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In the mid-morning on a sunny day one can sometimes see glare spots associated with uncolored
“rainbow” (i.e., fold) caustics due to the sunlight reflected from the surface of dew or guttation drops.
We show that these dewdrop reflection rainbows are due to places on the droplet (i.e., from an “inflection
circle”) where its Gaussian curvature becomes zero. We work out the theory of such caustics with
horizontally incident light and present a comparison of the theory to measurements made in the
laboratory. © 2008 Optical Society of America

OCIS codes: 010.7340, 290.0290.

1. Introduction

Since the 1970s it has been recognized that optical
caustics are a generic feature of light scattering by
objects of arbitrary shape; to quote Stavroudis,
“the caustic is one of the few things in geometrical
optics that has any physical reality… rays… are
not realizable; they are just convenient symbols on
which to hang our ideas” [1]. The atmospheric rain-
bow is easily the most widely recognized example of a
caustic (the fold caustic) because it is one of the most
frequently occurring and most beautiful atmospheric
optical phenomena. However, the most visible
feature of the rainbow—its coloration—is the least
pertinent to its study as an example of an optical
caustic; the colors are due to the dispersion of light,
which is not a central feature of the caustic. The
brightness of light in the vicinity of the rainbow,
its true key feature, is due to the presence of an
extremum in the scattering angle as a function of
the impact parameter of a light ray entering a water
droplet, which is then refracted and reflected to a dis-

tant observer’s eye [2]. Or, in wave theory, the fold
caustic is due to truncation at the cubic term in
the expansion of the phase of the wave in the near
field [3].

In a recent publication, one of the authors used the
rainbow caustic associated with the refraction of
light by a draining vertical fluid layer to determine
the surface tension of the liquid [4]. The caustic was
caused by the shape of the fluid surface; that is, a
point of inflection where the radius of curvature be-
comes infinite exists owing to the balance of viscous
forces against the surface tension of the liquid [5]. In
this case, the refraction of light through the surface
to produce the caustic is not essential, as reflection of
light from the surface would produce a similar fold
caustic, as the phase of the light wave is proportional
to the local surface shape. (This is in contrast to the
atmospheric rainbow, where the phase is determined
by refraction into the droplet, one or more internal
reflections, and refraction out of the droplet [2,3].)
Thus, reflection or refraction from any surface in
which a local parameterization of the surface shape
has a point where the second derivative vanishes can
be expected to lead to a rainbow caustic in the far
field for light reflected or refracted by the surface.
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An example of such a surface is a pendant droplet,
that is, a droplet hanging from some support above it.
As discussed below, the shape of the droplet is deter-
mined by the balancing of the forces of gravity and
the surface tension of the fluid; “necking” of the dro-
plet near the line of attachment to the support leads
to an “inflection circle” (defined more rigorously be-
low) along which the Gaussian curvature vanishes. If
we shine a light beam onto the droplet near the in-
flection circle, the reflection of light from the droplet
will have a caustic in the far field; that is, projection
of the reflection onto a screen in the far field will lead
to a fold caustic. An observer placing his or her head
to intercept the rays reflected from this spot will see
a glare spot due to the caustic, and out-of-focus ima-
ging will show a set of unequally spaced Airy fringes
due to the caustic.
Figures 1 and 2 show an example of this in photo-

graphs taken in the garden of one of the authors.
Figure 1 shows a close-up image of a pendant drop
on a blade of grass, with a glare spot clearly visible
near the point of attachment of the droplet to the
grass blade. Figure 2 is an out-of-focus image show-
ing the resultant Airy fringes of the caustic. In the
photo, the Sun is forward and to the upper right with
a solar elevation of approximately 48°; because of
this, the glare spot seen is almost certainly due to re-
flection of light from the droplet and not from refrac-
tion. Further confirmation of this is the fact that the
glare spot in Fig. 1 shows no dispersion of colors, and
the separation of colors in the interference fringe in
Fig. 2 is very slight and characteristic of diffraction
(i.e., longer wavelengths to larger angles) rather than
dispersion, which would separate the colors more
and which would refract shorter wavelengths to
higher angles. In Fig. 1, the glare spot seems to be

near a point of inflection in the droplet shape, occur-
ring as it does very near the point of attachment of
the droplet to the blade of grass; however, this cannot
be seen directly, as the glare spot obscures the shape
of the droplet at that point.

