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Non-Debye enhancements in the Mie scattering of light
from a single water droplet

James A. Lock and Judith R. Woodruff

The glare spots usually seen on a single water droplet which has been illuminated by a plane wave are
produced by geometrical rays which correspond to the different terms of the Debye series expansion of the
Mie scattered field. Recently other glare spot enhancements have been predicted which correspond to
scattering resonances coupling to the orbiting rays associated with high-order geometrical rainbows. We
observed the non-Debye enhancement of the eleventh-order rainbow glare spot at an observation angle of 900
on a 3.5-mm water droplet illuminated by polarized He-Ne laser light.

1. Introduction

When a plane wave of light illuminates a spherical
water droplet, an observer reasonably -close to the
droplet and focusing his eyes on it sees several spots of
glare at various locations on its surface. At certain
observation angles known as the rainbow angles, pairs
of these glare spots merge and take on color. When the
observer is distant from the thousands of droplets
present in a rain shower, the usual atmospheric rain-
bow is the combined effect of the coloration of each of
the droplets which is at the observer's rainbow angle.'
The spots of glare seen on a single droplet are produced
by geometrical light rays making a given number of
internal reflections within the droplet before exiting it.
These multiply internally reflecting light rays arise
from the different-order terms of the Debye series
expansion of the Mie scattered electric field.2-3 For a
spherical drop, the behavior of the Debye term glare
spots as a function of the observation angle is both
theoretically understood4 5 and experimentally con-
firmed.4 Recently, numerical calculations of the Fou-
rier transform of the Mie electric field showed addi-
tional sharp enhancements in the spatial frequency
spectrum, which could not be totally attributed to any
single term of the Debye series.6 Rather, these addi-
tional enhancements are produced by scattering reso-
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nances coupling to the orbiting rays associated with
high-order geometrical rainbows. This paper de-
scribes an experiment whose purpose was to observe
such a non-Debye glare spot on a single water droplet.

Scattering experiments employing a single water
droplet are of two general types. In the first type of
experiment, the Mie intensity is measured as a func-
tion of the observation angle by employing either a
very small receiving optics aperture without a focusing
lens7 or a larger aperture with a lens focused on infin-
ity.8 In these experiments, rainbows appear as strong
narrow enhancements in the Mie intensity. They are
accompanied on one side by the oscillatory supernu-
merary intensity and on the other side by a uniformly
dark region known as Alexander's band. In the second
type of experiment, the square of the Fourier trans-
form of the Mie electric field is measured by employing
a receiving optics lens focused on the droplet.4 8 When
the observer is at one of the rainbow angles, a rainbow
appears as a colored glare spot which we denote byR(m)
at a certain location on the droplet surface, where m is
the number of internal reflections that the light rays
producing the rainbow make within the droplet.
When the observer moves away from the rainbow angle
in one direction, the coloration leaves the glare spot
and it breaks into the two supernumerary glare spots
R(m) and R(m). When the observer moves away in the
other direction, the glare spot vanishes. The two
kinds of experiment are sensitive to different types of
information about the scattering. The first experi-
ment accurately measures the oscillatory structure of
the angular dependence of the intensity. But it poorly
resolves high-order rainbows hiding in the supernu-
merary structure of lower-order rainbows. Since over-
lapping signals with different periodicities become
separated in the Fourier transform domain, the second
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experiment permits a clean observation of high-order
rainbows. The experiment described here is of this
second type.

11. Theoretical Considerations and Previous Experiments

The pendant water droplets employed in the experi-
ments of Ref. 4 and 7 were not spherical. Rather their
shape may be modeled by the prolate spheroid

a2 + 6 + a2 1 (1)

with the y axis vertical, a/b < 1, and with the incident
light rays parallel to the z axis. Water droplets sus-
pended from a hypodermic syringe with its point
ground flat9-"1 have aspect ratios in the 0.84 < a/b <
0.91 range. The intensity of the light scattered from a
spheroid may be exactly calculated in terms of a partial
wave series.12 However, the computational methods
thus far employed in the calculation become numeri-
cally unstable' 3 for size parameters [(27ra)/X] > 30,
while the size parameter corresponding to a 3.5-mm
diam droplet is 17,000. As a result, the light scat-
tered from a pendant water droplet is calculated from a
combination of Mie scattering sphere results and geo-
metrical ray tracing.

