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A comparison of behavioural change in Drosophila during 
exposure to thermal stress

ANGEL G. FASOLO and ROBERT A. KREBS*

Department of Biological, Geological and Environmental Sciences, Cleveland State University, 2121 
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In order to understand how adaptive tolerance to stress has evolved, we compared related species and populations
of Drosophila for a variety of fitness relevant traits while flies directly experienced the stress. Two main questions
were addressed. First, how much variation exists in the frequency of both courtship and mating among
D. melanogaster, D. simulans, and D. mojavensis when each are exposed to a range of temperatures? Second, how
does variation in these same behaviours compare among four geographically isolated populations of D. mojavensis,
a desert species with a well defined ecology? Our hierarchical study demonstrated that mating success under stress
can vary as much between related species, such as D. melanogaster and D. simulans, as between the ecologically dis-
parate pair, D. melanogaster and D. mojavensis. Strains of this latter desert species likewise varied in tolerance, with
differences approaching the levels observed among species. The consequences of stress on male courtship differed
markedly from those on female receptivity to courtship, as mating behaviours among species and among strains of
D. mojavensis varied in subtle but significant ways. Finally, a comparison of variation in thermotolerance of F1

hybrids between the two most extreme D. mojavensis populations confirmed that genetic variation underlying traits
such as survival or the ability to fly after heat stress is completely different. © 2004 The Linnean Society of London,
Biological Journal of the Linnean Society, 2004, 83, 197–205.

ADDITIONAL KEYWORDS: courtship – diversity – Drosophila mojavensis – flight – genetic variation –
mating behaviour – receptivity – thermotolerance.

INTRODUCTION

Temperature variation heavily impacts the distribu-
tion and abundance of many species and therefore the
evolution of behavioural traits will vary along environ-
mental gradients. Changes in behaviour will depend
upon the manner and frequency with which popula-
tions encounter thermal stress (Parsons, 1979; David
et al., 1983; Hoffmann & Parsons, 1991). Species that
inhabit a broad geographical area that spans many
different environments may adapt to local conditions.
Subsequently, they may express greater levels of
variation in response to extreme stresses than those
species whose range encompasses a more homoge-
neous set of environments (Hoffmann et al., 2001).
Extreme habitats, such as desert environments, pro-

vide particularly intense thermal stresses, and may be
some of the best places to identify local adaptation.

To assess this variation, Bennett (1987a, b) has
argued that multiple aspects of fitness should be
studied because changes in physiological performance
along a thermal gradient may vary by trait (e.g.
Arnold, 1987; Koehn, 1987). In addition, a growing
body of literature raises doubts as to whether selection
for physiological tolerance of heat will increase adult
survival in natural populations, or whether animals
respond more strongly for traits such as mating
behaviour that are more closely linked to fitness
(Feder, 1996; Shine et al., 2000; Hoffmann, Sørensen
& Loeschcke, 2003).

In this paper, we ask whether there is a link
between standard estimates of tolerance to high tem-
peratures based on survival and other fitness-related
characters, such as successful male courtship and
female receptivity of males (mating frequency given



successful courtship). We apply a comparative
approach to assess why different species and popula-
tions of one desert species may vary in their response
to changes in stress. To impart ecological relevance,
we assessed behavioural responses during the appli-
cation of a stress, rather than fitness consequences
after a stress had been encountered. These compari-
sons were made using three Drosophila species, which
differ in LD50 for temperature given 1 h exposures;
38 ∞C for D. simulans Sturtevant, 39 ∞C for
D. melanogaster Meigen, and 41 ∞C for D. mojavensis
Patterson and Crow (Krebs, 1999). Drosophila melan-
ogaster and D. simulans are closely related phyloge-
netically and ecologically, while D. mojavensis is an
unrelated species that inhabits thermally diverse
environments, including the deserts of south-western
North America. Populations of this latter species
vary significantly in allozyme frequencies (Zouros,
1973; Markow, Castrezana & Pfeiler, 2002), while
D. melanogaster and D. simulans tend to be geneti-
cally more uniform in the Americas (Begun &
Aquadro, 1993; Benassi & Veuille, 1995).