In the rest of this paper we develop a theory to
characterize the external reflection rainbow caustic
from a pendant droplet when the incident beam is
perfectly horizontal. We then compare the results
of the theory developed to several qualitative experi-
ments done on pendant droplets. In a companion
paper [6] we examine the case of arbitrary incidence
theoretically and then compare the results of that
theory with observations of naturally occurring ex-
ternal reflection rainbows. In that paper we also dis-
cuss the application of this work to fluids diagnostics.

2. Theory

A. Geometry of the Pendant Droplet

Consider a water droplet hanging from either a leaf
or a thin straight vertical wire. The pendant droplet
is assumed to be rotationally symmetric about the
vertical axis, which is taken to be the z axis of an
xyz coordinate system. The nonlinear differential
equation that describes its shape has long been
known, and numerical solutions are available for
droplets with differing radii of curvature at the bot-
tom [7]. The shape of a pendant droplet resembles a
prolate spheroid attached by a narrow neck to the
leaf or thin straight wire. Just below the neck region,
the droplet surface possesses an inflection point,
which when rotated around the droplet is what we
hereafter call the inflection circle. The inflection cir-
cle has radius ri and is a height zi above the origin of
the coordinates. The first three terms in the Taylor
series expansion of the surface shape in the vicinity
of the inflection circle are

Fig. 1. (Color online) Droplet with reflected glare spot. Note that
the glare spot appears where the droplet curvature goes from con-
vex to concave.

Fig. 2. (Color online) Out-of-focus image of the glare spot from
Fig. 1 showing Airy fringes.
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rðzÞ ¼ ri − ðz − ziÞ tanðξÞ þ αðz − ziÞ3; ð1Þ

where α is presumably small. At z ¼ zi the droplet
surface is tangent to a cone with opening half-angle
ξ. The αðz − ziÞ3 term in Eq. (1) models the beginning
of the narrowing of the neck of the droplet outside the
tangent cone for z > zi and the beginning of the
rounded body of the droplet inside the tangent cone
for z < zi. Figure 3 shows a surface plot of the pen-
dant droplet in the region near the circle of attach-
ment to its support. We found it easier to use
Eq. (2) below to generate the image; the values of
the parameters used to create the image are the
tangent cone angle, ξ ¼ π=6 (¼30°); the radius of
the circle of attachment, ratt ¼ 0:1 (in arbitrary
units); the radius of the inflection circle, r0 ¼ 0:8;
the cubic coefficient, α=tan4ðξÞ ¼ 0:75. These do not
match any data shown below, but were simply chosen
to best highlight the shape of the droplet near the
inflection circle. Figure 3 also includes arrows defin-
ing the directions of the incident and reflected rays,
plus the angles ϕ, φ and θ defined below in the paper.
If the radius of curvature of the bottom of the

droplet is relatively large, as is the case for β ≈ 0:5
in Table 3B and Fig. 10 of [7], where the droplet
was assumed to hang from a flat wet horizontal sur-
face, the cubic form of Eq. (1) remains an accurate
approximation to the surface shape all the way from
the narrowest part of the neck of the droplet to the
widest part of the body. But for the case of a droplet
hanging from a leaf or a thin wire, which perhaps cor-
responds closer to β ≈ 0:2 in Fig. 10 of [7], the narrow-
est part of the neck and the widest part of the body
are quite asymmetric. Thus many more terms in the
Taylor series expansion of rðzÞ are required in order
to accurately approximate the surface shape of the
pendant droplet all the way from the narrowest part
of the neck to the widest part of the body. But even in
these situations, Eq. (1) remains an accurate approx-
imation to the surface shape as long as points suffi-
ciently close to the inflection circle are considered.
Equation (1) can be approximately inverted to give

zðrÞ ¼ zi − ðr − riÞ= tanðξÞ − αðr − riÞ3=tan4ðξÞ ð2Þ

as long as 3αðr − riÞ2=tan3ðξÞ ≪ 1. If the angle in the
horizontal plane with respect to theþx axis in cylind-
rical coordinates is θ, the outward unit normal to the
droplet surface is