For the prolate spheroid geometry of a pendant drop
and the oblate spheroid geometry of a falling raindrop,
the cross section of the droplet in the horizontal y = 0
midplane is circular and the droplet surface is normal
to it. Thus light rays incident on the droplet in the
midplane remain in that plane during and after the
scattering. Mathematically the scattered intensity in
the midplane is well described by Mie scattering from a
sphere. However, light rays which enter the droplet
slightly above or below the midplane leave the initial
plane of incidence at subsequent internal reflections
for a/b F- 1 and follow skew paths within the droplet.
For certain droplet aspect ratios, certain of these skew
rays exit the droplet parallel to the midplane and inter-
fere with the midplane rays producing a higher-order
catastrophe caustic at the rainbow location.

In the first type of scattering experiment described
in the previous section, the entire higher-order caustic
structure is observed when the scattered light intensity
is measured in two angular dimensions as is the case
with the photographs of Ref. 8. If the scattered inten-
sity is only measured in one angular dimension, i.e.,
along the caustic axis as is the case when using a polar
nephelometer, the skew ray caustic manifests itself as
an amplification of the Mie rainbow intensity. In the
second type of scattering experiment, the skew ray
caustic appears as two additional glare spots on the
droplet. These additional glare spots lie above and
below the midplane glare spots or appear as an arc of
light along the edge of the droplet extending upward
and downward from the rainbow glare spot. The ef-
fect of skew rays on rainbow formation has been ob-
served 8 and analyzed 8"14"15 for the m = 1 rainbow for
oblate spheroidal water droplets.

Since the present scattering experiment is per-
formed on a pendant water droplet, care must be taken

to insure that the droplet aspect ratio is such that skew
ray caustic formation does not occur. Otherwise any
rainbow enhancement due to scattering resonance-
orbiting ray coupling that might be present would be
masked by the catastrophe caustic produced by the
interference of horizontally emerging skew rays with
the horizontal midplane rays. For the prolate spheroi-
dal geometry, skew rays making only one internal re-
flection within the droplet cannot exit it parallel to the
midplane. However, skew rays can emerge parallel to
the midplane after m 2 2 internal reflections. In the
vicinity of the m 2 2 rainbows, the midplane rays that
form the R(m) and Rim) glare spots enter the droplet
near its outer edge. The paths of the skew rays which
enter the droplet near its outer edge but above or below
the midplane were calculated for 2 < m < 11 internal
reflections. In this calculation, the incident light rays
were parallel to the z axis and intersected the droplet of
Eq. (1) at

x=asin#=a -2)'

(2)

where o << 1, 60 << 1, and eo S - ( 0/4). To first order
in eo, the aspect ratios of the droplets whose skew rays
of Eq. (2) emerge horizontally after m internal reflec-
tions are given in Table I. To first order in 30 and eO,
the deviation angle of the skew ray in the horizontal
plane A(m) is found to beA(m) = Whm) + (2m + 2)[6 -( - )1]' (3)

where Am) is the deviation of the corresponding mid-
plane ray which enters the droplet at

x = a ina,

y =0,
z = -a cos;.

(4)

For pendant water droplets with aspect ratios of the

Table 1. Aspect Ratios of Pendant Droplets for which Skew Rays Enter
Above or Below the Mldplane near Its Outer Edge, Make m Internal

Reflections Within the Droplet, and Exit Parallel to the Midplane

m a/b m a/b

1 -

2 0.7576 3 0.5799

4 0.8907 5 0.7576
0.4683 0.3922

6 0.9448 7 0.8418
0.6575 0.5799
0.3372 0.2956

8 0.9740 9 0.8907
0.7576 0.6880
0.5183 0.4683
0.2631 0.2371

10 0.9921 11 0.9224
0.8193 0.7576
0.6295 0.5799
0.4270 0.3922
0.2156 0.1977
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order of a/b 0.9, it is seen from Table I that skew rays
affect the even-order rainbows more severely than
they do the odd-order ones.

