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It is shown that when an electromagnetic wave with some degree of amplitude rolloff in the transverse direction
is scattered by a spherical particle, the optical theorem is not valid. For such shaped beams the extinction
cross section may be written as an infinite series in powers of the reciprocal of the beam width. The imaginary
part of the forward-scattering amplitude is shown to be the first term in this series. Two approximations to
the extinction cross section are presented for the special case of Gaussian-beam scattering. The first one is
based on the dominance of diffraction in the forward direction for w0 * a, where w0 is the beam half-width
and a is the target particle radius. The second approximation, valid for w0 & a, is based on transmission-
compensating field interference.  1995 Optical Society of America

1. INTRODUCTION
A useful1,2 and long-celebrated3 result in the theory of
wave scattering is the Bohr–Peierls–Placzek relation,
otherwise known as the optical theorem. It states that
the total cross section for elastic plus inelastic scat-
tering by either a spherical or nonspherical particle is
proportional to the imaginary part of the scattering am-
plitude evaluated in the forward direction. In this paper
we show that the optical theorem is true only for incident
plane waves or locally plane waves. It is not valid if the
incident wave has some degree of amplitude rolloff in the
transverse direction. We note, however, that scattering
by a transversely localized beam is generally not impor-
tant in quantum-mechanical scattering, since the wave
function of a high-energy projectile incident on a small
target is well modeled by a plane wave.4 Nevertheless,
non-plane-wave incidence is important in light-scattering
phenomena, since a laser beam can be focused down to
a transverse focal waist that is only slightly larger than
the wavelength.5 Consequently, when a target particle
is located in the focal waist of such a beam, a proper
description of the light scattering requires that the beam
shape be taken into account.6

Since the failure of the optical theorem for shaped
beams is of practical importance in light scattering, we
carry out our analysis using the language of light scat-
tering. Hereafter, the total cross section is called the
extinction cross section. Furthermore, the scattering
amplitude is proportional to the scattered electric field
and is defined to be 90± out of phase with it in the complex

plane [see Eqs. (11)]. As a result of this phase difference,
the optical theorem states that the extinction cross sec-
tion is proportional to the real part of the light-scattering
amplitude in the forward direction, Ss0d, and is given by

sext ­
4p

k2 RefSs0dg , (1)

where the wave number is

k ­
2p

l
. (2)

The body of this paper is organized as follows. In
Section 2 we briefly sketch the derivation of the extinc-
tion cross section for the scattering of a transversely lo-
calized electromagnetic wave by a spherical particle and
show that it is proportional to the real part of the for-
ward light-scattering amplitude for only plane waves or
locally plane waves. In Section 3 we specialize our dis-
cussion to the scattering by a sphere located along the
axis of a focused Gaussian laser beam. For this geometry
we carry out a series expansion of the extinction cross
section in powers of the transverse beam confinement pa-
rameter s. We show that the familiar optical theorem
expression is the first term of the series. We also find
that the convergence rate of the series depends on the
size of the spherical particle relative to the transverse
beam width. In Section 4 we derive two approximations
to the extinction cross section for Gaussian-beam scatter-
ing. The first proves to be accurate when the transverse
width of the beam is larger than the target particle, and
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the second is accurate when the transverse width of the
beam is smaller than the particle. Last, in Section 5 we
summarize our results.

2. EXTINCTION CROSS SECTION FOR
SCATTERING OF A TRANSVERSELY
LOCALIZED BEAM BY A
SPHERICAL PARTICLE
Consider an electromagnetic wave, such as a laser beam,
propagating along the z axis of a rectangular coordinate
system and localized to a half-width w0 centered on the
origin. The light wave has wavelength l, angular fre-
quency v, and wave number k. In the x–y plane its
electric field is polarized in the x direction. Let the ori-
gin also be coincident with the center of a homogeneous
spherical particle of radius a and complex refractive in-
dex m ­ n 1 ik. For this geometry a beam propagating
along the z axis is called an on-axis beam, since it strikes
the target particle head on. A beam propagating parallel
to but not along the z axis is known as an off-axis beam.
The electric and magnetic fields of an on-axis beam may
be written in terms of the TE and TM scalar radiation
potentials as7

Ebeamsr, td ­ 2r 3 ===cTE 1
ic
v

=== 3 sr 3 ===cTMd ,

Bbeamsr, td ­
i
v

=== 3 sr 3 ===cTEd 1
1
c

r 3 ===cTM . (3)

