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THE IMPACT OF DATA IMPUTATION METHODOLOGIES  

ON KNOWLEDGE DISCOVERY 
 

MARVIN L. BROWN 
 

ABSTRACT 
 
 The purpose of this research is to investigate the impact of Data Imputation 

Methodologies that are employed when a specific Data Mining algorithm is utilized 

within a KDD (Knowledge Discovery in Databases) process. This study will employ 

certain Knowledge Discovery processes that are widely accepted in both the academic 

and commercial worlds. Several Knowledge Discovery models will be developed 

utilizing secondary data containing known correct values. Tests will be conducted on the 

secondary data both before and after storing data instances with known results and then 

identifying imprecise data values. One of the integral stages in the accomplishment of 

successful Knowledge Discovery is the Data Mining phase. The actual Data Mining 

process deals significantly with prediction, estimation, classification, pattern recognition 

and the development of association rules.  Neural Networks are the most commonly 

selected tools for Data Mining classification and prediction. Neural Networks employ 

various types of Transfer Functions when outputting data. The most commonly employed 

Transfer Function is the s-Sigmoid Function. Various Knowledge Discovery Models 

from various research and business disciplines were tested using this framework.  

 

However, missing and inconsistent data has been pervasive problems in the history of 

data analysis since the origin of data collection. Due to advancements in the capacities of 

data storage and the proliferation of computer software, more historical data is being 
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collected and analyzed today than ever before. The issue of missing data must be 

addressed, since ignoring this problem can introduce bias into the models being evaluated 

and lead to inaccurate data mining conclusions.  The objective of this research is to 

address the impact of Missing Data and Data Imputation on the Data Mining phase of 

Knowledge Discovery when Neural Networks are utilized when employing an s-Sigmoid 

Transfer function, and are confronted with Missing Data and Data Imputation 

methodologies. 
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CHAPTER I 
 
 

INTRODUCTION 
 

 
1.1  Background 
 

As hardware capacity continues to grow at an increasingly affordable rate, the 

ability to house large volumes of case frequencies involving historical data in VLDB’s 

(very large databases) is now possible. Software engaged to process these large volume 

data sets of increased case frequencies has recently been developed to aid the knowledge 

worker in an attempt to discover previously unknown patterns in that data (Fayyad 2001). 

When Data Mining was first introduced, it was defined as “the application of 

Pattern Recognition Algorithms to large volumes of data to discover hidden patterns in 

the data not previously known” (Fayyad, 1996).Data mining is based upon searching the 

concatenation of multiple databases that usually contain some amount of missing data 

along with a variable percentage of inaccurate data, pollution, outliers and noise. The 

overall goal of the data mining process deals significantly with prediction, estimation, 

classification, pattern recognition and the development of association rules. Figure 1.1 
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illustrates the original data mining concept, while Figure 1.2 depicts the application of the 

scientific method to data mining.    

 

Figure 1.1     Simple Data Mining 
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1.2  Knowledge Discovery In Databases 

       Since the advent of low-cost hardware and software to house and support high-

volume historical data sets, a focus in the area of decision support has shifted to that of 

data warehousing and knowledge discovery. In addition,  the technological advancements 

not only in data storage facilities and high-speed retrieval and processing mechanisms,  

but also  advancements in pattern recognition software has given rise to new niches in 

areas of Knowledge Discovery. Furthermore, “old” data sets may now be utilized by 

modern applications (Loshin, 2004, p. 1).  
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Initially described as simply “data mining”, Knowledge Discovery in Databases 

(KDD) is now described as applying the scientific method to data mining methodology 

(Roiger and Geatz, 2003, p. 150). As the application of Data Mining to large data sets 

became more widely practiced, the process was decomposed into a series of logical 

procedures. KDD is a process that can be utilized to identify and provide the use of 

previously undiscovered patterns and relationships within a large data warehouse 

containing historical data for an organization. Although various authors and researchers 

have decomposed the KDD process into a variable number of categories (some as many 

as fourteen steps or procedures), the following are a widely accepted series of procedures 

has been identified for use in the Knowledge Discovery process: 

• Data Selection 

• Data Cleansing 

• Data Enrichment 

• Data Coding 

• Data Mining 

• Reporting and Interpretation 

 

A growing number of knowledge engineers have added two additional steps to the 

aforementioned procedure to increase the efficiency of the entire process. A Goal 

Identification (Knowledge Requirements) Phase may be added to the front end of the 

process, and an Action Phase appended to the final step (Miller, 2000).  
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The KDD process has been successfully implemented in the fight against 

terrorism, financial and stock market investments, credit card fraud, general law 

enforcement and CRM (Customer Relations Management). However, flaws in the 

utilization of KDD have resulted in misclassification of cases, misrepresentation of data 

classes, invalid clustering and inconsistent forecasting. 