Using a polar nephelometer to measure the scattered
intensity in the droplet midplane, Sassen7 conjectured
that skew rays contributed to the following features of
the scattered intensity that he observed: (1) the ratio
of the intensity of the second-order rainbow to the
intensity of the first-order rainbow R(2)/R(l) increased
as the horizontal droplet radius a increased; (2) for
large a, there was a strong enhancement of the R(3) +
R(4) rainbow; (3) R(6) was surprisingly strong for both
large and small droplets; (4) no R 5 ) or R(7) rainbow
structure was observed; and (5) enhanced depolarized
scattering was observed in the angular interval 80 00
< 100° for large droplets, and for different drops the
enhanced depolarized scattering was seldom encoun-
tered in the same angular positions. The results of
Table I and Eq. (3) demonstrate the importance of
horizontally emerging skew rays in producing these
features. Since the aspect ratio decreases as the drop-
let diameter increases and since a/b - 0.89 for a = 1.4
mm, features (1)-(3) may be explained in terms of
enhanced R(2), R(4), and R(6) scattering along the hyper-
bolic umbilic caustic axis for o << 6 when the aspect
ratio of the droplet is near the values given in Table I.
This enhancement is more difficult to observe in R(8);
R(10), and R(12), since these rainbows appear near the
forward scattering or backscattering directions. Fea-
ture (4) is consistent with the fact that the aspect ratio
of the droplet must be quite small to enhance an odd-
order rainbow rather than an adjacent m even-order
rainbow. When modeled as a sphere, the intensity of
the light scattered from the droplet midplane pos-
sesses a broad relative minimum for 900 00 1100.
In the vicinity of the fourth-order rainbow, 60 = 0.18
and A(4) = 402.740. With these values, feature (5) may
be explained in terms of weakly enhanced R(4) scatter-
ing for eo 0.86o. At the appropriate aspect ratio,
these skew rays exit the droplet parallel to the mid-
plane near 00 90°, thus filling in the relative mini-
mum of the Mie sphere intensity in that interval. For
very large water droplets, weakly enhanced R(2) scat-
tering may also play a role for EO 0.86o since near the
second rainbow 5 = 0.31 and A(2) = 230.40°. The
variability of the angular position of feature (5) may
well reflect a variability of the aspect ratio from drop-
let to droplet.

If a pendant droplet can remain near spherical in
shape, a/b 1 and higher-order caustic formation
should not occur in conjunction with the odd-order
rainbows. To produce near spherical droplets, water
droplets were formed on the 2.5-mm diam base of a
glass pipet rather than on the 0.75-mm diam hypoder-
mic syringe as had been the case in Refs. 4, 7, and 9.
The resulting aspect ratios of the droplets suspended
in this way were a/b 0.94. To minimize the possibili-
ty of producing higher-order rainbow caustics due to
skew rays, it was decided to examine the non-Debye
enhancement of odd-order rainbows only.

Because the different-order Debye term glare spots
are produced by stationary phase portions of the par-
tial wave sum, they are equally visible in both tempo-
rally coherent and incoherent illumination. The non-
Debye enhancements are produced by a different
mechanism, namely, by having many terms of the in-
ternal reflection series for the resonant partial wave,
corresponding to different path lengths, in construc-
tive interference with each other. For a droplet whose
diameter is a few millimeters, the incident plane wave
must be temporally coherent over a length of a few
millimeters as well to insure that the phase of each of
the terms of the internal reflection series has its proper
value. This coherence length restriction requires that
laser light be employed in the search for non-Debye
enhancements. They will not appear in temporally
incoherent light such as from an incandescent light
bulb. In the present experiment, we employed the
light from a He-Ne laser for which

X = 0.6328,um,

and the index of refraction of water is

n = 1.3317.

