.  This is 

illustrated in Figure 42. 

 This Figure is strangely reminiscent of Figure 37 of part V of this series, reproduced here 

as Figure 43.  It depicts water circulating around a drain  in a counterclockwise fashion.  But 

now, let’s put a paddle wheel in the drain, with its axis sticking in the drain as shown in Figure 

44.  We see that the paddle wheel will rotate about an axis that is perpendicular to the plane of 



 

flow of the water.  Rotate our water-and-paddle-wheel figure by 90 degrees counterclockwise, 

and you have an exact analogy to Figure 42. 

 We argued in the last two installations (3,4) that water circulating in sink as shown in 

Figures 42 and 43 represent a function that has a nonzero curl.  Recall that the curl of a vector 

function F, designated “curl F” or “F” is defined as 
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where Fx, Fy, and Fx are the x, y, and z magnitudes of F and i, j, and k are the unit vectors in the 

x, y, and z dimensions, respectively.  In admitting the similarity between Figures 42 and 43, we 

suggest that the curl of the magnetic field, B, is related to the current in the straight wire.  There 

is a formal way to derive this.  Recall from equation 6 in the previous installment (4) that the curl 

of a function F as 

curl ۴ ൌ ׏  ൈ ۴ ൌ lim
஺՜଴

1
ܣ

ර ۳ · ܛ݀ ܜ
ୱ

 

For the curl of the magnetic field, we thus have 
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Recall that S is the surface about which the line s is tracing, t is the tangent vector on the field 

line, and A is the area of the surface. 

 This simplifies easily when one remembers that we have a formula for B in terms of the 

distance from the wire r; it was presented in part V and is 

۰ ൌ
ܫߤ

ݎߨ2
 

where I is the current, r is the radial distance from the wire, and  is the constant known as the 

permeability of the medium; for vacuum, the symbol 0 is used and its value is defined as 



 

410-7 tesla-meters per ampere (Tm/A)/  We also know that the magnetic field paths are 

circles:  thus, as we integrate about the surface, the integral over ds becomes simply the 

circumference of a surface, 2r.  Substituting these expressions into the curl of B: 
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The 2r terms cancel; we are left with  
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The constant  can be taken out of the limit.  What we have left to interpret is 

lim
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This is the limit of the current I flowing through an area A of the wire as the area gets smaller 

and smaller, ultimately approaching zero.  This infinitesimal current per area is called the current 

density and is designated J; it has units of coulombs per square meter, or C/m2.  Since current is 

technically a vector, so is current density:  J.  Thus, we have 

׏ ൈ ۰ ൌ µ۸ 

This expression is known as Ampère’s circuital law.  In a vacuum, the expression becomes 

׏ ൈ ۰ ൌ µ଴۸ 

This is not one of Maxwell’s equations; it is incomplete.  It turns out that there is another source 

of a magnetic field. 

 

Maxwell’s displacement current 

 The basis of Ampère’s circuital law was discovered in 1826 (although its modern 

mathematical formulation came over 35 years later).  By the time Maxwell got around to 



 

studying electromagnetic phenomena in the 1860s, something new had been discovered:  

magnetic fields from capacitors. 

 Here’s how to think of this new development.  A capacitor is a device that stores 

electrical charge.  The earliest form of capacitor was the Leyden jar, described in part I of this 

series, (2) and a picture of which is shown in Figure 45.  Although the engineering of modern 

capacitors can vary, a simple capacitor can be thought of as two parallel metal plates separated 

by a vacuum or some other nonconductor, called a dielectric.  Figure 46 shows a diagram of a 

parallel-plate capacitor. 

 A capacitor works because of the gap between the plates:  in an electrical circuit, current 

enters a plate on one side of the capacitor.  However, because of the gap between the plates, the 

current builds up on one side, ultimately causing an electric field to exist between the plates..  

We know now that current is electrons, so in modern terms, electrons build up on one side of the 

plate.  However, electrons have a negative charge, which repel other electrons residing on the 

other plate.  These electrons get forced away, resulting in the other plate building up an overall 

positive charge.  These electrons that get forced away represent a current on the other side of the 

plate, which continues until the maximum charge has built  up on the other plate.  This process is 

illustrated in Figure 47. 

 Even though electrons are not flowing from one side of the capacitor to the other, during 

the course of charging the capacitor, a current flows and generates a magnetic field.  This 

magnetic field, caused by the changing electric field is not accounted for by Ampère’s circuital 

law because it is the result of a changing electric field, not a constant current. 