 

Figure 1.2      A 6-Step KDD Model 
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1.3 Data Mining 

 Data Mining is the term once used to describe the entire aforementioned KDD 

process. Otherwise stated, Data Mining was the KDD process.  

While some researchers describe data mining as an “anything goes” process, various 

tools have been employed to give structure to the overall task. Query tools, statistical 

methods, data visualization techniques, and OLAP (On-Line Analytical Processing) 

software have all proven themselves beneficial to the task of Knowledge Discovery in 

Databases. 

.  

1.4  Data Mining Algorithms 

Although many techniques have been developed and successfully implemented, 

five algorithms have been become widely accepted as standards in commercial data 

mining software packages: 

• k-Nearest Neighbor 

• Decision Trees 

• Association Rules 

• Neural Networks 

• Genetic Algorithms 

Each methodology has its own strengths and weaknesses that will be addressed in 

detail in Chapter 2. The algorithm should only be selected following an analysis of the 

type of data to be mined and the relationships within and the volume of the cases in 

question. The implementation of an algorithm to an inappropriate environment may result 

in improper data categorization, incorrect classification of cases and invalid test 
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conclusions (Miller and Han, 2001). A Neural Network may be chosen as the algorithm 

to be tested, due to its proven ability to adapt to changing environments and the inherent 

ability for the Artificial Neural Network Model to be refreshed and retrained with 

addition and more recent data instances. Various forms of Dependency Analysis, in 

which columns across rows are evaluated, may be employed to discover dependencies 

between data attributes. These dependencies may be altered and/or violated by data 

quality issues (Loshin, 2004).  

 

1.5 Types of Missing Data 

Data Quality issues and assessments have gained a great deal of notoriety in 

recent literature. A basic set of data quality dimensions include data accuracy, 

completeness, consistency, timeliness, interpretability and accessibility. Despite the 

recent trend in addressing these data quality issues, the development of new 

methodologies for data quality management has historically been given very low priority 

in IT development and operations.  

Price WaterhouseCoopers reports that 88% of data integration projects fail due to 

damaged data, and that 33% of organizations either cancel or delay new IT start-ups due 

to poor data quality. According to the Gartner Group, poor data quality is the number one 

factor in the failure of CRM system failure and causes losses of $611 billion annually in 

the US alone. They also estimate that data typically degenerates at a rate of 2% per 

month, or approximately 25% annually.  

Along with the globalization of business and information, mergers, acquisitions 

and universal dependence on business information, the exponential growth of data 

 7



                                                                                                                                                                        
    

storage into petabyte-sized (and larger) data warehouses creates even more data quality 

issues.  The false assumption that data can be treated as a static, finite asset must be 

avoided. Missing, incomplete, incorrect, ambiguous, irrelevant, inconsistent, duplicate 

and aged data create erroneous data rules and business intelligence that lead to poor 

decision making and subsequent business failure. Although data quality issues have been 

recently addressed, it is still common business practice for businesses to tolerate poor 

data quality than to directly manage and/eliminate it in areas of decision Support 

(Cappiello, Francalanci and Pernici, 2004).  

 Traditionally, most stored data for Business Intelligence has been of the “hard” 

type. Hard data is inherently verifiable. However, increased use of “soft” data that has 

inherently unverifiable quality (such as projections of the future intentions of the 

competitors of a business entity) is yet another industry trend that must also be addressed 

(Ballou, Pazer, Tayi and Wang, 1998). 

  “The time has come to focus in the ‘I’ in IT” (Peter Drucker, 2004). In 

agreement, the Japanese data quality guru Kaoru Ishikawa affirmed that in order to 

“speak with the data”, the data has to be accurate (Ishikawa, 2004). While there is no 

universally agreed upon metric for the measurement of information quality, the 

approaches addressed by Six Sigma and Cooperative Information Systems are helping to 

improve the overall efforts of user organizations and data quality issues. 

 Missing or inconsistent data has been a pervasive problem in data analysis since 

the origin of data collection.  More historical data is being collected today due to the 

proliferation of computer software and the high capacity of storage media.  The 

management of missing data in organizations has recently been addressed as more firms 

 8



                                                                                                                                                                        
    

implement large-scale enterprise resource planning systems (Vosburg and Kumar, 2001; 

Xu et al., 2002). The issue of missing data becomes an even more pervasive dilemma in 

the Knowledge Discovery process, in that as more data is collected, the higher the 

likelihood of missing data becomes. Data dependencies, data sparseness (especially 

within critical data clusters) and anomaly analysis are areas that are directly impacted by 

the issue of Missing Data (Loshin, 2004).  

