Anti-thrombotic Coatings for Blood Contacting Medical Devices and Implants Based on Nitric Oxide Release

Celine El-Khoury
Cleveland State University

Shaimaa Maher
Cleveland State University

Haitham Kalil

Follow this and additional works at: https://engagedscholarship.csuohio.edu/u_poster_2018

Part of the Chemistry Commons

How does access to this work benefit you? Let us know!

Recommended Citation
El-Khoury, Celine; Maher, Shaimaa; and Kalil, Haitham, "Anti-thrombotic Coatings for Blood Contacting Medical Devices and Implants Based on Nitric Oxide Release" (2018). Undergraduate Research Posters 2018. 27.
https://engagedscholarship.csuohio.edu/u_poster_2018/27

This Book is brought to you for free and open access by the Undergraduate Research Posters at EngagedScholarship@CSU. It has been accepted for inclusion in Undergraduate Research Posters 2018 by an authorized administrator of EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.
Anti-thrombotic Coatings for Medical Devices and Implants Based on Nitric Oxide Release

College of Sciences and Health Professions

Student Researchers: Celine El-Khoury, Shaimaa Maher, and Haitham Kalil

Faculty Advisor: Mekki Bayachou

Abstract

Blood-contacting medical devices, are often used to treat cardiovascular diseases. These implantable medical devices, even if labeled as biocompatible, can cause serious complications in patients. Thrombus formation and infection are the main causes of failure of these devices. In contrast to the healthy endothelium, which actively resists thrombosis, artificial surfaces promote clotting through a complex series of interconnected processes that include protein adsorption, adhesion of platelet, leukocytes and red blood cells, ending with thrombosis.

Using a layer-by-layer thin film building strategy to form layers of polyethyleneimine (PEI) and iNOSoxy as NO-releasing coatings allows for assembly of multi-component protein/PEI films. Here, the iNOSoxy enzyme protein used is negatively charged and adsorbed onto the positively charged matrix layer, polyethyleneimine. When discs coated with PEI/iNOSoxy films are exposed to arginine, a source of reducing equivalent, and other required ingredients, nitric oxide is formed and released. We characterize the PEI/iNOSoxy thin films in terms of structure of iNOSoxy within the films as well as the amount of active concentration. Fourier transform infrared (FTIR) spectroscopic analysis characterized structure-activity relationships of these NOS-containing thin films. Cyclic voltammetry determined the active catalyst (iNOSoxy) concentration on the modified surfaces, and how this relates to enzymatic activity and resulting NO release fluxes from PEI/NOS-containing thin film. Platelet adhesion assays determined if the amount of platelets adsorbed on the PEI/iNOSoxy films is inversely proportional to the amounts of NO released from coatings.

1Post-Doctoral Fellow