 Maxwell was concerned about this new source of a magnetic field.  He called this new 

type of current “displacement current” and set about to integrating it into Ampère’s circuital law.  



 

Because this magnetic field was proportional to the development of an electric field – that is, the 

change in E with respect to time, we have 
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The proportionality constant needed to make this an equality is the permittivity of free space, 

symbolized 0.  This fundamental constant has a value of about 8.85410-12 C2/Jm.  Since 

electric field has units of volts per meter, or V/m, the combined terms ߝ଴
డ۳

డ௧
 have units of 
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where the “s” unit comes from the t in the derivative.  A volt is equal to a joule/coulomb, and a 

coulomb/second is equal to an ampere, so the combined units reduce to 

A
mଶ 

which is a unit of current density!  Thus, we can add the term ߝ଴
డ۳

డ௧
 to the original current density 

J, yielding Maxwell’s fourth equation of electrodynamics: 
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This equation is sometimes called the Ampère-Maxwell law. 

 

Recap – The Four Equations 

 Maxwell’s four equations of electrodynamics are thus: 

׏ · ۳ ൌ
ρ
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    Gaussᇱ law 

׏ · ۰ ൌ 0    Gaussᇱ law of electromagnetism 

׏ ൈ ۳ ൌ െ
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    Faradayᇱs law 
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ቇ     Ampère െ Maxwell law 

A few comments are in order.  First, Maxwell didn’t actually present the four laws in this form in 

his original discourse.  His original work, detailed in a four-part series of papers titled “On 

Physical Lines of Force” (5), contained dozens of equations.  It remained to others, especially 

English scientist Oliver Heaviside, to reformulate Maxwell’s derivations into four concise 

equations using modern terminology and symbolism.  We owe almost as much a debt to the 

scientists who took over after Maxwell’s untimely death in 1879 as we do to Maxwell himself 

for these equations. 

 Second, note that the four equations have expressed in differential forms.  (Recall that the 

divergence and curl operations,  and  respectively, are defined in terms of derivatives.)  

There are other forms of Maxwell’s equations, including integral forms, so-called “macroscopic” 

forms, relativistic forms, even forms that assume the existence of magnetic monopoles (likely 

only of interest to theoretical physicists and science fiction writers).  The specific form you 

might want to use depends on the quantities you know, the boundary conditions of the problem, 

and what you want to predict.  Persons interested in these other forms of Maxwell’s equations 

are urged to consult the technical literature. 

 

Whence Light? 

 We began this seven-part series by claiming that light itself is an electromagnetic effect 

that is predicted by Maxwell’s equations.  How?  Actually, it comes from an analysis of 

Faraday’s law and the Ampère-Maxwell law, as these are the two of Maxwell’s equations that 

involve both E and B. 



 

 Among the theorems of vector calculus is the proof (not given here) that the curl of a curl 

of a function is related to the divergence.  For a given vector function F, the curl of the curl of F 

is given by 

׏ ൈ ሺ׏ ൈ ۴ሻ ൌ ׏ሺ׏ · ۴ሻ െ  ଶ۴׏

Hopefully you already recognize the “F” as the divergence of the vector function F.  There is 

one other type of function present on the right side of the equation, the simple “” by itself 

(without a dot or a cross).  Unadorned by the dot or cross, the  represents something called the 

gradient, which is simply nothing more than the three-dimensional slope of a vector function, 

itself expressed as a vector in terms of the unit vectors i, j, and k: 
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The first term on the right, then, is the gradient of the divergence of F.  The gradient can also be 

applied twice – that’s the last term on the right-hand side.  When this happens, what initially 

seems complicated simplifies quite a bit: 
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Note that there is now no i, j, or k vectors on these terms, and that there are no cross terms 

between x, y, and z.  This is because the i, j, and k vectors are orthonormal:  n1n2 = 1 if n1 and 

n2 are the same (that is, both are i or both are j) while n1n2 = 0 if n1 and n2 are different (for 

example, n1 represents i and n2 represents k). 