 

The following is a partial list of commonly encountered and accepted standard types of 

missing data: 

• Data Missing At Random 

• Data Missing Completely At Random 

• Non-Ignorable Missing Data 

• Outliers Treated As Missing Data 

 

1.6 Methods of Addressing Missing Data 

Methods for dealing with imprecise or missing data can be broken down into the 

following categories:   

• Use Of Complete Data Only 

• Deleting Selected Cases Or Variables  

• Data Imputation 

• Model-Based Approaches   

 

 

 9



                                                                                                                                                                        
    

These categories are based on the randomness of the missing data, and how the 

missing data is estimated and used for replacement.  

According to Loshin (2004), some applications that may be profiled as types of 

Missing Data applications include: 

• Anomaly Analysis 

• Data Reverse Engineering 

• Information Quality Discovery 

• Data Model Integrity 

 

1.7 Data Imputation Methods 

Imputation methods are procedures resulting in the replacement of missing values 

by attributing them to other available data.  A definition of imputation is as follows: “the 

process of estimating missing data of an observation based on valid values of other 

variables” (Hair et al., 1998).  As Dempster and Rubin (Dempster and Rubin, 1983) 

commented, “imputation is a general and flexible method for handling missing-data 

problems, but is not without its pitfalls.  Caution should be used when employing 

imputation methods as they can generate substantial biases between real and imputed 

data”.  Nonetheless, data imputation methods tend to be a popular method for addressing 

the issue of missing data.  
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Some of the most commonly used imputation methods include: 

• Case Substitution 

• Mean Substitution 

• Hot Deck Imputation 

• Cold Deck Imputation 

• Regression Imputation 

• Multiple Imputation 

 

1.8 Scope of the Study 

The scope of this study is to perform an experimental design method to explain 

the impact of imprecise and missing data on the process of Knowledge Discovery In 

Databases. More precisely, the Data Mining phase of the Knowledge Discovery process 

will be tested utilizing Neural Network software that employs the S-Sigmoid as its 

Transfer Function. Secondary data will be used for the experiment, utilizing data obtained 

from a collaborative project of the Center for Disease Control (CDC). The Behavioral 

Surveillance Branch (BSB) of the CDC has verified the data and made it available to 

researchers for statistical and analysis purposes. This data will be used in conjunction 

with software for Knowledge Discovery utilizing a Neural Network employing an S-

Sigmoid Transfer Function. The network will be trained using the complete data set(s) 

with known values for the dependent variable(s). Using a verified SQL algorithm for 

randomization, various percentages of data elements within the data set(s) will be 

randomly identified and recorded, and then replaced with missing data. The model will 
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be retested using the same software and parameters. Missing values will then be imputed 

by utilizing several accepted imputation methods. The data set will be retested by the 

knowledge discovery process following each imputation method. The percentage of data 

missingness will be increased, retested and the results recorded. Percentages of missing 

data to be injected into the data sets under investigation will be set at 10%, 20%, 30%, 

40%, 50%, 60% and 70% prior to imputation. 

 

1.9 Experimental Model 

 Results from the proposed model will be evaluated using a series of Analysis of 

Variance (ANOVA) tests and two-tailed T-Tests to determine if significant differences 

exist between Knowledge Discovery outcomes whenever complete data is present, a 

certain percentage of data missingness exists and when missing data is replaced using 

various methods of data imputation. An overview of the experimental model is presented 

in Figure 3. 

 

1.9.1 Contribution 

 The anticipated contribution of this experimental research is to better understand 

and employ various methods of data imputation in the environment of Knowledge 

Discovery in the presence of missing data when a specific type of software and associated 

algorithm are utilized. Expected benefits derived from the research include a better 

understanding of the impact that data missingness has on select types of Knowledge 

Discovery, the value of data imputation when missing data is confronted, and the 

identification of levels of data missingness that impact the success of data imputation.  
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Previous research in this area will be extended in this study to include a specific 

niche of popular commercial data mining software packages. Neural Networks that 

employ the S-Sigmoid Transfer Function. Contribution to the areas of missing data and 

the value of data imputation is also expected. The researcher also expects that the 

application of data imputation at various levels of data missingness can be identified. 

Due to the lack of previous exploration in this specific area of Knowledge 

Discovery, this research provides an initial step for the examination of other data mining 

algorithms that are also confronted with various degrees of data pollution, noise, 

corruption and data missingness. 

 

1.9.2 Organization of Dissertation 

 This dissertation proposal will be made up of five chapters. The first chapter will 

introduce the topic of Knowledge Discovery In Databases and the Data Mining 

Algorithms that may be utilized in the process. The topic of Missing Data is then 

addressed decomposed into various categories and discussed. The impact of Missing Data 

on the Data Mining phase of Knowledge Discovery is then addressed. “Methods of Data 

Imputation” is then introduced, as well as the reasons for their use. The implementation 

of various types of Data Imputation is then discussed and evaluated. 

 Chapter Two provides a review of both seminal and current literature relating to 

both the conceptual model as well as specific areas that impact the study. 