Using multiple populations of D. mojavensis, we
tested three additional questions. (1) Do survival,
courtship, mating and flight covary among popula-
tions? (2) Does variation relate predictably with the
climate from which populations were collected? (3)
Will mating success decline as a consequence of inhib-
iting a male’s ability to court at high temperatures or
are effects more pronounced in females? Imposing
environmental stress can shift genetic trade-offs,
whether assessed for resource availability (Messina &
Fry, 2003) or temperature (Krebs & Loeschcke, 1999).
Furthermore, identification of the conditions under
which some thermal-response mechanisms, such as
heat-shock proteins and/or shifts in metabolism,
become important enhances opportunities to under-
stand how physiology and behaviour evolve (Feder &
Hofmann, 1999).

MATERIAL AND METHODS

The three species used for the interspecies compari-
sons were Drosophila melanogaster, D. simulans and
D. mojavensis. Both D. melanogaster and D. simulans
were obtained in September of 1998 at Patterson
Farms in Chesterland, OH, USA (Patton & Krebs,
2001), with mass populations drawn from multiple
lines of foundresses. Both of these sympatric species
complete their life cycles in and around necrotic fruit.
The D. mojavensis strain used in the interspecies com-
parison was obtained from Dr Teri Markow at the
University of Arizona (SOSC0297); this population
originated from flies aspirated directly from organ
pipe cactus (Stenocereus thurberi) in the Sonoran
Desert near San Carlos, Sonora, Mexico in 1997.

Therefore, each strain had been reared in the labora-
tory 3–4 years before use in these experiments in
2001.

Four additional populations of D. mojavensis were
obtained for the intraspecific comparison. This set of
laboratory strains collected by Dr Markow in 1999
originated from three localities: Santa Catalina Island
(CI), 43 km west of Los Angeles, the one site where
this species uses prickly pear cactus (Opuntia) as a
substrate; Ensenada de los Muertos (EN), 35 km SE of
La Paz, along the Cape Region of Baja California,
Mexico, where agria cactus (Stenocereus gummosus) is
the most common host plant; and Santa Rosa Moun-
tains (SR) in southern Arizona, USA, another site
dominated by organ pipe cactus (see Heed & Mangan,
1986; Markow et al., 2002). We collected a fresh San
Carlos (SC) population in January 2000 (Krebs, Pat-
ton & Fasolo, 2000).

The intraspecific comparisons were made in sum-
mer 2002. Several sets of experiments indicate that
stress tolerance remains fairly constant in laboratory
populations, at least for several years (Krebs & Loe-
schcke, 1999; Krebs et al., 2001). All Drosophila
strains were maintained at Cleveland State Univer-
sity on a standard cornmeal–yeast–molasses–agar
medium containing tegosept and proprionic acid,
where they were reared either at room temperature
(21–23 ∞C; D. melanogaster and D. simulans) or in a
25 ∞C incubator (D. mojavensis). Although rearing
temperatures differed, this change was required
because D. mojavensis larvae develop very slowly
when laboratory temperatures dropped below about
22–23 ∞C, and small temperature differences have lit-
tle effect on acclimation to heat (Bettencourt, Feder &
Cavicchi, 1999). To obtain flies for experiments, all
rearing  bottles  were  cleared  (adult  flies  removed
and discarded) prior to collection to ensure that
collected flies were virgins. For D. melanogaster and
D. simulans, bottles were cleared in the late evening
for early morning collection of adults or cleared in the
morning for late afternoon collections, and never
longer than 12 h after a bottle had been cleared. For
D. mojavensis, adults were collected daily, because in
this species there is a longer delay in sexual activity
after emergence (Markow, 1982).