(5)

(6)

In the visual observations reported by Walker,4 9 he
described a surprisingly bright R(11) rainbow when illu-
minating the droplet with the temporally incoherent
light from a slide projector lamp. His enhanced elev-
enth-order rainbow turns out to be produced by the
skew ray hyperbolic umbilic caustic. The droplet used
in his observations had an aspect ratio of a/b 0.87,
and photographs of his eleventh-order rainbow show it
to consist of a glare spot in the droplet midplane and
two additional glare spots 0.4 mm above and below the
midplane.11 Although these three 'glare spots are
clearly resolvable on photographs of the droplet, they
are too close together and too bright compared to their
dark surroundings to be resolved by visual observa-
tions. Visually they give the impression of a single
bright glare spot.

From numerical calculations it was found that, al-
though the non-Debye enhancements occur in con-
junction with all the high-order rainbows, the strength
of the enhancement slowly increases as m increases.
This is probably a result of the R(m) orbiting ray rela-
tive minimum of the phase of the scattered amplitude
becoming stronger and more well defined as m in-
creases and thus providing a more stable structure for
resonant partial waves to couple onto. Of the odd-
order rainbows for which skew ray caustics should not
be problematical for a near spherical drop, it was de-
cided to search for the non-Debye enhancement with
m as large as possible, i.e., for R(11) at 00 = 90°. The m
= 13 rainbow was not considered since this rainbow
glare spot overlaps the much brighter transmitted ray
glare spot. Although Table I shows that aspect ratios
in the vicinity of a/b 0.92 will produce the skew ray
caustic which can obscure the non-Debye enhance-
ment of R(11), the wide pipet base produces droplets
with aspect ratios substantially larger than those used
by Walker for which the skew ray caustic was observed.
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Thus skew ray caustics should be able to be avoided for
the geometry of the present experiment.

We define the 1 polarization state of the normally
incident plane wave as the geometry where the inci-
dent electric field is parallel to the pendant droplet
symmetry axis and the 2 polarization state as the ge-
ometry where the normally incident electric field is
perpendicular to it.16 The various-order Debye term
rainbow glare spots are known to be strongly polarized
in the 1 state.4 7 Near 900, the direct reflection glare
spot is also strongly polarized in the 1 state. Since the
R(Ml) non-Debye glare spot at 900 is expected to occur
on the droplet surface near the much brighter direct
reflection glare spot G and the two-internal-reflection
glare spot R,(), it might well be obscured by them
unless these brighter glare spots can be suppressed.
Mie calculations for the spherical geometry show that
at 00 900, the non-Debye glare spot is nearly unpolar-
ized, but the direct reflection glare spot is 18 times less
intense in the 2 state than in the 1 state and the two-
internal-reflection glare spot is 30 times less intense in
the 2 state. Thus to minimize the brightness of the
unwanted nearby glare spots when searching for the
non-Debye enhancement, we used only the 2 polariza-
tion state of the incident laser light.

For the parameters

0o= 90.00,

a 1.75 mm,

A = 4.80,

(7)

(8)

(9)

where At is the range of observation angles subtended
by the focusing lens, and for the numerical values given
in eqs. (5) and (6) the square of the Fourier transform
of the Mie electric field convolved with the observer's
aperture function was calculated as a function of spa-
tial frequency for the 2 polarization. Graphs of such
Fourier transform spectra when the scattering reso-
nance-orbiting ray coupling is at its maximum and
minimum strength are shown in Figs. 1 and 2, respec-
tively. Similarly, for

00 = 84.00, (10)

away from the eleventh-order rainbow location, the
square of the Fourier transform of the Mie electric
field convolved with the observer's aperture function
was also calculated as a function of spatial frequency
for the 2 polarization. This spectrum was found to be
independent of a and is shown in Fig. 3. The area
under each of the glare spot enhancements in these
figures compared with the area under the direct reflec-
tion glare spot at 00 = 900 is given in Table II. In this
table, the entry R(")(90)/G(90') is the area under the
enhancement produced by the geometric eleven-inter-
nal-reflection portion of the scattering amplitude
alone. Since Figs. 1-3 describe the intensity profile
along a 1-D slice through actual 2-D glare spots, com-
parisons of the power present in actual glare spots
require that the squares of the ratios given in Table II
be used.

e0.

