Cleveland State University EngagedScholarship@CSU

Undergraduate Research Posters 2015

Undergraduate Research Posters

2015

Enhancement of Solar Energy Conversion in Bio-derived Cells via Side Selective Modification of Photosystem I

Uchechukwu Obiako Cleveland State University

Evan Gizzie *Cleveland State University*

Follow this and additional works at: https://engagedscholarship.csuohio.edu/u_poster_2015

Part of the Life Sciences Commons, Medicine and Health Sciences Commons, and the Physical Sciences and Mathematics Commons How does access to this work benefit you? Let us know!

Recommended Citation

Obiako, Uchechukwu and Gizzie, Evan, "Enhancement of Solar Energy Conversion in Bio-derived Cells via Side Selective Modification of Photosystem I" (2015). *Undergraduate Research Posters 2015*. 39. https://engagedscholarship.csuohio.edu/u_poster_2015/39

This Book is brought to you for free and open access by the Undergraduate Research Posters at EngagedScholarship@CSU. It has been accepted for inclusion in Undergraduate Research Posters 2015 by an authorized administrator of EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.

Enhancement of Solar Energy Conversion in Bio-derived Cells via Side Selective Modification of Photosystem I

College of Sciences and Health Professions

Student Researchers: Uchechukwu Obiako and Evan Gizzie

Faculty Advisor: Dr. David Cliffel, Vanderbilt University

<u>Abstract</u>

Deleterious effects of some methods used to harness energy from the environment today have garnered the exploration of safer and more reliable options, specifically solar energy conversion. Current solar cell technology has yielded quantum efficiencies commonly in the range of 10-20% but is limited by extensive processing methods, high cost, and need for rare materials. However, bio-derived solar cells containing Photosystem I (PSI) address these problems as PSI is highly abundant, very efficient, and low-cost. PSI acts as a biomolecular photodiode through rapid photoexcited charge separation, making it very promising for use as an integral element in solar cells. To further improve the efficiency of bio-derived cells, controlling the orientation of PSI films on gold substrates was explored. This was achieved by side-selectively modifying PSI to introduce terminal thiol groups to the protein complex thereby providing a vector of self-assembly onto the gold surface. Spinach thylakoid membranes containing PSI were extracted and chemically modified using the ligands: sulfo-N-succinimidyl Sacetylthioacetate and 2-iminothiolane. As a result, the functionalized PSI underwent direct surface coupling on gold electrodes in an inverted orientation. Fluorescence was used to quantify ligand attachment to PSI. tagging Additionally, photoelectrochemical analysis revealed an enhancement in photocurrent produced by the modified biohybrid electrodes.

*Supported by the McNair Scholars Program