For collection, all flies were anaesthetized with CO2

gas and separated by sex under a dissection micro-
scope. Approximately ten flies were then placed into
fresh glass holding vials containing roughly 2 mL of
medium and a sprinkling of dry yeast. Once sepa-
rated, D. melanogaster and D. simulans adults
matured for 4–5 days before use in experiments.
Drosophila mojavensis adults were held for 7–9 days
before use to account for the greater time that the
desert species needed to reach sexual maturity
(Markow, 1982). Flies were transferred into fresh vials



midway through the holding period to prevent bacte-
rial growth and to promote maximum health, and each
species was kept at the same temperatures at which
they were reared.

MATING EXPERIMENTS AMONG SPECIES

Mating experiments were conducted in the same gen-
eral fashion for the comparison of three Drosophila
species and for the comparison of four D. mojavensis
populations. Each pair of flies was observed only once.
The specific thermal conditions in an environmental
room were controlled manually using two analogue
thermostats. One controlled heat and the other an
exhaust system to cool the room; together they main-
tained constant temperatures. Overhead fluorescent
bulbs served as a light source. A small holding incu-
bator set at 25 ∞C was used within the room to mini-
mize the amount of time flies were exposed to high
experimental temperatures. All vials were equili-
brated to the predetermined experimental tempera-
ture, which was recorded as the average of readings
from two physiological mercury thermometers placed
within spare vials also containing medium. One
female fly was aspirated into a vial followed by a sin-
gle male, and the pair was observed for 30 min. No
more than 20 pairs were observed concurrently.
Because the flies are so small, and all mating vials
were pre-warmed, flies should have equilibrated to the
set temperatures before they had the opportunity to
court and mate.

Temperatures used for the interspecific
comparison  ranged  between  19.5 ∞C  and  37.5 ∞C
for D. melanogaster, between 19.5 ∞C and 35 ∞C for
D. simulans and between 21 ∞C and 38.25 ∞C for
D. mojavensis, with precise temperatures grouped
into categories in 1 ∞C intervals (Fig. 1). Pooling
within these intervals produced sample sizes suffi-
cient to record a frequency of courtship and mating
in the 30 temperature groups presented (382 pairs
spread among ten groups in D. melanogaster; 278
pairs in eight group for D. simulans and 582 pairs in
12 groups for D. mojavensis), from which perfor-
mance across varied temperatures was determined.
Upper temperature limits varied by species because
higher temperatures than those used would knock
out the males.

TESTS OF SURVIVAL AMONG POPULATIONS

Extreme stress was applied by immersing glass vials
holding seven-day-old D. mojavensis adults for 1 h in
water baths (Polyscience) heated to 41.0 ∞C, and also
monitored using two mercury thermometers. The
water temperature did not vary during the time
course of the experiment. Each vial of flies contained

Figure 1. Linear performance curves for courtship fre-
quency and  mating  frequency  to  describe  the  responses
of three Drosophila species to heat stress. Linear regres-
sion coefficients are as follows (where x ≥ 28 ∞C): A,
D. melanogaster, court frequency = 1.71–0.030x, mating
frequency = 3.72–0.107x; B, D. simulans, court
frequency = 3.29–0.093x, mating frequency = 3.37–0.104x;
C, D. mojavensis, court frequency = 3.17–0.078x, mating
frequency = 2.73–0.073x.
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an agar-based medium; they were stuffed with a cot-
ton ball, sealed with a wet rubber stopper to ensure
high humidity, and placed inverted within the baths.
After exposure, the vials were lifted from the water
and the rubber stoppers were removed. After a 24 h
recovery time, fly survival was scored as the ability to
walk.

MATING EXPERIMENTS AMONG POPULATIONS

For the intraspecies comparisons, adult D. mojavensis
from each of the four populations were examined at
pre-selected temperatures based on the performance
curves generated for D. mojavensis in the interspecific
test. The three temperature categories selected for
this investigation were No Stress (27 ∞C), Low Stress
(32 ∞C), and Moderate Stress (34.5 ∞C). As above, we
considered extreme stress as the treatment that
threatened survival.