The partial-wave decomposition of the radiation poten-
tials is8

cTEsr, td
cTMsr, td

9=; ­ E0 exps2ivtd
X̀
l­1

ils2l 1 1d
lsl 1 1d

gljlskrdP 1
l scos ud

3

(
sin f

cos f
. (4)

In Eqs. (3) and (4) c is the speed of light, E0 is a
measure of the peak electric-field amplitude, jlskrd are
spherical Bessel functions, and P 1

l scos ud are associated
Legendre polynomials. It should be noted that the au-
thors of Ref. 8 employ a different sign convention for
both the time dependence and the P 1

l functions from that
used here.

Equations (3) and (4) are an exact solution of Maxwell’s
equations and describe in the greatest generality an on-
axis, axisymmetric light beam. The partial-wave decom-
position of an off-axis light beam is given in Ref. 9. The
set of partial-wave coefficients gl are known as beam-
shape coefficients. The specification of these coefficients
determines the specific functional form of the electric and
magnetic fields of the on-axis beam. Alternatively, if the
exact functional form of the fields ( in particular, the ra-
dial components of the fields) is known, the beam-shape
coefficients may be determined by10

gl
s2idl21

2
kr

jlskrd
1

lsl 1 1d

Z p

0
sin2 uduf skr, ud

3 expsikr cos udP 1
l scos ud , (5)

where for an on-axis beam the radial field components
assume the form

Eradial
beam ­ E0 expsikr cos udf skr, udsin u cos f ,

Bradial
beam ­

E0

c
expsikr cos udf skr, udsin u sin f . (6)

For example, the set of beam-shape coefficients

gl ­ 1 (7)

for 1 # l # ` exactly corresponds to a plane wave polarized
in the x direction,

Esr, td ­ E0 expfiskz 2 vtdgûx ,

Bsr, td ­
E0

c
expfiskz 2 vtdgûy . (8)

The set of beam-shape coefficients

gl ­ expf2s2sl 1 1y2d2g , (9)

where the transverse beam confinement parameter s is
given by

s ­
1

kw0

, (10)

closely approximates a Gaussian laser beam focused to the
half-width w0 at the origin of coordinates and polarized in
the x direction.11,12 For future reference, an analytical
approximation to a Gaussian laser beam focused to the
half-width w0 at the origin of coordinates and polarized
in the x direction is given by the Davis first-order beam
model13

EDavis
beam ­

E0

D
expfiskz 2 vtdgexpf2sx2 1 y2dyw0

2Dg

3

√
ûx 2

2isx
w0D

ûz

!
,

BDavis
beam ­

E0

cD
expfiskz 2 vtdgexpf2sx2 1 y2dyw0

2Dg

3

√
ûy 2

2isy
w0D

ûz

!
, (11)

where

D ­ 1 1
2isz
w0

. (12)

Returning to the development of our formalism for a
general axisymmetric beam, the shaped beam of Eqs. (3)
and (4) is scattered by the spherical particle at the origin.
In the far zone the scattered electric and magnetic fields
are8

Escattsr, td ­
2iE0

kr
expfiskr 2 vtdgf2S2sudscos fdûu

1 S1sudssin fdûfg ,

Bscattsr, td ­
2iE0

ckr
expfiskr 2 vtdgf2S1sudssin fdûu

2 S2sudscos fdûfg , (13)

where the light-scattering amplitudes S1sud and S2sud are
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S1sud ­
X̀
l­1

2l 1 1
lsl 1 1d

glfalplsud 1 bltlsudg ,

S2sud ­
X̀
l­1

2l 1 1
lsl 1 1d

glfaltlsud 1 blplsudg . (14)

The angular functions in Eqs. (14) are

plsud ­
1

sin u
P 1

l scos ud, tlsud ­
d

du
P 1

l scos ud , (15)

and al and bl are the partial-wave scattering amplitudes
for plane-wave electromagnetic scattering. The partial-
wave scattering amplitudes depend only on the partial-
wave number, the particle size parameter

x ­
2pa

l
, (16)

and the refractive index.14 – 16 The total electric and mag-
netic fields exterior to the target particle are

Etotal ­ Ebeam 1 Escatt, Btotal ­ Bbeam 1 Bscatt . (17)