Chapter Three presents the overall proposed research model and corresponding 

hypotheses to be tested. 
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 Chapter Four discusses the overall experiment to be performed, the data gathered 

for testing, and the research methods to be employed in this study. 

 Chapter Five will present the analysis to be performed in the final evaluation of 

the experimentation performed. 

Chapter Six will present the conclusions and contributions of this research and 

discuss future trends for research and industry. 
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CHAPTER II 

LITERATURE REVIEW 
 

 Missing or inconsistent data has been a pervasive problem in data analysis since 

the origin of data collection.  With the proliferation of information technology and the 

advent of increased storage space capacity, more and more data is being collected today 

than ever before.  In turn, the impact of Missing Data becomes an even larger dilemma.  

An added complication is that as more data that is collected, the higher the likelihood of 

missing data becomes, and in turn the more likely one will need to address the problem of 

incomplete cases. During the last four decades, statisticians have attempted to address the 

impact of missing data on information technology.  One objective of this research is to 

address the impact of missing data and its impact on data mining. A review of seminal 

and current literature will be conducted in the areas of Knowledge Discovery, Data 

Mining, Missing Data, Data Imputation and the Impact of Data Imputation on Data 

Mining Algorithms. The overall dissertation focuses on methods of addressing missing 

data and the impact that missing data has on the knowledge discovery process, depending 

on the data mining algorithm being utilized. 
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2.1 Knowledge Discovery in Databases (KDD) 

 Knowledge Discovery in Databases (KDD) is a new, multidisciplinary field that 

focuses on the overall process of information discovery in large volumes of warehoused 

data (Abramowicz and Zurada, 2001). KDD has been mostly utilized by artificial 

intelligence and machine learning researchers. 

 

2.2 Data Mining 

 Data Mining (DM) involves searching through databases for correlations and/or 

other non-random patterns, while being utilized by statisticians, data analysts and the 

management information systems community. While the benefits derived from data 

mining when newly discovered patterns are interpreted correctly, disadvantages certainly 

exist.  

 

2.3 Data Mining Disadvantages 

Misinterpretation of discovered patterns can occur when correlations are skewed 

by poor data quality or missing data, or the use of too many variables in the study. Also, 

the system can be allowed to execute long enough to find evidence to support any or 

specific preconceptions that the researcher may have (Coy, 1997). Further, a high amount 

of knowledge concerning the application is required by the researcher, as well as the 

choice of the database/data warehouse under study (Sethi, 2003). Finally, it may be 

difficult to determine if a relationship or pattern has occurred at random or if it is indeed 

unique to a specific sample that has been taken (McQueen and Thorley, 1999).  
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While these disadvantages surely exist in the process of mining data, one distinct theme 

must be addressed: A model is only as good as the variables and data used to create it. 

The quality, freshness and accuracy of the data are imperative for successful data mining. 

The elimination of errors, removal of redundancies and filling in gaps that exist within 

the data (although tedious and time-consuming) are an integral phase of the overall 

process (Wang, 2003).  

 

2.4 Data Mining Algorithms 

2.4.1 k-Nearest Neighbor 

The k-nearest neighbor concept is named so due to the fact that each data record 

is said to exist in a particular cluster or “neighborhood”, and that the records that are 

closest to each other are referred to as neighbors. This method is used to predict the 

behavior of certain data elements (Adriaans and Zantinge, 1997). 

The k-Nearest Neighbors to an observation are first identified.  The k stands for a 

predetermined constant representing the number of neighbors that contain no missing 

data and will be considered in the analysis.  According to Witten and Frank (2000), it is 

advised to keep the value for k small, say five, so that the impact of any noise present will 

be kept to a minimum. Since data sets with a large number of attributes or closely related 

cases may result in a high number of closely related neighborhoods, this algorithm is not 

recommended for large data sets (Adriaans and Zantinge, 1997).   
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2.4.2 Decision Trees 

Decision Trees are analytical tools used to discover rules and relationships in data 

by systematically breaking down and subdividing information from a general view down 

to the detail level (Acharya and Mitra, 2003). Contained in this tree structure are branches 

that represent the outcomes of a particular test and leaf nodes that represent resulting 

classes or class distributions (Han and Kamber, 2001). The greatest benefit of decision 

trees is their ease of use and understandability (Groth, 2000). Decision trees also scale up 

very well for large data sets (Adriaans and Zantinge, 1997). 

Breiman et al., (1984) developed methods known as CART®, or classification and 

regression trees.  Classification trees are used to predict membership of cases or objects 

in the classes of categorical dependent variables from their measurements on one or more 

predictor variables. Loh and Shih (1997) expanded work on classification trees with their 

paper regarding split selection methods.  Some popular classification tree programs 

include, FACT (Loh and Vanichestakul, 1988) and THAID (Morgan and Messenger, 

1973), as well as the related programs AID, for Automatic Interaction Detection (Morgan 

and Sonquist, 1963, and CHAID, for Chi-Square Automatic Interaction Detection, (Kass 

1980)). 