Data collection involved scoring the frequency of
both courtship and mating. A male courtship was
scored where we observed wing waving, drumming
on the female abdomen or persistent chasing of the
female. Receptivity was scored where we observed
a pair in copula. One hundred pairs of flies were
observed for each population and stress level
(N = 1200 pairs in total). To record the frequency,
we separated each consecutive set of ten vials as a
replicate group, and these were obtained for each
population and temperature on different days to
reduce any impact of day-to-day variation on group
means.

ANALYSIS OF HYBRIDS IN D. MOJAVENSIS

The two strains of D. mojavensis that differed most in
survival after exposure to extreme thermal stress
were used to examine genetic variation for survival
and the ability to fly: Catalina Island (CI) and
Ensenada de los Muertos (EN). Virgin males and
females of each strain were collected and used either
to start pure strain cultures or reciprocal F1 crosses
between these lines. As new flies emerged, they were
collected within 24 h of emergence and 10–20 males or
females were placed in each glass vial. All experi-
ments examined seven day-old flies.

For survival after heat shock, the water baths
were again set to 41 ∞C for 1 h, and the ability to
walk was scored after a 24 h recovery. For the test of
flight, the heat shock was reduced to 38 ∞C for 1 h.
These flies were allowed to rest for 1 h before flight
was scored, based on the ability to take off and
travel a distance 10 cm or more. If a fly would not
take off, not fly when probed with a camel hair
paintbrush, or would land less than 10 cm away, it
was scored as no flight.

STATISTICAL ANALYSIS

Data were recorded as frequencies within each vial
and arcsine transformed to increase the variance in
the extremes of the distributions. Linear regression
lines were generated from the interspecies compari-
sons using the REG procedure in SAS (SAS Institute,
1998). A model 1, two-way fixed-factor ANOVA for
population, temperature and the interaction between
these two effects, was used to compare courtship
among populations. The design was completely bal-
anced. Because receptivity is the product of the male
courtship and the willingness of a female to accept a
courting male, this frequency was analysed in two
ways (1) by including male courtship frequency as a
covariate in an analysis of mating frequency, and (2)
by first regressing male courtship on mating fre-
quency, and then analysing the differences among
populations based on the residual variation.

RESULTS

INTER-SPECIFIC VARIATION IN THERMOTOLERANCE

Courtship and mating frequency were examined
between 25 ∞C and 39 ∞C for Drosophila melanogaster,
D. simulans and D. mojavensis. Courtship frequency
declined at a lower temperature in D. simulans than
in the other two species and was essentially elimi-
nated by 34 ∞C (Fig. 1). Drosophila melanogaster and
D. mojavensis males continued to court females until
temperatures approached 38 ∞C, although courtship
declined more slowly in D. melanogaster.

In contrast to courtship, mating in D. simulans
began to decline at 28 ∞C and stopped at 32 ∞C, while
in D. melanogaster, mating began to decline at 29 ∞C
and stopped just below 34.5 ∞C (Fig. 1). In
D. mojavensis, mating frequency remained high until
between 31 ∞C and 32 ∞C, above which mating in this
desert  species  declined  slowly  and  finally  stopped
at 37 ∞C. Therefore, comparing these species, differ-
ences in temperature responses between courtship
frequency  and  mating  frequency  were  greatest
in D. melanogaster, while in D. simulans and
D. mojavensis, these traits declined in parallel but at
very different temperatures (Fig. 1). The phylogenetic
relatedness of D. melanogaster and D. simulans did
not cause them to be any more similar in their behav-
ioural response to heat than either were to
D. mojavensis.