The absorption, scattering, and extinction cross sections
are defined as17,18

sabs ­
2cr2

E0
2

Z p

0
sin udu

Z 2p

0
df ResEp

total 3 Btotald ,

(18)

sscatt ­
cr2

E0
2

Z p

0
sin udu

Z 2p

0
df ResEp

scatt 3 Bscattd ,

(19)

sext ­
2cr2

E0
2

Z p

0
sin udu

Z 2p

0
df ResEp

beam 3 Bscatt

1 Ep
scatt 3 Bbeamd , (20)

respectively, and are related to each other by the energy
conservation condition

sext ­ sscatt 1 sabs . (21)

Substitution of Eqs. (3), (4), (13), (14), and (17) into
Eqs. (18)–(20) gives the general formulas for the scat-
tering and extinction cross sections19:

sscatt ­
4p

k2

X̀
l­1

sl 1 1y2djglj
2sjalj

2 1 jblj
2d , (22)

sext ­
4p

k2

X̀
l­1

sl 1 1y2djglj
2 Resal 1 bld . (23)

The general formulas for an off-axis light beam are given
in Ref. 9.

We now assess the validity of the optical theorem for
scattering of a general on-axis beam by a spherical par-
ticle. The angular functions of Eqs. (15) evaluated at
u ­ 0± are

pls0d ­ tls0d ­
lsl 1 1d

2
. (24)

The forward-scattering amplitude is then

Ss0d ; S1s0d ­ S2s0d ­
P̀
l­1

sl 1 1y2dglsal 1 bld . (25)

A comparison of Eqs. (23) and (25) reveals that since sext

contains jglj
2 within the sum over partial waves and Ss0d

contains gl within the sum, the familiar optical theorem
expression of Eq. (1) is strictly valid for an on-axis beam
when each of the nonzero beam-shape coefficients has
gl ­ 1. The most notable example of such a beam is
the plane wave of Eqs. (7) and (8). Another example is
provided by the so-called top hat beam of Ref. 20 for which
gl ­ 1 for 1 # l # lmax and gl ­ 0 for l . lmax. This beam,
though somewhat localized in the transverse direction,
strongly resembles a plane wave in both amplitude and
phase in its plateau region. It may be thought of as being
a locally plane wave, since a particle smaller than the
width of the plateau region and placed at the beam waist
experiences only the gl ­ 1 partial waves of the beam. A
similar argument concerning the validity of Eq. (1) can be
made for scattering by an off-axis beam.

3. SERIES EXPANSION OF THE
EXTINCTION CROSS SECTION FOR
SCATTERING OF A GAUSSIAN BEAM
BY A SPHERICAL PARTICLE
For the remainder of this paper we restrict our discussion
to on-axis Gaussian-beam scattering, where gl is given
by Eq. (9). The forward-scattering amplitude of Eq. (25)
may be interpreted as being a first moment of the par-
tial waves. The weighting factor glsal 1 bld takes into
account both the details of the incident beam (through
gl) and the details of the target particle (though al 1 bl).
Using this interpretation, we define the higher moments
of the partial waves as

S s j ds0d ­
P̀
l­1

sl 1 1y2dj glsal 1 bld . (26)

When Eq. (9) is substituted into Eq. (23), we can replace
jglj

2 by gl
2 since the beam-shape coefficients are real

for the on-axis Gaussian beam. If we then Taylor-series
expand one of the gl factors in powers of s, we obtain

sext ­
4p

k2

X̀
j­0

s21dj

j !
s2j RefS2j11s0dg . (27)

The infinite series in Eq. (27) is exactly equal to the
extinction cross section of Eqs. (20) and (23) for the
Gaussian beam of Eq. (9) and may be considered as a gen-
eralization of the optical theorem to Gaussian-beam scat-
tering. The familiar optical theorem expression given in
Eq. (1) is the j ­ 0 term of the series. This particular
expression was motivated by the desire to relate sext to
the forward-scattering amplitude or to something as close
to it as possible. But as we will presently see, Eq. (27)
turns out to be rather unwieldy to use in certain practical
situations.

