3-2011

Unionid Mussels from Nearshore Zones of Lake Erie

Todd D. Crail
University of Toledo, todd.crail@utoledo.edu

Robert A. Krebs
Cleveland State University, r.krebs@csuohio.edu

David T. Zanatta
Central Michigan University, zanat1d@cmich.edu

Follow this and additional works at: https://engagedscholarship.csuohio.edu/scibges_facpub

Part of the Biology Commons

How does access to this work benefit you? Let us know!

Publisher's Statement

NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Great Lakes Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Great Lakes Research, 37, 1, (March 2011) DOI 10.1016/j.jglr.2010.12.006

Recommended Citation

This Article is brought to you for free and open access by the Biological, Geological, and Environmental Sciences Department at EngagedScholarship@CSU. It has been accepted for inclusion in Biological, Geological, and Environmental Faculty Publications by an authorized administrator of EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.
Unionid mussels from nearshore zones of Lake Erie

Todd D. Crail a,*, Robert A. Krebs b, David T. Zanatta c

a Department of Environmental Sciences, University of Toledo, OH, USA
b Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
c Department of Biology, Central Michigan University, Mount Pleasant, MI, USA

Introduction

Upon invading the productive lakes Erie and St. Clair, Eurasian dreissenid mussels (Bivalvia: Dreissenidae) killed off many native unionid mussels (Bivalvia: Unionidae) by fouling (Ricciardi et al., 1998) and out-competing the native species for food (Parker et al., 1998; Baker and Levinton, 2003). This process began soon after their detection in 1986 (Herbert et al., 1989; Schloesser and Nalepa, 1994), although prior to the introduction of dreissenids, unionid mussel communities were evidently already declining in diversity and abundance across the region (Nalepa and Gauvin, 1988; Nalepa et al., 1991; Metcalfe-Smith et al., 1998; Krebs et al., 2010).

Following the dreissenid introduction, a number of studies documented the progressive loss of local populations of unionids in the Great Lakes (Schloesser and Nalepa, 1994; Gillis and Mackie, 1994; Nalepa et al., 1996; Ecological Specialists, 1999) and connecting rivers (Ricciardi et al., 1996; Schloesser et al., 2006), but several coastal marsh refuges were identified in Lake Erie. The best documented are Metzger’s Marsh (Nichols and Wilcox, 1997; Nichols and Amberg, 1999), Crane Creek at the Ottawa National Wildlife Refuge (Bowers and de Szalay, 2004 and others) and Thompson Bay (Presque Isle, PA; Schloesser and Mateller, 1999). Nearshore refuges also were identified in the St. Clair River delta of Lake St. Clair (Zanatta et al., 2002; McGoldrick et al., 2009) and along the Michigan coast of Lake Erie (Schloesser et al., 1997; Shackelford et al., 2009). The hope was that these refuges in combination with unimpacted riverine refuges could someday provide brood stock for colonizing a wider range of lake environments should the influence of dreissenids decline.

Two major impediments to locating native mussels in large, productive lakes are water clarity and depth. For example, 95% of visible light is attenuated within a depth of 1.5 m in Maumee Bay and other nearshore sites in the southwestern end of Lake Erie (Bridgeman and Pennamon, 2010). Given such limitations, we performed preliminary surveys of Lake Erie’s extant unionid fauna by two approaches. The first took advantage of naturally occurring low pressure, west wind-generated seiches that create periodic low water levels. The amount of water displaced can be substantial: a seiche dropped water levels 1.6 m (64 in.) below the low water mark on December 10, 2009 (Lake Erie water level gauging station at Toledo; U.S. National Oceanographic and Atmospheric Administration, 2010). However, such searches are largely limited to the western edges of Lake Erie and Sandusky Bay. A second approach was extensive beach and shallow nearshore surveys. We focused on identifying fresh dead and/or live mussels washed up after storms in areas where public access was low. Using these surveying methods, we found a surprising number of unionids (both individuals and species), and wish to discuss our results to create awareness that this native fauna may be found in areas of the lake beyond the documented refuges.