SURVIVAL VARIATION IN D. MOJAVENSIS

The four populations of D. mojavensis were studied for
their stress tolerance as measured by survival, court-
ship and mating frequencies. A significantly greater
proportion of flies from the Catalina Island population



(CI), which experiences the mildest environment, sur-
vived exposure to a severe heat stress than did flies
from the three Sonoran Desert populations (Fig. 2).
Survival in the two mainland populations, Santa Rosa
Mts. (SR) and San Carlos (SC), was intermediate,
while the lowest proportion of flies survived in the
population from Ensenada de los Muertos (EN), near
the southern end of the Baja Peninsula. No significant
effects  between  males  and  females  were  observed
for survival, and subsequent analysis pooling sexes
indicated significance (Tukey’s multiple range test,
P < 0.05) among the three population groupings:
CI > SR = SC > EN.

INTRA-SPECIFIC VARIATION IN D. MOJAVENSIS FOR 
COURTSHIP AND MATING

Courtship and mating frequencies were determined at
27 ∞C, at a low stress of 32 ∞C and at a moderate stress
of 34.5 ∞C. The stress treatments greatly decreased
(P < 0.001) the frequency of courtship and mating in
all populations, as expected (Fig. 3A). There was
significant variation among populations (F3,108 = 2.78,
P < 0.05), as well as a significant population-by-stress
effect (F6,108 = 3.21, P < 0.01). In the absence of stress
(27 ∞C), a one-way fixed-factor ANOVA highlighted
that all populations courted at a similar frequency.
Under mild stress (32 ∞C), populations varied
(F3,36 = 4.25, P < 0.05), as the courtship frequency of
San Carlos males exceeded that for the other three
populations (P < 0.05, Tukey’s test). Under moderate
stress (34.5 ∞C), variation among the populations
again was significant (F3,36 = 2.90, P < 0.05). Ensenada
males courted significantly more often than Santa
Rosa males, which courted least often.

These four populations varied even more in mating
success (Fig. 3B) than they did for courtship
(F3,108 = 10.2, P < 0.001). However, the population-by-

stress interaction only approached significance
(F6,108 = 2.05, P = 0.07). To better gauge female
responses to high temperatures, we repeated analyses
on the residuals from a regression analysis of male
courtship on mating frequency. This covariate
removed most of the contribution of courtship fre-
quency to the measurement of female willingness to
mate. Figure 4 shows where females mated more or
less often than could be predicted from courtship fre-
quencies, and the deviations from zero reflect the mag-
nitude of tendencies for females to accept courtship.
Population effects remained large (F3,108 = 10.2,
P < 0.001), and the interaction effect for stress-by-pop-
ulation was significant (F6,108 = 2.62, P < 0.05). Mating
success in the Ensenada and Catalina Island popula-
tions fell below that predicted from courtship frequen-
cies in these populations. Mating success in the two
mainland Sonora populations, however, was higher
than courtship frequency could predict both in the
absence of stress and during mild stress, but not dur-

Figure 2. The proportion of females and males from four
populations of Drosophila mojavensis that survived after
exposure to a 41 ∞C heat stress for 1 h.
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ing moderate stress. The 34.5 ∞C treatment reduced
female receptivity in all populations (Fig. 4).

SURVIVAL AND FLIGHT IN POPULATION HYBRIDS

Survival and the ability to fly after stress were mea-
sured in crosses between the two strains that varied
most for survival. F1 hybrid progeny derived from Cat-
alina Island (CI) and the Ensenada de los Muertos
(EN) populations survived thermal stress at a level
similar to that of the more tolerant strain, CI
(Fig. 5A). Significance of the variation (F3,77 = 85.8,
P < 0.001) was due predominantly to the low survival
of EN parental flies, a result that applied to both
males and females when analysed separately (Tukey’s
multiple range tests, P < 0.05). However, gender dif-
ferences occurred where males whose maternal parent
was from the EN population survived the stress at an
intermediate level (Tukey’s test, P < 0.05). Population
variation in the ability to fly after thermal stress dif-
fered greatly from results for survival (Fig. 5B). The
EN and CI populations that differed so much in sur-
vival, tolerated heat similarly based on flight, while
their reciprocal F1 offspring exhibited much higher tol-
erance to heat stress (F3,86 = 58.0, P < 0.001, and
Tukey’s test, P < 0.05).