When a tightly focused beam is incident on a large
particle, so that w0 ,, a, Eq. (27) has poor convergence
properties. This can be seen in the following numeri-
cal example, where a focused Gaussian beam with l ­
0.6328 mm and variable w0 is incident on a spherical wa-
ter droplet with a ­ 50 mm and n ­ 1.333. In this ex-
ample the particle radius is sufficiently large that even
when w0 ,, a, we still have w0 .. l, so that both the local-
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Table 1. Number of Terms jmaxjmaxjmax in Eq. (27)
for 1 Part in 106 Agreement with Eq. (23) for

l 5l 5l 5 0.6328 mmmm, a 555 50 mmmm, and n 555 1.333

w0 (mm) jmax

100,000 0
10,000 1

1,000 2
500 2
100 5

50 12
10 147

ized approximation21,22 of Eq. (9) and the Davis first-order
beam model23 of Eqs. (11) and (12) closely approximate a
focused Gaussian beam. For this situation the extinction
cross section was computed with Eqs. (9) and (23). The
number of terms jmax in Eq. (27) required for 1 part in 106

agreement with Eq. (23) was determined, and the results
are shown in Table 1. For w0 * 10a the Gaussian beam
does not differ much from a plane wave in the vicinity
of the target particle. As a result, only a few terms in
Eq. (27) are required for convergence of the series. Con-
versely, for w0 , a, a large number of terms is required
for convergence, and a large number of significant digits
is required for each term for the prevention of roundoff
error, i.e., 10 significant digits are required for w0 ­ a,
and 29 significant digits are required for w0 ­ 0.2a. Ef-
ficient methods for approximating sext for both weakly
focused and tightly focused Gaussian beams are pursued
in Section 4.

4. TWO APPROXIMATIONS TO THE
EXTINCTION CROSS SECTION FOR
GAUSSIAN-BEAM SCATTERING
In this section we derive two simple approximations for
sext, one for w0 * a and the other for w0 & a. Our first
approximation, which we call the wide-beam approxima-
tion (WBA), is motivated theoretically by the desire to
relate sext solely to Ss0d rather than to both Ss0d and the
higher moments of the partial waves defined in Eq. (26).
It is motivated experimentally by the following observa-
tions. A strong correspondence between light scattering
and the total intensity in the forward direction is easily
illustrated for an on-axis laser beam striking a spheri-
cal particle. For beam and droplet radii of comparable
magnitude the far-field total intensity in and about the
forward direction is reduced substantially compared with
the forward intensity occurring in the absence of a par-
ticle. This phenomenon is unlike the case of plane-wave
scattering, for which the effect of a microscopic particle on
the far-field intensity is imperceptible to the eye. Such
experiments are described in Ref. 24 and provided the im-
petus to seek a connection between the forward intensity
and the total extinction cross section.

The derivation of the WBA begins by an examina-
tion of the intensity in the forward direction correspond-
ing to the total fields of Eqs. (17). When we substitute
Eqs. (13) and the spherical coordinate form of Eqs. (11)
into Eqs. (17) and use the Poynting theorem, the far-zone
forward total intensity is

Itotals0d ­ Re

0B@Eup
totalB

f

total 2 E
fp
totalB

u
total

2m0

1CA
­

E0
2

2m0c
1

k2r2

"
k4w0

4

4
2 k2w0

2 RefSs0dg 1 jSs0dj2
#

.

(28)

The first term on the right-hand side of Eq. (28) is the
incident beam intensity in the forward direction. The
second term is the intensity corresponding to the interfer-
ence between the incident beam and the scattered wave.
The third term is the scattered intensity in the forward
direction.

At this point two assumptions must be made. These
are that (1) diffraction dominates all other scattering pro-
cesses in the forward direction, and (2) the extinction effi-
ciency is roughly 2. Consider first the role of diffraction.
The contribution of diffraction by the spherical obstacle to
the intensity is obtained by a Debye-series decomposition
of the partial-wave scattering amplitudes.25,26 When the
result

adiffraction
l ­ bdiffraction

l ­ 1y2 (29)

is inserted into Eqs. (14) and the partial-wave series is
summed between l ­ ka and l ­ `, the forward-diffracted
intensity for Gaussian-beam scattering is24,27

Idiffracteds0d ­
E0

2

2m0ck2r2

√
k4w0

4

4

!
exps22a2yw0

2d . (30)

Consider next the extinction efficiency eext, which is the
extinction cross section divided by the cross section for the
beam striking the target particle

eext ­
sext

sinc

. (31)

For a plane wave incident on a spherical particle of radius
a the incident beam cross section is

sinc ­ pa2 , (32)

and, for Gaussian-beam incidence and with the use of
Eqs. (11), it is approximately

sinc ø
Z a

0
rdr

Z 2p

0
dj exps22r2yw0

2d

­
pw0

2

2
f1 2 exps22a2yw0

2dg . (33)