20

ILe

o L
-350 0 350

p (degrees-1 )

Fig. 1. Square of the Fourier transform of the Mie scattered field
convolved with the observer's aperture function for the 2 polariza-
tion state and plotted as a function of the spatial frequency p for 0 =
90.00 and a = 1749.987,m. G is the direct reflection glare spot, R.
is one of the two-internal-reflection glare spots, and J is the non-
Debye enhancement of the RM) glare spot at maximum strength.

The edges of the droplet are at p = 1 303.27 deg-'.

20

10

-350 0 350

p (degrees'")
Fig. 2. Square of the Fourier transform of the Mie scattered field
convolved with the observer's aperture function for the 2 polariza-
tion state and plotted as a function of the spatial frequency p for 0 =
90.00 and a = 1750.002um. G and R(2) are as in Fig. 1 and J is the
non-Debye enhancement of the Rl) glare spot at minimum

strength.

Since a strong resonance is produced for about every
0.01-,gm increase or decrease in a, the natural evapora-
tion rate of the droplet10 causes -33 resonances/s to
couple one after the other to high-order rainbow orbit-
ing rays. As a result, the intensity of the J glare spot
oscillates back and forth between the maximum and
minimum conditions such as those shown in Figs. 1 and
2. The resulting time averaged area under the non-
Debye glare spot during a long exposure period and
assuming a uniform evaporation rate is given by the
entry in Table II labeled Jave(900 )/G(90'). The time
averaged non-Debye glare spot area of Table II is 22.4%
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10

'a

U

5

-350 0

p (degrees-')
Fig. 3. Square of the Fourier transform of the Mie scattered field
convolved with the observer's aperture function for the 2 polariza-
tion state and plotted as a function of the spatial frequencyp for O0 =
84.00 and a = 1750.000,um. G and R(2) are as in Fig. 1 and T is the

transmitted ray glare spot.

higher than that obtained from the geometrical elev-
enth-order rainbow alone.

111. Experimental Procedure

A block diagram of the experimental setup is shown
in Fig. 4. The output beam of a model 159 Spectra-
Physics 10-mW. He-Ne laser was spatially filtered.
It was then expanded to a beam diameter of 75 mm and
collimated by a second lens. The expanded beam was
aligned so that there was no beam drift in either the
horizontal or vertical directions. The beam was then
passed through a polarizing filter oriented in the 2
polarization state as described in the previous section.
A pipet with a 2.5-mm base was filled with normal tap
water that had been allowed to stand for one month in
a closed container to degas. The pipet was vertically
mounted on a lab stand in a cardboard box with one
open side. A water droplet with a horizontal diameter
of -3.5 mm was formed and suspended from the lower
end of the pipet. The evaporation rate of the droplet
was measured to be comparable with that of the con-
trol drop of Ref. 10. Both the pipet and inside surfaces
of the box had been spray-painted flat black to reduce
spurious reflections within the box. Enclosing the
droplet within the box prevented its illumination by
light sources other than the laser. The box further

Table II. Ratios of the Areas Under the Glare Spot Enhancements of Figs.
1-3

Oo = 84.00 Oo = 84.13° Oo = 90.0°
G(Oo)/G(900 ) 0.4196 0.4305 1.0000
R(1)(0)/G(900) 0.0323 0.0333 0.0215
T(0 0)/G(90 0 ) 0.0360 0.0328 -
R"1(0o)/G(900 ) - - 0.0424
Jmin(0o)/G(900 ) - - 0.0289
Jma(0o)/G(900 ) - - 0.0761
Jave(0o)/G(900 ) - - 0.0519

L F E P
n | En. .0

I _VTU _

co
Fig. 4. Output beam AA' of a He-Ne laser L is spatially filtered by
the pinhole filter F, expanded and collimated by the second lens E,
and polarized by the polarizing filter P. It passes through entrance
and exit holes H, and H2 of the box B. Light scattered from the
water droplet D in the direction of the observation angle 00 is inci-

dent on the camera lens C.

protected the droplet from vibrations caused by air
currents in the room.