n ¼ f−ð∂z=∂rÞ½cosðθÞux þ sinðθÞuy� þ uzg
=½ð∂z=∂rÞ2 þ 1�1=2: ð3Þ

B. Geometry of the Incident Beam

Consider a family of parallel light rays of wavelength
λ incident on the droplet in the vicinity of the inflec-
tion circle. We define a coordinate system ðx; y; zÞ in
relation to the central vertical axis of the droplet
such that z is the vertical axis (and is also the sym-
metry axis of the droplet), the beam is incident in the
xz plane, propagating in the þx direction, and the
direction of the y axis is defined in terms of the stan-
dard right-handed coordinate system. Figures 3 and
4 have the relevant angles for the incident and
scattered rays labeled. In Figure 3, the out-of-plane
scattering is shown, including the angles that the
incident and scattered rays make with the xy plane
(ψ and ϕ, respectively.) Figure 4 shows a slice of the
coordinate system in the xy plane (i.e., as viewed
from a vantage point directly above the droplet,
along the þz axis). The incoming ray is moving in
the direction of theþx axis (which is drawn vertically
on the page.) It intersects the droplet at a radial dis-
tance rðzÞ (¼r) from the z axis. Drawing a horizontal
line from the symmetry axis to the intersection point,
the angle that the line makes with the þy axis is ε. If
we now examine the scattered ray, the angle that the
scattered raymakes with theþx axis is θ. Note that if
the rays is unscattered ε ¼ θ. The coordinate z ¼ 0
marks the point of inflection of the droplet. We define
the impact parameter b ¼ r cosðεÞ as the distance
from the z axis at which the incident ray intersects
the droplet.

The wave vector of a ray in the family is

kinc ¼ cosðψÞux − sinðψÞuz: ð4Þ

Fig. 3. (Color online) Shape of the droplet near the circle of
attachment to its support. ξ ¼ p=6 (30°), α=tan4ðξÞ ¼ 0:75,
ratt ¼ 0:1, r0 ¼ 0:8. Fig. 4. Top view of the coordinate system used in this paper.
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If ψ ¼ 0 the rays are said to be horizontally incident
on the droplet, and if ψ ≠ 0 they are said to be diag-
onally incident. If an incident ray grazes the surface
of the droplet and is reflected, it is called a grazing
incident ray. If it is reflected from any other portion of
the droplet, it is called a ray with arbitrary incidence.
The family of incident rays that reflect from the

pendant droplet in the vicinity of the inflection circle
form an Airy caustic or rainbow in the far zone. In
this paper we consider the cases of grazing horizontal
incidence and arbitrary horizontal incidence sepa-
rately, as there are a number of simplifications that
one can make in the first case, while additional fea-
tures of the Airy caustic appear in the theoretically
more complicated second case. In the companion
paper [6] we consider the case of diagonal incidence.

C. Grazing Horizontal Incidence

Consider a family of light rays traveling parallel to
the x axis with ψ ¼ 0 that are incident on the droplet
in the vicinity of the inflection circle. A given ray in
the family strikes the droplet surface with the angle ε
in the horizontal plane, where 0 ≤ ε ≤ π, and at the
height z ¼ zi þ δ above the xy plane. The unit vector
in the incident direction is

kinc ¼ ux: ð5Þ

Near-grazing-incident rays are characterized by
sinðεÞ ≈ ε and cosðεÞ ≈ 1. The direction of the reflected
rays is given by

kref ¼ kinc − 2ðkinc⋅nÞn: ð6Þ

Near-grazing-incident rays are reflected in the near-
forward direction. Note that the reflection angles θ
and ϕ are defined with respect to a standard spheri-
cal coordinate system in which ϕ represents the polar
angle (really, the complement of the polar angle) with
respect to the z axis and θ is the angle that the pro-
jection of the ray into the xy plane makes with theþx
axis. We need now to reference the rays to a rotated
coordinate system more suitable for examining the
scattered light; in this coordinate system, Θ repre-
sents the angle that the scattered ray makes with
the þx axis, while Φ represents the angle that the
projection of the ray into the yz plane makes with
theþz axis. The two sets of angles are shown in Fig. 5.
In this coordinate system,

tanðΦÞ ¼ ðkref Þz=ðkref Þy; ð7Þ

Θ ≈ tanðΘÞ ¼ ½ðkref Þy2 þ ðkref Þz2�1=2=ðkref Þx: ð8Þ

Substituting Eqs. (2), (3), and (5) into Eq. (6), and the
result into Eqs. (7) and (8), we obtain

tanðΦÞ ¼ tanðξÞ − 3αδ2; ð9Þ

Θ ¼ 2ε cosðξÞ: ð10Þ

In obtaining this result we assumed that the rays are
close enough to the inflection circle that αδ2 ≪ 1 and
that terms in the direction of the reflected ray of
order α2 can be neglected.

