P1: How High Does the Lower Atmosphere Go?

Vladimir Sworski
Cleveland State University

Justin Flaherty

Follow this and additional works at: https://engagedscholarship.csuohio.edu/u_poster_2017

How does access to this work benefit you? Let us know!

Recommended Citation

https://engagedscholarship.csuohio.edu/u_poster_2017/32
How High Does the Lower Atmosphere Go?

College of Sciences and Health Professions

Student Researchers: Vladimir Sworski and Justin Flaherty

Faculty Advisors: Shawn Ryan and Thijs Heus

Abstract

The Atmospheric Boundary Layer (ABL), consisting of the bottom few kilometers of the troposphere, is a region with strong mixing of moisture and winds. This region's activity has a large impact on weather and climate models. In this study, we use a high resolution computer model: Large Eddy Simulation (LES). Statistics produced require a strong understanding of the height of the ABL. The purpose of this study was to create a method for determining this height accurately and consistently, as previous models demonstrated significant error.