After a horizontal traverse of 7 m, the central portion
of the expanded laser beam entered the box through a
hole cut into one side and exited through an oversized
hole cut into the opposite side. To avoid illuminating
the pipet, the bottom of the pipet was lined up with the
top of the beam entrance hole. The illuminated drop-
let was photographed on an Ektachrome 400 color slide
film with a tripod-mounted Canon AE1 SLR camera
equipped with an antireflection coated Tamron model
28A zoom lens. The camera was positioned at the
open side of the box enclosure 10 cm from the droplet
at observation angles of 00 = 90 1 and 00 = 84 ± 10.
The camera f-stop was adjusted so that the effective
lens diameter subtended an angle of ,S, = 4.80. The
center of the camera's focusing ring was aligned with
the midplane of the pendant drop to ensure that the
camera received the light scattered by the droplet mid-
plane. Once the camera was positioned, aligned, and
focused on the droplet, the room lights were extin-
guished and time exposure photographs of from 20 to
120 s of the illuminated droplet were taken. After the
slides were developed, they were placed in a slide pro-
jector and focused onto a viewing screen 13 m away.
The viewing screen was then replaced by an HAD-
1100A photodiode/operational amplifier, 7 and the
power in each glare spot was measured. In determin-
ing the glare spot power that exposed the color slide
film, the film nonlinearity and photodiode nonlinear-
ity were measured and compensated for.

IV. Results and Discussion

Photographs of a 3.5-mm diam illuminated pendant
water droplet taken at observation angles of 00 = 90 ±
10 and Oo = 84 1 are shown in Figs. 5 and 6, respec-
tively. The photograph of Fig. 5 qualitatively exhibits
the glare spot structure predicted in Figs. 1 and 2. The
glare spots G and Ra , which are separated by 0.16 mm
on the droplet, are clearly resolvable. A glare spot is
also observed at the location of the J, and no additional
glare spots attributable to skew rays appear above or
below it. Thus we are assured that none of the intensi-
ty of the J is due to the hyperbolic umbilic caustic
which would have likely occurred had the droplet as-
pect ratio been smaller. Similarly we believe it to be
unlikely that any of the J glare spot intensity is an
artifact created by spurious reflections within the cam-
era itself. As mentioned earlier, the Tamron zoom
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Fig. 5. Glare spots on the droplet midplane at an observation angle
of 0o = 90 ± 10. The droplet diameter was 3.5 mm, and the exposure

time was 120 s.

Fig. 6. Glare spots on the droplet midplane at an observation angle
of 00 = 84 + 1. The droplet diameter was 3.5 mm, and the exposure

time was 60 s. -

lens employed is antireflection coated and its mount
has flat back surfaces. Spurious reflections often take
the form of caustics, diffraction halos, or diffraction
spikes.18 No such structures were seen at any location
on any of the photographs. For the longest exposures
and without the polarizing filter in place, diffraction
spikes began to form only on the brightest glare spot G.
Any veiling glare that might have been present and
would have covered the glare spots would also have
been present in the background and was subtracted
out in the analysis of the photodiode data. The photo-
graph of Fig. 6 qualitatively exhibits the glare spot
structure predicted in Fig. 3. The glare spots G, R(2)
and T are clearly visible. The glare spots at the top of
Figs. 5 and 6 are associated with the connection of the
neck of the pendant drop to the base of the pipet.
These glare spots had a similar appearance in each of
the forty-five photographs.