Equations (9) and (10) demonstrate that two inci-
dent rays striking the droplet at the same angle ε but
at different heights z ¼ zi � δ are both reflected in
the same direction and thus interfere in the far zone.
In the limit ε → 0,Φ → ξ, this corresponds to grazing
incident rays striking the inflection circle near δ ¼ 0,
marking the boundary between the region below the
Φ ¼ ξ line illuminated at each point by two rays and
the nonilluminated region above it. In wave theory,
this two-ray to zero-ray transition is the Airy caustic.
The reflection geometry considered here satisfies the
general condition for the existence of a far-zone re-
flection caustic. When a plane wave is reflected by
a surface of arbitrary shape, the reflected intensity
at any scattering angle is proportional to the product
of the principal radii of curvature of the surface at
the corresponding point on the surface from which
the ray reflects [8]. For the pendant droplet geometry,
the radius of curvature of the droplet surface in the
vertical plane is infinite on the inflection circle, lead-
ing to an infinite scattered intensity in ray theory,
which becomes softened to a large but finite intensity
on the caustic in wave theory. In the limit ε → 0 (cor-
responding to near-grazing incidence) the shape of
the rainbow on a far-zone viewing screen a distance
R from the droplet and normal to the positive x axis is
the straight line Φ ¼ ξ. As ε increases for incident
rays with δ ¼ 0, the scattering angleΘ of the rainbow

Fig. 5. Coordinate system showing the definitions of the two sets
of scattering angles ðθ;ϕÞ and ðΘ;ΦÞ used in this paper.
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on the viewing screen also increases. It should be
noted that when the small-angle approximation is
no longer valid, the shape of the rainbow on the view-
ing screen becomes curved. This will be discussed in
detail in Subsection 2.D.
For scattering of a plane wave by a homogeneous

sphere, one usually obtains the argument of the Airy
caustic for the p − 1 internal reflection rainbow by
propagating an initially flat wavefront through the
sphere in the vicinity of the Descartes ray and ob-
taining the wavefront in the exit plane. The exiting
wavefront is quadratic in one direction and cubic in
the other direction. The exit plane wavefront is then
Fraunhofer diffracted to the far zone, yielding the
Airy caustic [9]. Since the limit of the Airy caustic
far into the lit region is the interference of two par-
allel supernumerary rays [9], we use the alternative
procedure of first determining the path length
difference of the two supernumerary rays and then
working backward to infer the argument of the Airy
caustic.
First consider light rays reflected at near-grazing

incidence from a cone with opening half-angle ξ [i.e.,
α ¼ 0 in Eqs. (1) and (2)]. Recall that this cone is tan-
gent to the surface of the pendant droplet at the in-
flection circle. All reflected rays having the same
angle of incidence ε but with differing incident
heights z ¼ zi þ δ are reflected in exactly the same
direction in the far zone, Φ ¼ ξ. They also have ex-
actly the same path length from the cone’s entrance
plane to its exit plane. These rays constructively in-
terfere in the far zone, producing an infinite intensity
in ray theory. The addition of the perturbation αðz −
ziÞ3 to the surface shape in Eq. (1) serves to deflect
rays with different values of jδj into different direc-
tions. It also changes the path length of the þδ ray
from that of the −δ ray, thus weakening the intensity
at Φ ¼ ξ to that of the rainbow peak. Ignoring terms
of order ε2 and α2, the path length of the ε, zi þ δ in-
cident ray is longer than that of the ε, zi − δ ray by