* Corresponding author. Department of Environmental Sciences, MS 604, University of Toledo, Toledo, Ohio, USA 43606.
E-mail addresses: todd.crail@utoledo.edu (T.D. Crail), R.KREBS@csuohio.edu (R.A. Krebs), zanatta1@cmich.edu (D.T. Zanatta).
Methods

We surveyed the nearshore (within 500 m of the bank) for live unionids after natural seiches occurred on five different occasions (Fig. 1). Search methods varied in each seiche survey based on available time before water returned and type of substrate, as soft mud restricted movement: November 29, 2007 at Bayshore Road, Lucas County, OH (20-min timed search, one searcher) and Winous Point, Ottawa County, within Sandusky Bay (20-min timed search, one searcher); September 10, 2008, at Bayshore Road and Maumee Bay State Park (small seiche, search limited to 30 min in the wave zone at each location, one searcher), Lucas County, OH; September 28, 2009, Bayshore Road and Maumee Bay State Park (30-min timed search, one searcher); September 29, 2009 at Luna Pier, Monroe County, MI (60-min timed search, two searchers). On December 10, 2009, we again sampled at Bayshore Road, however this time we estimated mussel density. Four random 100 m² quadrat sites were surveyed by sight during this seiche. Location was determined by throwing a meter stick and creating a 10×10 m perimeter using the center of the stick as the centroid for the quadrat. All individuals were found by sight or touch, collected, measured and returned. Substrate consisted of shell (Corbicula fluminea and Dreissena sp.) and sand, coated by fine muck. No attempt was made to quantify the contribution of substrate sizes within the samples.

Beach and estuary surveys were conducted at numerous sites between 2004 and 2009 (Fig. 1). In each case, searches covered all accessible waterfront areas and shallow inlets and marshes adjacent the lake. As the focus was a qualitative assessment of the evidence for mussels, no attempt was made to restrict search times or to make them uniform across substrates and shoreline environment of very different character. Basically, a maximum available effort was applied at each site to find live mussels and recently spent shells.

Results

We identified 16 unionid species still living in or near Lake Erie, including sites in the western and the central basins (Table 1). At six sites live unionid mussels occurred in the lake (Fig. 1): Luna Pier, Bayshore, Maumee Bay, Crane Creek shoreline, East Harbor State Park, and Winous Point in Sandusky Bay. Each of these observations consisted of live individuals from two to eight species, some of which are Ohio and Michigan state-listed species: Obliquaria reflexa, Uniomerus tetralasmus, Truncilla donaciformis, and Truncilla truncata occurred at multiple sites, and one live individual of Ligumia nasuta (state endangered) was found at the Bayshore Site. The most common species were Leptodea fragilis and Pyganodon grandis, both of which occurred at most sites. Numerous species were found only in weathered condition (degraded periostracum and nacre, partial shell pieces, etc.), and these were not recorded. More live individuals were observed following seiche events. For example, at the Bayshore site in 2007, we found 34 individuals representing three species in our 20-min timed search. Most were L. fragilis (N = 28, mean shell length 74 ± 18.5 mm SD) with individuals as small as 29 mm. Rates of Dreissena infection were less than ten per individual, except for a 109 mm L. fragilis with 19 Dreissena attached. During the smaller events at Bayshore in 2008, we recovered 32 individuals again dominated by L. fragilis (mean shell length was 55 ± 19.9 mm SD). At Maumee Bay State Park the same day, 18 L. fragilis were found (mean shell length was 38 ± 24.4 mm SD) and the smallest individual was 16 mm. All individuals recovered were clear of Dreissenia. Beach surveys at Cedar Point (Fig. 1) produced a similar number of L. fragilis shells that averaged 71 mm (N = 33) and P. grandis shells of 76 mm (N = 5); growth lines suggested an age of no more than three for most individuals. By contrast, one old L. fragilis shell from the Old Woman Creek estuary was 154 mm long, and most P. grandis from this estuary fell in the 130–140 mm size range. Density of mussels was estimated only once. Applying four random 100 m² quadrats sites at a Bayshore seiche (December 10, 2009), we collected three species, L. fragilis, P. grandis, and Amblema plicata—in order of decreasing abundance, with a mean overall density of 0.09 unionids/m² (N = 36 or 9 ± 3.6 per quadrat).