Measurements of the power in each of the glare spots
produced three significant results. First, in the neigh-
borhood of 00 = 84°, the ratio G(0O)/G(900 ) of Table II
is a rapidly varying function of 0. Thus the power
measured in the G glare spot can be used as a check on
the angular positioning of the camera. Assuming that
the ratio of the powers in the glare spots is proportional

to the square of G(0o)/G(90') of Table II, the experi-
mental power ratio of 0.185 0.006 was found to be
within 5.2% of the result predicted for the camera
positioned at 00 = 84.00. If the experimental value of
the power ratio for the direct reflection glare spots at 00
and 900 were instead used to determine independently
the observation angle 0 of the camera, we obtain 00 =
84.13 ± 0.09°. The numerically calculated area under
the glare spots G, R(2), and T for 00 = 84.130 is given in
Table II.

The second result concerns the comparative
strengths of R(2) and T. For the index of refraction of
Eq. (6), the scattering angle of the critically refracted
transmitted ray is 00 = 82.66°. For scattering angles
beyond this critical value, the strength of the transmit-
ted ray rapidly dies off mirroring the Fock transition of
the corresponding scattering amplitude. For a nomi-
nal scattering angle of 00 = 84.0° and with the angular
width of the camera lens being given by Eq. (9), the
camera receives light from scattering angles in the
81.60 • 0 86.40 range. As a result, the power in the T
glare spot is a rapidly decreasing function of 00 as is the
ratio T(Oo)/R(2)(0o). This ratio, along with the direct
reflection glare spot ratio previously described, serves
as a sensitive test of the accuracy of the recording and
measurement of the glare spot powers. For 00 = 84.13°
as deduced from the previous glare spot ratio, the
square of the ratio T(0o)/R(2)(00) from Table II is 0.97.
The experimentally determined ratio of the power in
the T glare spot in Fig. 6 to the power in the R(2) glare
spot was found to be 1.01 + 0.07 in agreement with the
theoretical value. Alternatively, if the experimental
value of this ratio were used to obtain an independent
evaluation of 00, we obtain 0 = 84.11 i 0.03°.

The third result concerns the strength of the J glare
spot. As shown in Sec. II, if scattering resonances
couple the orbiting ray associated with the eleventh-
order rainbow and if the evaporation rate of the drop is
constant, the power in the J glare spot should be 1.50
times as large as it would have been for the geometrical
eleventh-order rainbow alone. The measured power
in the J glare spot was compared with the measured
powers in the ka2) (84.130) and T (84.130) glare spots,
since the power in the R(2) (900) glare spot could not be
reliably determined due to its proximity to G(900).
Using these results, the measured power in the J(900 )
glare spot was 1.36 0.15 of the expected eleventh-
order rainbow power. This result provides evidence
for our having observed the scattering enhancement
caused by the coupling of a sequence of scattering
resonances to the eleventh-order rainbow orbiting ray.

The experiments of Ref. 10 show that the evapora-
tion of a pendant droplet is a complicated phenome-
non. Although the time averaged evaporation rate is
uniform, there are short-lived fluctuations in the evap-
oration rate. When the droplet radius is such that a
scattering resonance occurs, the resonance stores a
large amount of electromagnetic field energy within
the droplet. If this resonant energy storage temporar-
ily increases the evaporation rate, one might find that
the evaporation rate is slightly larger on-resonance and
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slightly smaller off-resonance. If this were the case,
the time averaged value of Jave(900 )/G(90') would be
slightly lower than the value given in Table II. Our
determination of the measured power in the J(900 )
glare spot is consistent with such a lowering of the
Jave(900 )/G(900 ) ratio. The uniformity or nonunifor-
mity of the evaporation rate could be tested if the
oscillations in the J(90 0 ) glare spot power were mea-
sured as a function of time. Experiments which mea-
sured resonant fluctuations in the radiation pressure
have been performed on smaller droplets.19 Thus the
time resolved observation of non-Debye scattering en-
hancements could serve as a test of various evapora-
tion models.

The authors thank Jearl D. Walker for making his
rainbow slides available to us. We also thank Robert
C. Anderson of NASA Lewis Research Center and
Edward A. Hovenac of Sverdrup Technology, Inc. for
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