Δsincoming ¼ 2εδ½tanðξÞ − αδ2�; ð11Þ

and the path length of the reflected rays differs by

Δsoutgoing ¼ −2εδ½tanðξÞ − αδ2� þ 8εαδ3 cos2ðξÞ; ð12Þ

giving a total phase difference of

Δφ ¼ kðΔsincoming þΔsoutgoingÞ ¼ 8kεαδ3 cos2ðξÞ;
ð13Þ

where k ¼ 2π=λ. The total normalized electric field of
the two interfering rays is then proportional to

Etotalðε; δÞ ≈ cosðΔφ=2 − π=4Þ
¼ cosf4kεαδ3cos2ðξÞ − π=4�; ð14Þ

where it is assumed that, as is the case for the p − 1
internal reflection rainbow of a homogeneous sphere,

one of the two participating supernumerary rays
crosses a near-zone focal line and acquires an addi-
tional phase shift of π=2.

Equation (14) is inconvenient in the sense that the
total field is written in terms of the incoming ray
parameters ε and δ rather than in terms of the angles
Θ and Φ observed on the far-zone viewing screen. If
Φ is written as

Φ ¼ ξ − Γ ð15Þ

with Γ ≪ 1, substituting Eq. (15) into Eq. (9) gives

Γ ≈ 3αδ2 cos2ðξÞ: ð16Þ

On the far-zone viewing screen, the radial distance ρ
along the rainbow line Φ ¼ ξ from the point where
the positive x axis crosses the viewing screen is

ρ ¼ RΘ; ð17Þ

and the tangential distance σ on the viewing screen
that cuts across the supernumerary interference
pattern is

σ ¼ RΘΓ: ð18Þ

Substitution of Eqs. (10) and (16)–(18) into Eq. (14)
gives

Etotalðρ; σÞ ≈ cosf2kσ3=2=½33=2α1=2ρ1=2R cos2ðξÞ� − π=4g:
ð19Þ

Making the association in the w → ∞ limit [10]

Aið−wÞ ≈ cosð2w3=2=3 − π=4Þ; ð20Þ

we obtain

Etotalðρ; σÞ ≈ Aif−k2=3σ=½31=3α1=3R2=3ρ1=3cos4=3ðξÞ�g
ð21Þ

as the rainbow produced by rays with near-grazing
horizontal incidence in the vicinity of the inflection
circle of a pendant droplet. The constant of propor-
tionality multiplying the Airy integral of Eq. (21) will
be derived in Subsection 2.D.

The horizontal grazing incidence geometry consid-
ered above is sufficiently uncomplicated that the
shape of the wavefront in the exit plane can be
straightforwardly determined and then Fraunhofer
diffracted to the far zone. This check of the procedure
leading to Eq. (21) is performed to justify the super-
numerary path length difference procedure so that it
can be applied to the more complicated case of
diagonal incidence to be considered in [6]. (i) The en-
trance and exit planes were chosen to be perpendicu-
lar to the incoming and outgoing rainbow ray with
the input parameters ε and δ ¼ 0, and contained
the point where the ray strikes the droplet surface.

1 December 2008 / Vol. 47, No. 34 / APPLIED OPTICS H207



Another ray with the same value of ε but with δ ≠ 0
was also considered, and its path length was calcu-
lated between the entrance and exit planes. It should
be noted that although the trajectories of the rainbow
ray and the ε, δ ≠ 0 rays are parallel on the incoming
side of the reflection, they are not parallel on the out-
going side. The path length difference between the
two rays was found after much algebra to be

Δstotal ¼ 2αεδ3 cos2ðξÞ: ð22Þ

(ii) Again this path length must be expressed in
terms of exit plane variables instead of entrance
plane variables. Let u be the vector in the exit plane
from the point where the rainbow ray crosses the exit
plane to the point where the ε, δ ≠ 0 ray crosses it.
The length of u was calculated to be

u ¼ δ= cosðξÞ; ð23Þ

and the phase difference of the δ ¼ 0 and δ ≠ 0 rays in
the exit plane is

Δφ ¼ kαΘu3 cos4ðξÞ: ð24Þ

(iii) This exit plane wavefront is then Fraunhofer dif-
fracted an angle γ ¼ ΓΘ below the kref direction in
the plane formed by kref and u. The result is identical
to Eq. (21).