The extinction efficiency is roughly 2 when the target
particle is large sa .. ld and when the incident beam is
wide sw0 . ad. A consequence of this assumption is that
when Eqs. (30) and (31) and relation (32) are combined
with

eext ø 2 , (34)

the extinction cross section is approximately24

sext ø pw0
2f1 2 exps22a2yw0

2dg

­ pw0
2

241 2
2m0ck2r2

E0
2

√
4

k4w0
4

!
Idiffractions0d

35 . (35)
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Since the largest contribution to the forward total in-
tensity is given by the diffracted intensity of Eq. (30), we
take

Itotals0d ø Idiffractions0d . (36)

This is again valid for a .. l and w0 * a. As a result,
we may substitute Eq. (28) into relation (35) in place of
Idiffractions0d and obtain

sext ø
4p

k2
RefSs0dg

(
1 2

s2jSs0dj2

RefSs0dg

)
(37)

as our first approximation (i.e., WBA) to the extinction
cross section for either a dielectric or absorbing spheri-
cal particle.28 Since the WBA was derived under the as-
sumption that w0 . a, we will find shortly that it works
well for w0 * a but not for w0 & a for a dielectric particle.
For w0 ! ` or s ­ 0 it reduces to Eq. (1).

The w0 & a regime will be handled by our second
approximation, which we call the narrow-beam approxi-
mation (NBA). In the NBA sext is not related to Ss0d.
Rather it is related to the physical processes that con-
tribute most importantly to scattering. As an introduc-
tion to this physically based point of view, we briefly
review how it has been applied previously to plane-wave
scattering by a nonabsorbing spherical particle. For
plane-wave incidence, forward scattering by a dielectric
spherical particle is dominated by diffraction, the specular
reflection forward glory,29,30 and transmission through the
particle. In this case, for a .. l, the forward-scattering
amplitude is approximately31

Ss0d ø
x2

2
1 0.49805s1 1

p
3 idx4/3 1

2xn2

sn 1 1dsn 1 1d2

3 expf2ixsn 2 1d 2 3piy2g . (38)

The first term in relation (38) is due to Fraunhofer diffrac-
tion by the complementary circular aperture, the second
term is due to reflection, and the third term is due to
transmission and is evaluated with the use of ray optics.
When we use the optical theorem of Eq. (1) for plane-wave
incidence, the resulting scattering efficiency is

escatt ø 2 1 1.9922x22/3 2
8
x

n2

sn 2 1dsn 1 1d2

3 sinf2sn 2 1dxg . (39)

This approximates well the numerical evaluation of
Eqs. (22) and (23) for plane-wave incidence32 with gl ­ 1,
since for a nonabsorbing particle the extinction and scat-
tering efficiencies are equal.

We now apply this physically based line of reasoning
to scattering by an on-axis Gaussian beam. Numerical
computations of Gaussian-beam scattering21 show that
for a nonabsorbing particle with a .. l more light is
scattered in the near-forward direction than in any other
direction. Thus the integrated near-forward intensity
provides the bulk of the scattered power. For a tightly fo-
cused beam incident on a large particle, such that w0 ,, a,
diffraction in the near-forward direction is not important,
since only the dying tail of the beam in the transverse
direction grazes the edge of the target particle.27 For
the same reason near-forward specular reflection is also

not important. On the other hand, transmission that we
model as

Stransmissionsud ­
2n2x

sn 2 1dsn 1 1d2 expf2ixsn 2 1d 2 3ipy2g

3 exp

24ix
u2

4

√
n

n 2 1

!35Gsud , (40)

where

Gsud ­ exps2gu2d (41)

is expected to be important for small u. All the fac-
tors in Eq. (40) with the exception of Gsud are calculated
with the use of ray optics with plane-wave incidence.25

The Gsud factor qualitatively models the effect of the
Gaussian profile of the incident beam on the amplitude of
the transmitted rays. In order to evaluate g, we assume
that both the reflected power and the power transmitted
following one or more internal reflections are negligible.
In this case and for a nonabsorbing particle the integrated
transmitted power is set equal to the power incident on
the particle, which is given by relation (33) with a ,, w0.
This gives

g ­
4a2

w0
2

n4

sn 2 1d2sn 1 1d4
. (42)