 

2.4.3 Association Rules 

Association Rules help to identify how various attribute values are related within 

a data set.    They are developed to predict the value of an attribute (or sets of attributes) 

in the same data set (Darling, 1997), or to discover correlations or co-occurrences of 

transactional events (StatSoft, 2002). They are useful when performing exploratory 
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analysis, or when searching for interesting relationships that may exist within a data set 

(Westphal and Blaxton, 1998). Since Association Rules are many times developed 

specifically to help identify these various regularities (patterns) within a data set, 

algorithms that utilize association rules have been found to work best with large data sets. 

Agrawal, Imielinski, and Swami (1993) introduced Association Rules for the first 

time in their paper "Mining Association Rules Between Sets of Items in Large 

Databases".  A second paper by Agrawal and Srikant (1994) introduced the Apriori 

algorithm, which is the reference algorithm for the problem of finding Association Rules 

in a database.  Initial studies regarding the discovery of Association Rules was performed 

in "Fast Discovery of Association Rules" (Agrawal et al). 

 

2.4.4 Neural Networks 

An Artificial Neural Network (ANN) is a system loosely modeled after the human 

brain in an attempt to simulate the multiple layers of simple processing elements called 

neurons. Each neuron is linked to specific neighboring neurons with varying coefficients 

of connectivity that represent the strength of these connections. Learning is accomplished 

by adjusting these strengths (weights) by to cause the overall network to produce the best 

possible resulting output.   

Neural networks can be used to build explanatory models by exploring datasets in 

search of relevant variables or groups of variables.  Haykin (1994), Masters (1995), and 

Ripley (1996) provide information on neural networks.  Warner and Misra (1996) 

provide a good overview of neural networks used as statistical tools. The neural net 
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literature of late also contains some good papers covering prediction with missing data 

(Ghahramani and Jordan (1997) and Tresp, Neuneier, and Ahmad (1995)).   

Neural Networks have been found to perform very well on classification tasks, 

and it has also been discovered that they are both reliable and effective when applied to 

applications involving prediction, classification, and clustering (Adriaans and Zantinge, 

1997). 

 

 

2.4.5 Genetic Algorithms 

 Genetic Algorithms are methods of combinatorial optimization techniques based 

on processes that occur in natural biological evolution. The name of this method is 

derived from its similarity to the process of natural selection. Three natural processes 

mimicked by software packages using genetic algorithms, including selection, crossover 

and mutation. Applying this concept to a Knowledge Discovery application involves the 

optimization of a data model along with a genetic method to obtain the most fit model 

(Groth, 2000). Presently, genetic algorithms are considered among the most successful of 

the machine-learning techniques in use.  

Genetic algorithms are also a learning based data mining technique.  Holland 

(1975) introduced genetic algorithms as a learning based method for search and 

optimization problems.  Michalewicz (1994) provides a good overview of genetic 

algorithms, data structures, and evolution programs.  Further usage of genetic algorithms 

have been discussed by Flockhart and Radcliffe (1996), Szpiro (1997), and Sharpe and 

Glover (1999). 
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2.5 Base Theory of Missing Data 

 The analysis of missing data is comparatively recent.  With the advent of the 

mainframe computer in the 1960's, businesses were capable of collecting large amounts 

of data on their customer bases.  As large amounts of data were collected, the issue of 

missing data began to appear.  Afifi and Elashoff (1966), Hartley and Hocking (1971), 

Orchard and Woodbury (1972) and Dempster, Laird, and Rubin (1977) provide early 

seminal works on the analysis of missing data. 

Little (1982) discussed models for non-response, while Little and Rubin (1987) 

considered statistical analysis with missing data.  These papers sparked numerous works 

in the area of missing data which include:  Diggle and Kenward (1994), Graham et al., 

(1997), Little (1995), Little and Rubin (1989), and Howell (1998). The problem of 

missing data is also very complex.  Little and Rubin (1987) and Schafer (1997) provide 

conventional statistical methods for analyzing missing data.  However, the statistical 

literature on missing data (Little, 1992) deals almost exclusively with the training of 

models rather than model prediction. They describe training as follows: when dealing 

with a small proportion of cases with missing data, you can simply eliminate the missing 

cases for purposes of training.  However, if one wishes to make predictions for cases with 

missing inputs, cases cannot be eliminated.  

Before an analyst can began to address the issue of missing data, it is important to 

understand the types of missing data that may be encountered. According to Little and 

Rubin (1989), there are several categories of missing data: 

• Data Missing At Random 
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• Data Missing Completely At Random 

• Non-Ignorable Missing Data 

• Outliers Treated As Missing Data 

 

 

 

2.5.1 Data Missing at Random (MAR) 

It is obvious that cases containing incomplete data must be treated differently than 

cases with complete data. Rubin (Rubin, 1978) defined missing data as MAR “when 

given the variables X and Y, the probability of response depends on X but not on Y”. 