D. Arbitrary Horizontal Incidence

In both this subsection and the next, we determine
the trajectory and intensity along the Airy caustic
produced by reflection of a family of parallel incident
rays from a pendant droplet that range from grazing
incidence to head-on incidence. Since the surface of
the pendant droplet is tangent to a cone of opening
half-angle ξ at the inflection circle, these results
are equivalent to those for reflection of the rays from
the cone. We consider the case of horizontal incidence
with ψ ¼ 0 and 0 ≤ ε ≤ π=2. We parameterize a ray on
the wavefront by its horizontal distance b0 from the
−x axis and its height z0 above the xy plane. We sur-
round the cone with a cylindrical viewing screen of
radius R → ∞ whose axis coincides with the axis of
the cone. The scattering angles of a reflected ray
on the cylindrical viewing screen are taken to be θ
with respect to the þx axis in the horizontal plane
and ϕ above the horizontal plane.
Defining the parameter Ω by

Ω ¼ sinðεÞ cosðξÞ; ð25Þ

the set of incident rays with constant z0 and with b0
ranging from grazing incidence to head-on incidence
corresponds to

0 ≤ Ω ≤ cosðξÞ: ð26Þ

Substituting Eqs. (5) and (25) and the definitions of θ
and ϕ into Eq. (6), the scattering angles of the rays

reflected from the cone are

sinðϕÞ ¼ 2Ω sinðξÞ; ð27Þ

cosðθÞ ¼ ð1 − 2Ω2Þ=½1 − 4Ω2 sin2ðξÞ�1=2: ð28Þ

The trajectory of the Descartes ray of the Airy caustic
on the cylindrical viewing screen is

0 ≤ ϕ ≤ 2ξ if ξ ≤ π=4;
0 ≤ ϕ ≤ π − 2ξ if ξ ≥ π=4; ð29Þ

0 ≤ θ ≤ π if ξ < π=4;
0 ≤ θ ≤ π=2 if ξ ¼ π=4;
0 ≤ θ ≤ θmax if ξ > π=4;

ð30Þ

where

cosðθmaxÞ ¼ ½1 − 2cos2ðξÞ�1=2=sin2ðξÞ: ð31Þ

Figure 6 shows plots of the trajectory of the prin-
cipal peak of the caustic for different values of the
tangent cone angle. We plot the variables 1 − cosðθÞ
on the horizontal axis and tanðϕÞ on the vertical to
facilitate comparison with experimental results pre-
sented below. The reason we use these somewhat
unusual coordinates is as follows: in the experiments
described below, light was scattered from a pendant
droplet onto a cylindrical screen concentric with the
droplet, and the pattern was photographed from a re-
latively large distance away. The center of the screen
corresponds to a scattering angle θ ¼ π=2, or ε ¼ 0;
however, the photograph is essentially a projection
of the scattering pattern onto a flat screen. Because
of this, the horizontal coordinate in the photograph is
given by 1 − cosðθÞ. Similarly, the vertical coordinate
is proportional to tanðϕÞ. Using these coordinates
makes comparison with experimental results direct.

As b0 is varied from grazing incidence to head-on
incidence for constant z0, the angle θ of the principal
peak of the Airy caustic either increases monotoni-
cally from zero (i.e., forward scattering) to π when
ξ < π=4, or from zero to θmax when Ω ¼
1=½21=2 tanðξÞ� and then decreases back from θmax
to zero when ξ > π=4 as the other scattering angle
ϕ monotonically increases from zero to some value
less than or equal to π=2. Since dθ=dϕ ¼ 0 at θmax,
the trajectory of the Airy caustic is smooth at the
turnaround point in θ, and a higher-order caustic
such as a cusp does not occur there.