The only other physical process important for small u

when a ,, w0 is the effect of the compensating field.33,34

The compensating field is a result of our decomposition
of the total fields into the sum of a beam part and a
scattered part as in Eqs. (17) for w0 , a. When a narrow
beam is incident on a wide particle, the particle stops the
unimpeded propagation of the beam. As a result, the
beam is absent behind the particle, and the only fields
there are due to diffraction, reflection, transmission, etc.
Despite this, Ebeam and Bbeam appear in Eqs. (17). Thus
behind the particle there must be a contribution to Escatt

and Bscatt that cancels Ebeam and Bbeam, mathematically
removing them from the equation. This contribution is
known as the compensating field33,34 and is given by

Scompensatingsud ø
2k2w0

2

2
exps2u2y4s2d . (43)

We now compute the scattered power for w0 , a by
integrating over the magnitude squared of the scattered
electric field given by

Escatt ­ Etransmission 1 Ecompensating , (44)

where Stransmission and Scompensating are given by
Eqs. (40)–(42) and relation (43). We obtain

escatt ­ 2.0 2
4xn2

sn 2 1dsn 1 1d2

24√
1

4s2
1 g

!2

1
x2n2

16sn 2 1d2

35 21/2

sinf2xsn 2 1d 1 hg , (45)

where

tan h ­
xn

4sn 2 1d

√
1

4s2 1 g

!21

. (46)
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(a)

(b)

(c)

Again, for a nonabsorbing particle, the scattering and
extinction efficiencies are equal. The factor of 2.0 in
Eq. (45) is due to the combined effects of transmis-
sion (i.e., all the light striking the target particle is
transmitted) and the compensating field ( i.e., all of

(d)

(e)

Fig. 1. Extinction efficiency as a function of the nonabsorbing
target particle radius for 50 mm # a # 55 mm, n ­ 1.333 1 0i,
and l ­ 0.6328 and for (a) w0 ­ 250 mm, (b) w0 ­ 100 mm, (c)
w0 ­ 50 mm, (d) w0 ­ 25 mm, and (e) w0 ­ 10 mm. The exact
extinction cross section is given by Eq. (23). The WBA is given
by relation (37), and the NBA is given by Eqs. (45) and (46). The
WBA accurately approximates eext for w0ya * 1.5, and the NBA
accurately represents eext for w0ya & 1.0.

the incident beam is blocked by the particle). The
oscillations in Eq. (45) are produced by the transmission-
compensating field interference, in analogy to the oscilla-
tions in relation (39) for plane-wave incidence produced
by transmission-diffraction interference.35,36



2714 J. Opt. Soc. Am. A/Vol. 12, No. 12 /December 1995 Lock et al.

In order to assess the accuracy of the WBA
[relation (37)] and the NBA [Eqs. (45) and (46)] for
a nonabsorbing particle, we calculated the extinction ef-
ficiency for l ­ 0.6328 mm, n ­ 1.333 1 0i, 50 mm # a #

55 mm, and 10 mm # w0 # 1000 mm. Our results are
summarized in Figs. 1(a), 1(b), 1(c), 1(d), and 1(e), corre-
sponding to w0 ­ 250 mm, 100 mm, 50 mm, 25 mm, and
10 mm, respectively. For every value of s, a, and w0ya
examined, the WBA differed from the exact extinction
cross section of Eq. (23) by a smaller amount than did
the familiar optical theorem of Eq. (1). The amount
was often smaller by orders of magnitude. Similarly,
even though the WBA was derived under the condition
eext ø 2, it was found to be accurate for small particles
with x ø 1, where eext , 2. For w0 * 400 mm the WBA is
virtually identical to the results of Eq. (27) with jmax ­ 1.
But for w0 , 400 mm the WBA differs from the extinction
cross section by at most 0.3% for w0ya ­ 2.0 and by at
most 1.2% for w0ya ­ 1.0, while the series expansion of
Eq. (27) with jmax ­ 1 differs from the extinction cross
section by 2.5% and 20% in the two cases, respectively.
For w0ya & 1.5 the oscillations in the WBA decrease
rapidly as w0 decreases while the oscillations in the
extinction cross section increase, limiting the utility of
WBA for nonabsorbing particles to w0ya * 1.5.