Simply stated, some correlation exists between an attribute containing missing values and    

some other attribute(s) within the data structure. The pattern of the missing data may be 

traceable or predictable from other variables in the database rather than being due to the 

specific variable on which the data are missing (Statistical Services of University of 

Texas, 2000). 

 

2.5.2 Data Completely Missing at Random (MCAR) 

MCAR data exhibits a higher level of randomness than does MAR. Rubin (1978) 

and Kim (2001) classified data as MCAR when “the probability of response [indicates 

that] independence exists between X and Y”.  In other words, the observed values of Y 

are truly a random sample for all values of Y, and no other factors included in the study 

may bias the observed values of Y. In contrast to the MAR situation where data 

missingness is explainable by other measured variables in a study; non-ignorable missing 
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data arise due to the data missingness pattern being explainable --- and only explainable -

-- by the very variable(s) on which the data are missing (Stat. Serv. Texas (2000)). 

In practice, the MCAR assumption is seldom met.  “Non-Ignorable missing data 

is the hardest condition to deal with, but unfortunately, the most likely to occur” (Kim, 

2001). Most missing data methods are applied upon the assumption of MAR, although 

that is not always tenable.  

 

2.5.3 Non-Ignorable Missing Data 

Given two variables X and Y, data is deemed Non-Ignorable when the probability 

of response depends on variable X and possibly on Y.  For example, if the likelihood of 

an individual providing his or her weight varied according to the weight values in each 

age category, the missing data is non-ignorable (Kim 2001).  Thus, the pattern of missing 

data is non-random and is not predictable from other variables in the database. As again 

corresponded by Kim (2001), “Non-Ignorable missing data is the hardest condition to 

deal with, but unfortunately the most likely to occur as well”.  

 

 

2.5.4 Outliers Treated as Missing Data 

Data whose values fall outside of predefined ranges may skew test results.  Many 

times it is necessary to classify these outliers as Missing Data. 

Pre-testing and calculating threshold boundaries are also necessary in the pre-

processing of data in order to identify those values which are to be classified as missing. 
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For even greater precision, various levels of data missingness for specific attributes can 

be calculated for their volume, magnitude, percentage and overall impact on other 

attributes in order to determine their effect on overall data mining performance. A 

“trigger” may then be defined in the data mining procedure to identify which test samples 

may be polluted with an overabundance of missing data, thus skewing the sample taken. 

 

 

2.6 Methods of Addressing Missing Data 

Several methods have been developed for the treatment of missing data. While the 

use of complete data only is a common approach, the cost of lost data and information 

when cases containing missing value are simply deleted can be huge. Another alternative 

is Data Imputation, the replacement of missing values with other known or derived 

values. 

Schafer (1999), Schafer and Olsen (1998), Rubin (1996), Schafer (1997), and 

Little (1992) have all published articles regarding imputation methodologies.  In addition, 

a number of case studies have been published regarding the use of imputation in medicine 

((Barnard and Meng, 1999), and (van Buren, Boshuizen, and Knook 1999)) and in survey 

research (Clogg et al., 1991). 

A number of researchers have begun to discuss specific imputation methods.  Hot 

deck imputation and nearest neighbor methods are very popular in practice, but have 

received little overall coverage in the literature (Ernst (1980), Kalton and Kish (1981), 

Ford (1981), and David et al. (1986).   
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2.6.1 Use of Complete Data Only 

One of the most direct and simple methods of addressing missing data is to 

include only those values with complete data.  Only when missing data is classified as 

MCAR can this method be used successfully.  If missing data are not classified as 

MCAR, bias will be introduced and make the results non-generalizable to the overall 

population.  This method is generally referred to as the “complete case approach” and is 

readily available in all statistical analysis packages.  When the relationships within a data 

set are strong enough to not be significantly affected by missing data, large sample sizes 

may allow for the deletion of a predetermined percentage of cases.  Overall, this method 

is best suited to situations where the amount of missing data is small. 

 

2.6.2 Delete Selected Cases or Variables 

The simple deletion of data instances or attributes that contain missing values may 

be utilized when a non-random pattern of missing data is present. However, it may be ill 

advised to eliminate ALL of the samples taken from a test. The researcher may determine 

other methods to gain new knowledge from the test without dropping all sample cases 

from the test.  

If the deletion of an entire particular subset (cluster) significantly detracts from 

the usefulness of the data, case deletion may not be effective.  Furthermore, it may also 

simply not be cost effective to simply delete a significant number of cases from a sample.   

Nie et al (1975) examined this strategy,  however no firm guidelines exist for the deletion 

of offending cases. 
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Furthermore, if the deletion of an attribute (containing missing data) that is to be 

used as an independent variable in a statistical regression procedure has a significant 

impact on the dependent variable, various imputation methods may be applied to replace 

the missing data, rather than altering the significance of the independent variable on the 

dependent variable. 