As mentioned in Subsection 2.C, if the principal ra-
dii of curvature of the reflecting surface are both fi-
nite, the intensity of the reflected light in ray theory
is related in a simple way to the Gaussian curvature
at the point on the surface that is mapped into the
direction of the reflected ray. But for a reflecting cone,
the radius of curvature of its surface in the vertical

H208 APPLIED OPTICS / Vol. 47, No. 34 / 1 December 2008



plane is infinite. Thus, the usual method of obtaining
the reflected intensity is inapplicable, and another
approach must be taken. The approach we used to
determine the intensity of light reflected by a cone
consists of the following three steps. (i) Consider a
ray on the incident wavefront parameterized by
ðb0; z0Þ. Determine the point ðx0; y0; z0Þ where the
ray strikes the cone surface, and the point

R ¼ xvsux þ yvsuy þ zvsuz; ð32Þ

where the reflected ray intercepts the far-zone cy-
lindrical viewing screen. (ii) With z0 constant, vary
the incident ray from b0 to b0 þ db0 and determine
the new position of the reflected rayR0 on the viewing
screen

R0 ¼ Rþ dR0 ¼ Rþ ð∂R=∂b0Þdb0: ð33Þ

(iii) With b0 constant, vary the incident ray from z0
to z0 þ dz0 and determine the new position of the
reflected ray R″ on the viewing screen

R″ ¼ Rþ dR″ ¼ Rþ ð∂R=∂z0Þdz0: ð34Þ

(iv) The area of the incident flux tube subtended by
these rays is db0dz0, and the area of the reflected flux
tube on the viewing screen is jdR0 × dR″j. Thus, if
the incident ray intensity is Iinc, the reflected ray
intensity on the viewing screen is, by conservation
of energy,

Iref ¼ Iinc=½jð∂R=∂b0Þ × ð∂R=∂z0Þj cosðϕÞ�; ð35Þ

Fig. 6. Shape of external reflection rainbow caustic scattered onto a cylinder centered on the droplet. (a) ξ ¼ π=6 (30°), (b) ξ ¼ π=5 (36°),
(c) ξ ¼ π=4 (45°), (d) ξ ¼ π=3:8 (47:4°).
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assuming the cone to be perfectly reflecting. (In this
paper we use the common physics parlance “inten-
sity” to refer to incident power/unit area rather than
the more correct photometric term “radiometric irra-
diance,” as the former term is more commonly used
than the latter.) Applying this procedure to a family
of rays horizontally incident on a reflecting cone, we
obtain after much algebra

Iref ¼ Iincr0 sinðϕÞ cosðϕÞ=fR tanðξÞ½4 cos2ðξÞ
− sin2ðϕÞ�g; ð36Þ

where r0 is the radius of the cone cross section in the
horizontal plane of constant z0. The advantage of
writing Eq. (36) as a function of ϕ is that experimen-
tally one observes the trajectory of the Airy caustic as
a function of θ and ϕ on the viewing screen. Then for
an observed value of ϕ, one canmeasure the intensity
of the caustic and straightforwardly compare the re-
sult to Eq. (36). If one wished to instead express
Eq. (35) as a function of the input ray parameters
b0 and z0 or, equivalently, in terms of ε, where

cosðεÞ ¼ b0=r0; ð37Þ
Eq. (36) becomes

Iref ¼ Iinc sinðεÞðr0=RÞ½cos2ðεÞ
þ sin2ðεÞcos2ð2ξÞ�1=2=f½1þ cosð2ξÞ�
þ cos2ðεÞ½1 − cosð2ξÞ�g: ð38Þ

3. External-Reflection Rainbow Caustics in the
Laboratory

In this section we discuss the creation of an external-
reflection rainbow using pendant droplets in a la-
boratory setting. To examine the caustics, we took
a syringe filled with water with a needle whose point
was ground flat; the radius of the needle is 0:5mm.
By pressing the plunger gently we could create dro-
plets similar to those seen in Fig. 1, but whose size
could be varied. We expected that the smaller the
droplet, the larger the cone angle ξ, as the shape
of the droplet is determined by the competition be-
tween surface tension and weight; the greater the
weight, the more the droplet will be distended. This
was in fact seen to be the case.
To view the caustic, we shined a beam from a He–

Ne laser (wavelength λ ¼ 632:8nm) onto the pendant
droplet near the inflection circle. (The wavelength
corresponds to the red region of the spectrum;
however, in some images the scattered light appears
bluish white because of camera saturation.) To view
the section of the caustic due to near-grazing-
incidence rays, we placed a screen (a piece of paper)
forward of the droplet so that light scattered in the
near-zero angle direction could be seen. Figure 7 is a
diagram of our experimental setup. We photo-
graphed the caustic using a $50 webcam (resolution

640 × 480pixels); to make it useful, we removed the
camera board from its case, so that the camera lens
could be unscrewed almost completely from its
mount to get close-up photographs. We found that
the image quality was excellent despite the low cost
of the system.