 What we do is take the curl of both sides of Faraday’s law: 

׏ ൈ ሺ׏ ൈ ۳ሻ ൌ ׏ ൈ ൬െ
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Because the curl is simply a group of spatial derivatives, it can be brought inside the derivative 

with respect to time on the right side of the equation: 
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and we can substitute the expression for what the curl of a curl is on the left side: 
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The expression “B” is defined by the Ampère-Maxwell law (Maxwell’s fourth equation), so 

we can substitute for B: 
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Faraday’s law (or Maxwell’s first equation) tells us what E is:  it equals /0.  We substitute 

this in to the first term on the left side: 
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Now we will rewrite the right side by separating the two terms to get two derivatives with 

respect to time.  Note that the second term becomes a second derivative with respect to time, and 

that 0, the permeability of a vacuum, distributes through to both terms.  We get 
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In the absence of charge,  = 0 , and in the absence of a current, J = 0.  Under these conditions, 

the first terms on both sides are zero, and the negative signs on the remaining terms cancel.  

What remains is 
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This is a second-order differential equation that relates an electric field that varies in space and 

time.  That is, it describes a wave, and this differential equation is known in physics as the wave 

equation.  The general form of the wave equation is 

ଶ۴׏ ൌ
1

ଶݒ

߲ଶ۴
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where v is the velocity of the wave.  The function F can be expressed in terms of sine and cosine 

functions or as an imaginary exponential function; the exact expression for an E wave (aka light) 

depends on the boundary conditions and the initial value at some point in space. 

 The wave equation implies that 

୪୧୥୦୲ݒ ൌ
1
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This can be easily demonstrated: 

୪୧୥୦୲ݒ ൌ
1

ටቀ4π ൈ 10ି଻  T · m
A ቁ ൬8.8541878 ൈ 10ିଵଶ Cଶ

J · m൰

ൌ 2.9979246 … ൈ 10଼ m/s 

(You have to decompose the telsa unit, T, into its fundamental units, kg/As2, to see how the 

units work out.  Remember also that J = kgm2/s2 and that A = C/s and everything works out 

naturally, as it should with units.)  Even by the early 1860s, experimental determinations of the 

speed of light were around that value, leading Maxwell to conclude that light was a wave of an 

electric field that had a velocity of (1/00)1/2. 



 

 Light is also a magnetic wave.  How do we know?  Because we can take the curl of the 

Ampère-Maxwell law and perform similar substitutions.  This exercise is left to the reader, but 

the conclusion is not.  Ultimate you will get 

ଶ۰׏ ൌ µ଴ε଴
߲ଶ۰
ଶݐ߲  

It is the same form of the wave equation, therefore we have the same conclusions:  light is a 

wave of a magnetic field having a velocity of (1/00)1/2.  However, because of Faraday’s law 

(Maxwell’s third equation), the electric wave and the magnetic wave are perpendicular to each 

other.  A modern depiction of what we now call electromagnetic waves is shown in Figure 48. 

 

Conclusion 

 Along with the theory of gravity, laws of motion, and atomic theory, Maxwell’s 

equations were triumphs of classical science.  Although ultimately supplanted by theories of 

relativity (indeed, Einstein’s seminal paper on special relativity was titled “On the 

Electrodynamics of Moving Bodies”), Maxwell’s equations are still indispensable when dealing 

with everyday phenomena involving electricity and magnetism and, yes, light.  They help us 

understand the natural universe better – after all, isn’t that what good scientific models should 

do? 

 I hope the reader has enjoyed this series on Maxwell’s equations.  I would appreciate any 

feedback via the email address below. 
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Figure 42.  The “shape” of a magnetic field about a wire with a current running through it.  

Reprinted from (3). 
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Figure 43.  Water going in a circular path about a drain (center).  Reprinted from (3). 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 44.  The paddle wheel rotates about a perpendicular axis when placed in the circularly-

flowing water.  We say that the water has a non-zero curl.  The axis of the paddle wheel is 

consistent with the right hand rule, as shown by the inset. 

  



 

 

 

 

 

 

Figure 45.  A series of four Leyden jars in a museum in Leiden, The Netherlands.  This type of 

jar was to be filled with water.  The apparatus on the bottom side is a simple electrometer, meant 

to give an indication of how much charge was stored in these ancient capacitors. 

  



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 46.  Diagram of a simple parallel-plate capacitor. 
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Figure 47.  Charging a capacitor.  (1)  Current enters one plate.  (2)  Electrons build up on the 

plate.  (3) Electrons on the other plate are repelled, causing (4) a short-lived current to leave the 

other plate. 
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Figure 48.  A modern depiction of the electromagnetic waves we know as light. 
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