 

 

2.6.3  Data Imputation Methods 

 

2.6.3.1 Case Substitution 

This method is the most widely used to replace observations with completely 

missing data.  Cases are simply replaced by non-sampled observations. Only a researcher 

with complete knowledge of the data (and its history) should have the authority to impute 

missing data with values from previous research. 

 

2.6.3.2 Mean Substitution 

This type of imputation is accomplished by estimating missing values by using 

the mean of the recorded or available values.  This is a popular imputation method for 

replacing missing data.  However, it is important to calculate the mean only from 

responses that been proven to be valid and are chosen from a population that has been 

verified to have a normal distribution.  If the data is proven to be skewed, the median of 

the available data can also be used as a substitute.  
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Mean imputation is a widely used method for dealing with missing data.  The 

main advantage is its ease of implementation and ability to provide all cases with 

complete information.   

 

 

2.6.3.3 Cold Deck Imputation 

Cold deck imputation methods select values or use relationships obtained from 

sources other than the current database (see Kalton and Kasprzyk, 1982 and 1986; and 

Sande, 1982 and 1986).  With this method, the end user substitutes a constant value 

derived from external sources or from previous research for the missing values.  It must 

be ascertained by the end user that the replacement value used is more valid than any 

internally derived value.  Pennell (1993) contains a excellent example of using cold deck 

imputation to provide values for an ensuing hot deck imputation application.  

Unfortunately, feasible values are not always provided using cold deck imputation 

methods.  Many of the same disadvantages that apply to the mean substitution method 

apply to cold deck imputation.  Cold deck imputation methods are rarely used as the sole 

method of imputation and instead are generally used to provide starting values for hot 

deck imputation methods.   
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2.6.3.4 Hot Deck Imputation 

 Generally speaking, hot deck imputation replaces missing values with values 

drawn from the next most similar case(s). Once the most similar case(s) has been 

identified, hot deck imputation substitutes the most similar complete case's value for the 

missing value. The implementation of this imputation method results in the replacement 

of a missing value with a value selected from an estimated distribution of similar 

responding units for each missing value.  In most instances, the empirical distribution 

consists of values from responding units.  This method is very common in practice, but 

has received little attention in missing data literature.  One paper using SAS to perform 

hot deck imputation is Iannacchione (1982). Advantages of hot deck imputation include 

conceptual simplicity, maintenance and proper measurement level of variables, and the 

availability of a complete set of data at the end of the imputation process that can be 

analyzed like any complete set of data.  One of hot deck's disadvantages is the difficulty 

in defining what is "similar".  Hence, many different schemes for deciding on what is 

"similar" may evolve. 

 

 

2.6.3.5 Regression Imputation 

Regression Analysis is used to predict missing values based on the variable’s 

relationship to other variables in the data set. Simple and/or multiple regression 

techniques may be utilized to impute missing values.  The first step consists of 

identifying the independent variables and the dependent variables.  In turn, the dependent 
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variable is regressed on the independent variable(s).  The resulting regression equation is 

then used to predict the missing values 

Although regression imputation is useful for simple estimates, it has several 

inherent disadvantages: 

1.  This method reinforces relationships that already exist within the data.  As 

this method is utilized more often, the resulting data becomes more 

reflective of the sample and becomes less generalizable to the universe it 

represents. 

 

2. The variance of the distribution is understated.  

 

3. The assumption is implied that the variable being estimated has a 

substantial correlation to other attributes within the data set. 

 

4. The estimated value is not constrained and therefore may fall outside 

predetermined boundaries for the given variable.  An additional 

adjustment may necessary. 

 

In addition to these points, there is also the problem of over-prediction.  

Regression imputation may lead to over-prediction of the model's explanatory power.  

For example, if the regression R2 is too strong, multicollinearity most likely exists.  

Otherwise, if the R2 value is modest, errors in the regression prediction equation will be 

substantial (Graham, Hofer and Piccinin, 1994). 

Mean imputation can also be regarded as a special type of regression imputation.  

For data where the relationships between variables are sufficiently established, regression 

imputation is a very good method of imputing values for missing data.   
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Overall, regression imputation not only estimates the missing values, but also 

derives inferences for the population (see discussion of variance and covariance above).  

For discussions on regression imputation see, Royall and Herson (1973) or Hansen, 

Madow and Tepping (1983). 

 

2.6.3.6 Multiple Imputation 

Rubin (1978) was the first to propose multiple imputation as a method for dealing 

with missing data.  Multiple imputation combines a number of imputation methods into a 

single procedure.  In most cases, expectation maximization (Little and Rubin, 1987) is 

combined with maximum likelihood estimates and hot deck imputation to provide data 

for analysis.  The method works by generating a maximum likelihood covariance matrix 

and a mean vector.  Statistical uncertainty is introduced into the model and is used to 

emulate the natural variability of the complete database.  Hot deck imputation is then 

used to fill in missing data points to complete the data set.   