Figure 8 is a picture of the pendant droplet; Fig. 9
shows the external reflection caustic from that dro-
plet. Figure 10 shows a close-up of a section of the
caustic of Fig. 9; in this image, Airy fringes are
clearly seen, showing that this is a fold caustic.
The fringes are perpendicular to the caustic line,
again as predicted by theory. Note that, from
Eq. (21), the spacing of the Airy fringes should in-
crease with ρ, which is what we observe, although
we have not made any attempt to make a quantita-
tive match with theory.

To see the caustic due to all of the rays, not just the
ones at near-grazing incidence, we placed a cylindri-
cal screen centered on the droplet (see Fig. 4); this
enabled us to examine the caustic structure from
scattering angles of near 0° (forward) to near 180°
(i.e., backward.) One prediction that theory makes
is that for a droplet whose tangent cone angle is
greater than 45° there will be no light scattered back-
ward [see Eqs. (27)–(31) and Figs. 6(c) and 6(d)]. To
verify this, we examined the caustics for three dro-
plets of increasing size; Fig. 11(a) shows the smallest
droplet, while Fig. 11(b) shows the caustic produced
by it. Unfortunately, the smallest droplets produced
by this syringe were highly asymmetric, which
makes a quantitative fit to the theory impossible,
but it is clear that the caustic curves backward at
large angles. Even though the droplet is highly asym-
metric, the global behavior of the caustic is very si-
milar to that predicted by theory, and we can
safely regard the theory as an approximation to true
behavior.

Fig. 7. Experimental apparatus for photographing external re-
flection caustics in the laboratory. The flat viewing screenwas used
for looking at caustics in the near-0° scattering direction; the semi-
cylindrical screenwas used to examine the caustics from 0° to 180°.
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Figure 12(a) shows a medium-sized droplet, and
Fig. 12(b) the caustic produced by it. In this case,
the tangent cone angle at the inflection circle seems
to be around 45°, as the caustic seems to be at the
borderline case where the caustic extends only to
θ ¼ π=2. Figure 13(a) shows the largest droplet
that can be produced by the syringe before the drop
fissions off, and Fig. 13(b) shows the caustic due to it;
as can be seen, the caustic structure extends to scat-
tering angles of 180°, consistent with the smaller
tangent cone angle for the larger droplet. Compari-
son of Figs. 11(b), 12(b), and 13(b) should be made to
Figs. 6(a)–6(d); the qualitative agreement between
the two sets of figures is striking, although there
are differences that we believe are due to the fact
that the droplets produced in the laboratory (espe-
cially the smallest ones) are not radially symmetric.

Fig. 9. (Color online) External reflection rainbow caustic, near-0°
scattering angle. The horizontal line seen in the lower half of the
figure is due to reflection from the needle.

Fig. 10. (Color online) Magnified image of section of the caustic
from Fig. 7. Airy fringes are clearly visible near the caustic.

Fig. 11. (Color online) (a) Photograph of small pendant droplet.
The droplet is obviously asymmetric. (b) External reflection caus-
tic produced by droplet in (a). Comparison to Fig. 6(d) is of interest.

Fig. 8. (Color online) Photograph of pendant droplet. The image
has been cropped slightly. The droplet is viewed from the forward
(i.e, θ ¼ 0) direction; the laser beam creating the caustic will be
reflected from the droplet at its upper right.
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In particular, in Fig. 9, the caustic clearly extends to
scattering angles greater than π=2 before folding
back to smaller scattering angles; we expect the
deviations of the caustic structure created by this
droplet from theory to be large, however, as the
droplet is so asymmetric.

4. Conclusions

We have examined the external reflection rainbow
caustic produced by a pendant water droplet where
the incident light beam is horizontal and the droplet
is radially symmetric in the horizontal plane. We
show good qualitative agreement between theory
and laboratory experiment; however, to extend the
comparison to observation, we must extend the

theory to account for arbitrary angle of incidence;
this is accomplished in the companion paper [6] deal-
ing with this topic in the Feature issue.

The work done in this paper by C. L. Adler was
supported by Research Corporation grant CC6308.
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