Cloud Overlap of Cumuliform Clouds in the Shallow Boundary Layer

William Calabrase
Cleveland State University

Follow this and additional works at: https://engagedscholarship.csuohio.edu/u_poster_2016

Part of the Life Sciences Commons, Medicine and Health Sciences Commons, and the Physical Sciences and Mathematics Commons

How does access to this work benefit you? Let us know!

Recommended Citation
https://engagedscholarship.csuohio.edu/u_poster_2016/27

This Book is brought to you for free and open access by the Undergraduate Research Posters at EngagedScholarship@CSU. It has been accepted for inclusion in Undergraduate Research Posters 2016 by an authorized administrator of EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.
Cloud Overlap of Cumuliform Clouds in the Shallow Boundary Layer

College of Sciences and Health Professions

Student Researcher: William Calabrase

Faculty Advisor: Thijs Heus

Abstract

Cloud albedo, or the proportion of sunlight reflected by a cloud, has a significant impact on the Earth's radiation budget and is strongly influenced by cloud shape. It is a major source of uncertainty in climate modeling. To characterize the shape of shallow cumulus clouds we study the behavior of the cloud overlap ratio, the ratio between the average cloud fraction and projected cloud cover. In this study, we use a high resolution computer model (LES) to 1) determine how the cloud overlap ratio of a cloud field is related to the overlap of individual clouds, and 2) to study how the cloud overlap behaves under different atmospheric circumstances. We find that the overlap ratio does not vary much between different cases or cloud heights, but it is sensitive to cloud layer depth and that the smallest clouds in a field contribute a negligible amount to the albedo.