DISCUSSION

Above some optimum, biological performance declines
with increasing temperatures. In this comparison of
three very different members of Drosophila, variation
in mating behaviours was assessed while flies experi-
enced thermal stress. This variation in courtship and
mate receptivity correlated with variation as mea-
sured previously by survival (Krebs, 1999). The same

pattern was shown for the ability for males to court
and to mate following a stress exposure (Patton &
Krebs, 2001). In each set of experiments, D. simulans
died or stopped  mating  at  lower  temperatures
than  did its close relative, D. melanogaster, while
some D. mojavensis adults successfully mated at tem-
peratures that prevented mating in the two other spe-
cies. These large differences in organismal responses
to stress even among related species, indicate the
potential for a general thermotolerance phenotype to
evolve and to produce a consistent rank order of per-
formance across a range of stress conditions. Such a
consistent difference, however, was not observed at a
population level in D. mojavensis.

The most striking difference among species was
the large proportion of D. melanogaster males that
continued to court females at temperatures
approaching those that can ‘knock out’, or induce a
paralytic state, in the flies (Huey et al., 1992; Gil-
christ & Huey, 1999). Therefore, males and females
may respond very differently to thermal stress as is
common in Drosophila (Hoffmann et al., 2001), even
among strains (Krebs & Loeschcke, 1996; Guerra
et al., 1997).

Figure 4. A plot of the residuals for mating frequency
after regressing this trait on male courtship. Means are
presented for each of the four populations of Drosophila
mojavensis under no stress (27 ∞C), mild stress (32 ∞C) and
moderate stress (34.5 ∞C).
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The variation in survival, courtship, mating and
flight among the populations of D. mojavensis exceeds
that typically found in other better-studied species of
Drosophila, notably D. melanogaster (Krebs et al.,
1996; Guerra et al., 1997; Hoffmann et al., 2001) and
D. buzzatii (Krebs & Loeschcke, 1995), a cactophilic
species related to D. mojavensis (Durando et al.,
2000). The strain most tolerant of an extreme stress,
one that may kill, was from Santa Catalina Island, but
this strain was only intermediate in tolerance based
on ability to maintain courtship. The strain that
courted most often under moderate stress was the one
that suffered the highest mortality. Thus, by analysing
a suite of traits, all strains can be considered different.

These differences probably possess a genetic basis,
as the crosses between the two more extreme popula-
tions indicated. Survival variation between CI and EN
after exposure to a high stress suggested largely dom-
inant effects in the autosomes with an additional role
of the X-chromosome. A mitochondrial effect is less
likely because reciprocal-hybrid daughters tolerated
heat similarly. For flight after exposure to a low stress,
hybrids were far more tolerant to heat than were
either parent, which is best explained by a heterozy-
gote advantage. Whether the differences were caused
by inbreeding in these strains, which could have fixed
a deleterious recessive in each strain, or whether the
differences originated from local genetic variants in
the natural populations cannot be determined from
the present results. Both genetic background and
inbreeding  alter  thermotolerance,  and  the  effects
can interact with the type and/or intensity of a stress
(Dahlgaard & Hoffmann, 2000; Kristensen, Dahl-
gaard & Loeschcke, 2003). Clearly, the variation
observed here that promoted hybrid vigour is very spe-
cific to mechanisms for flight, as the inheritance of
flight differed so much from that for survival.

Overall, the traits and the thermal conditions cho-
sen by an experimenter can give a very different pic-
ture of variation in thermotolerance, as suggested by
Bennett (1987a) and later demonstrated by Hoffmann
et al. (1997). They found that knockdown tolerance
and survival of adult D. melanogaster are only weakly
correlated. In addition, by studying multiple traits,
performance can be compared over a stress-level
range of 9 ∞C, a much more ecologically relevant range
of conditions than is generally considered. Huey
(1982) argued previously that tests of thermal stress
should include sublethal effects, and that those traits
related to mating may be a more direct target of selec-
tion (Shine et al., 2000).