Discussion

Native freshwater mussels (Unionidae) live in Lake Erie despite abundant dreissenid populations. L. fragilis and P. grandis appear to be common in some nearshore zones based either on live animals found during seiches or on numerous fresh shells washed up along the shore. Both native species are thin shelled, fast growing mussels, and their presence is consistent with past findings, as L. fragilis has

![Fig. 1. Sites where live or fresh dead unionid mussels have been recovered in Lake Erie after the invasion of dreissenid mussels. Stars denote sites for live mussels in the lake, circles denote sites for live mussels in marshes, and squares denote sites where only fresh dead shell has been collected.](image-url)
demonstrated resilience against dreissenid infestation in Metzger Marsh (Nichols and Amberg, 1999). However, evidence of 14 other species also suggests that the unionid communities of Lake Erie may be diverse even if in low abundance.

The question now is whether these communities are self-sustaining in the presence of the dreissenid mussels. Recovery of multiple age classes (based on variable size and many small individuals) suggests recruitment occurs at least for L. fragilis, P. grandis, A. plicata and Potamillus alatus. While lacking quantitative density data beyond the Bayshore site (0.09 unionids/m²), our qualitative observations suggest that densities among other sites are similar and consistent with reported densities of 0.03–0.12 unionids/m² in the St. Clair Delta (McGoldrick et al., 2009).

Some of our observations also suggest processes for the persistence/return of unionids in the nearshore. Bowers and De Szalay (2004) found that abundances of dreissenids fouling unionids were extremely limited at shallower depths of Crane Creek. Unionids retained byssal threads of dreissenids that had at one point colonized the animal but were subsequently lost. They suggest that fluctuating water levels stress dreissenids more than unionids, and McMahon (1996) found that exposure to freezing conditions can kill dreissenids. Abundances of dreissenids on rocks and logs declined following seiches when freezing occurred (TC, unpublished data). Under such circumstances, shallow-water debris may become devoid of dreissenids until spawning occurs the following year. Furthermore, dreissenids in shallow water are more vulnerable to predation from waterfowl (Werner et al., 2005), as well as predation by Orconectes crayfish (Perry et al., 1997), turtles (Serroyu et al., 1995; Patterson and Lindeman, 2009) and a variety of fish (French and Love, 1995; Tucker et al., 1996; Molloy et al., 1997; Thorp et al., 1998; Magoullick and Lewis, 2002; Pothoven and Nalepa, 2006; Bowers and de Szalay, 2007).

Acknowledgements

Student stipend support to TC by a fellowship from the NSF GK-12 program # 0742395 "Graduate Fellows in High School STEM Education: An Environmental Science Learning Community at the Land-Lake Ecosystem Interface” through the Lake Erie Research
Center. The Winous Point Marsh Conservancy is also acknowledged along with a small grant to RK from the Cleveland Zoo. We would like to thank Tim Herman of The Toledo Zoo for bringing the population at the Bayshore site to our attention, Maria Herman and Philip Mathias for their help in the field during seine events and the associated adverse weather conditions, Jeff Pallotta and Paul Doerder for their assistance in marsh surveys and beach combing, and Hans Gottgens for thoughtful feedback. This is contribution 2011-02 from the Lake Erie Center.

References

Magoulick, D.D., Lewis, L.C., 2002. Predation on exotic zebra mussels by native freshwater mussels (Bivalvia: Unionidae) in Lake Erie near the Bass Islands and southwest shore. 98-015. Ohio Division of Wildlife, Department of Natural Resources, Columbus, OH.