On the other hand, the oscillations in the NBA are
too small for w0ya * 1.5, which makes it a poor approxi-
mation to the extinction cross section for wide beams.
By the time w0 has decreased to w0 ø a, however, the
transmission-compensating field oscillations in the NBA
have grown so as to match the extinction cross section
well. In Figs. 1(c)–1(e) the NBA is seen to be accurate
for 0.2 # w0ya # 1.0. For w0ya ­ 0.1 the oscillations in
the NBA grow to such an extent that the NBA becomes
negative at the low points of the oscillations, which limits
the utility of the NBA approximation to 0.2 # w0ya # 1.0.

Concerning scattering by absorbing particles with k ø
0.1, the WBA was found to be accurate both for w0 .

a and for w0 , a. The good agreement for w0 , a is
due to the fact that absorption damps the oscillations
in sext, matching the near constancy of the WBA for
w0 , a. The damping of the oscillations in sext is also
evident in the NBA. For an absorbing particle Eq. (40)
and the second term in Eq. (45) should contain an addi-
tional exps22xkd factor that describes the attenuation of
the forward-transmitted ray through the particle. This
factor is the source of the damping of the transmission-
compensating field interference in sext.

A final comment should be made concerning both the
WBA and the NBA. With regard to the WBA, the form
of relation (37), containing a term of order s0 plus an-
other term of order s2, might suggest that these are
the first two terms of another series expansion of sext

in powers of s with coefficients that contain powers of
RefSs0dg and jSs0dj2. Attempts were made to construct
the higher-order terms of such a series. The series ob-
tained, however, were in general no closer an approxima-
tion to the extinction cross section than was relation (37).
Perhaps this is not surprising in light of our derivation of
relation (37). In particular, Eq. (28) which contains the
RefSs0dg term describing incident beam-scattering inter-
ference and the s2jSs0dj2 term describing the scattered
intensity, is an exact evaluation of the forward-direction

total intensity. It is not the first two terms in a series ex-
pansion of the total forward intensity. So trying to con-
struct higher-order terms in s2 for Eq. (28) is equivalent
to attempting to impose additional contributions to the
total forward intensity that in fact do not exist.

With regard to the NBA, the extinction efficiency itself
suffers from a difficulty in interpretation for w0 ,, a.
This is because the compensating field, which plays
such a major role in Eqs. (45) and (46) is not ob-
servable in experiments. Rather, it is the intensity
corresponding to the total fields given by Eqs. (17) that
is observed in near-forward-direction scattering experi-
ments. When the scattered field is combined with the
beam field in Eqs. (17), the compensating field and the
beam field cancel for small u. This cancellation pre-
cludes the observability of them individually or of any
quantity such as eext of Figs. 1(d) and 1(e) whose central
feature is based on transmission-compensating field in-
terference. A more physically meaningful cross section
for w0 ,, a that is free of these nonobservable oscillations
is described in detail elsewhere.34

5. CONCLUSION
In summary, the main point of this study is that the fa-
miliar optical theorem expression given in Eq. (1) is not
a general result independent of the form of the incident
field. In particular, it is limited to the case of plane-wave
or locally plane-wave incidence. As a practical matter,
for the special case of scattering of a Gaussian beam by
a spherical particle, s4pyk2dRefSs0dg is a good approxi-
mation to sext when the transverse size of the beam is
much larger than the target particle (i.e., w0ya * 50).
But, already for w0ya ø 10, the familiar optical theo-
rem expression yields a cross section that is in error by
approximately 0.5% of the exact result. This may not
seem like a large error. But at w0ya ø 10 the WBA of
relation (36) is in error by only approximately 0.006% of
the exact result, which clearly illustrates its superiority
over Eq. (1) for shaped-beam scattering. We have given
two approximations for sext for Gaussian beams. As seen
in Figs. 1(a) and 1(b), the WBA is accurate for w0ya * 1.5,
and, as seen in Figs. 1(c)–1(e), the NBA is accurate for
0.2 & w0ya & 1.0. In practice, one achieves plane-wave-
like illumination on a small particle by using a wide
Gaussian laser beam. Consequently, under these com-
mon circumstances, the calculations of Section 4 suggest
that it is more accurate to approximate the extinction
cross section by means of the WBA of relation (37) instead
of the familiar optical theorem expression of Eq. (1).

The WBA and the NBA were derived under the as-
sumption that the target particle was spherical in shape.
The greatest practical utility of the optical theorem, how-
ever, is in the estimation of the extinction cross section
for nonspherical particles with the anomalous diffraction
method.37,38 In light of this, it would be of great inter-
est to extend the two approximations presented here to
scattering of shaped beams by nonspherical particles.
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