The second question posed was whether variation in
stress tolerance correlates with differences in the cli-
mate from which populations were collected. Because
relative performance varied among the different
traits, any test of environmental correlation becomes

ad hoc, especially with only four populations. None-
theless, results for one population stood out as
unusual. Survival tolerance to heat of the Santa Cat-
alina Island flies greatly exceeded that of the three
strains from the Sonoran Desert. According to the
National Center for Climate Data, mean daily maxi-
mums for July 2002 averaged 75.7 ∞C on the island,
while average temperatures in the desert averaged
98.0 ∞C in Santa Rosa, Arizona, USA, and daily max-
ima for San Carlos and Ensenada were only slightly
lower (Fasolo, 2002). Performance in the CI strain was
not the lowest for any trait. High temperatures are
predicted to select for stress tolerance in Sonoran
desert Drosophila at all developmental stages (Gibbs,
Perkins & Markow, 2003). The only clear difference
that we found between flies from the CI strain and the
others was during a small-scale analysis of variation
in the 16S rRNA gene; all of the southern strains pre-
dominantly possessed the same sequence for a 500 bp
fragment, while the CI strain differed at three DNA
sites (GenBank accession numbers AY515016–19,
N = 4 flies per strain). The differences between CI and
the other strains also are supported by allozyme varia-
tion (Markow et al., 2002).

Finally, we investigated whether the cause of a
breakdown in mating success results from inhibition
of males to court at high temperatures or from
females’ response to courting. If mating declined pri-
marily because males would not court, then mating
frequency in all strains should have followed change
in courtship frequency unless females respond nega-
tively to temperature effects on male courtship
quality. Behavioural variation among D. mojavensis
strains enables discrimination between these possibil-
ities. In the absence of stress, females from the
Ensenada and the Catalina Island strains require lit-
tle courtship prior to accepting a male (Krebs &
Markow, 1989; R. Krebs, pers. observ. on the Catalina
Island flies). However, females of the two Sonoran
mainland populations require longer courtship, pre-
sumably to discriminate against males of a sympatric
sibling species present only in mainland Sonora
(Wasserman & Koepfer, 1977; Markow, 1991).
Because courtship declined in all strains as tempera-
tures were increased, and because the greatest
decline in mating after courtship was observed in the
Catalina and Ensenada strains, high temperature
stress must have reduced mating propensity in both
males and females.

Such consequences of heat stress may change the
mating system of a species. Drosophila mojavensis
expresses two mating peaks during the day, one in the
morning and a smaller peak at sunset (Markow, 1982),
suggesting that heat will reduce mating success.
Around mid-day, the hottest period, few flies can be
found (Markow & Toolson, 1990). Even late in the



morning mating period, mating leks rotate to the
shaded sides of cactus arms as the desert, and hence
the plant itself, rapidly warms (Krebs & Bean, 1991).
Similar responses to stress may influence the timing
of oviposition in D. buzzatii (Dahlgaard, Hasson &
Loeschcke, 2001).

Although selection may first affect behaviour, the
ability to survive still must impart a huge effect on fit-
ness (Huey, 1982). Drosophila mojavensis adults tol-
erate temperatures up to 40 ∞C before death is likely
and, while such conditions may not be frequent, they
do occur in the Sonoran desert (Gibbs et al., 2003).
Where both population structure and temporally
consistent environmental differences occur, strong
divergence in stress tolerance may evolve among
Drosophila populations (Dahlgaard et al., 2001;
Michalak et al., 2001; Sørensen, Dahlgaard & Loe-
schcke, 2001). Depending on how the environment and
physiology interact, changes will impact survival and
mating behaviours differently.
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