Multiple imputation differs from hot deck imputation in the number of imputed 

data sets generated.  Whereas hot deck imputation generates one imputed data set to draw 

values from, multiple imputation creates multiple imputed data sets.  Multiple imputation 

creates a summary data set for imputing missing values from these multiple imputed data 

sets. 

Multiple imputation has a distinct advantage in that it is robust to the normalcy 

conditions of the variables used in the analysis and it outputs complete data matrices.  

The method is time intensive as the researcher must create the multiple data sets, test the 

models for each data set separately, and then combine the data sets into one summary set.  
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The process is simplified if the researcher is using basic regression analysis as the 

modeling technique.  It is much more complex when models such as factor analysis, 

structural equation modeling, or high order regression analysis are used.  

 

2.6.3.7 Model-Based Procedures 

Model-based procedures incorporate missing data into the analysis.  These 

procedures are characterized in one of two ways: maximum likelihood estimation or 

missing data inclusion.   

Dempster (1977) and Little and Rubin (1987) give a general approach for 

computing maximum likelihood estimates from missing data.  They call their technique 

the EM approach.  The approach consists of two steps, “E” for conditional expectation 

step and “M” for the maximum likelihood step.   

The EM approach is an interactive method.  The first step makes the best possible 

estimates of the missing data and the second step then makes estimates of the parameters 

(e.g., means, variances, or correlations) assuming the missing data are replaced.  Each of 

the stages is repeated until the change in the estimated values is negligible.  The missing 

data is then replaced with these estimated values.  This approach has become very 

popular and is included in commercial software packages such as SPSS.  Starting with 

SPSS 7.5, a missing value module employing the EM procedure for treating missing data 

is included. 

Cohen and Cohen (1983) prescribe inclusion of missing data into the analysis.  In 

general, the missing data is grouped as a subset of the entire data set.  This subset of 

missing data is then analyzed using any standard statistical test.  If the missing data occur 
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on a non-metric variable, statistical methods such as ANOVA, MANOVA, or 

discriminate analysis can be used.  If the missing data occur on a metric variable in a 

dependence relationship, regression can be used as the analysis method.   

 

2.7 The Impact of Missing Data on Data Mining Algorithms 

Missing data impacts the Knowledge Discovery process in various ways 

depending on which data-mining algorithm is being utilized.  The impact of missing data 

on various types of data mining algorithms will now be addressed. 

 

 

2.7.1 The Impact of Missing Data on  k-Nearest Neighbor  

The very nature of the k-Nearest Neighbor algorithm is based on the accuracy of 

the data.  Missing and inaccurate data have a severe impact on the performance of this 

type of algorithm.  If data is missing entirely, misrepresented clusters (data distributions) 

can occur depending upon the frequency and categorization of the cases containing the 

missing data.  One method to help solve this problem is to use the k-Nearest Neighbor 

data mining algorithm itself to approach the missing data problem.  The imputed values 

obtained can be used to enhance the performance of the Nearest Neighbor algorithm 

itself. 

First, the k-Nearest Neighbors (those containing no missing data) to the 

observation that does contain missing data are identified.  The k stands for a 

predetermined constant representing the number of neighbors containing no missing data 

to be considered in the analysis.  According to Witten and Frank (2000), it is advised to 
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keep the value for k small, say five, so that the impact of any noise present will be kept to 

a minimum.  

Hence, this algorithm is not recommended for large data sets (Adriaans and 

Zantinge, 1997).  Once these “neighbors” have been identified, the majority class for the 

attribute in question can be assigned to the case containing the missing value. Berson, 

Smith, and Thearling (2000) maintained that a historical database containing attributes 

containing similar predictor values to those in the offending case can also be utilized to 

aid in the classification of unclassified records. 

Of course, the three main disadvantages mentioned in the imputation section 

(variance understatement, distribution distortion and correlation depression) should be 

addressed whenever a constant value is used to replace missing data.  The proportion of 

values replaced should be calculated and compared to all clusters and category 

identification that existed prior to the replacement of the missing data. 

 

 

2.7.2 The Impact of Missing Data on Decision Trees 

Decision trees are a good methodology for dealing with missing data occurs 

frequently (Berry and Linoff, 1997).  Decision trees also scale up very well for large data 

sets (Adriaans and Zantinge, 1997).  It is sometimes useful to prune the tree whenever 

there is an overabundance of missing data in certain branches (Berry and Linoff, 1997).  

Eliminating particular paths may be necessary to ensure that the overall success of the 

decision-making process is not inhibited by the inclusion of cases containing missing 

data. Witten and Frank (2000) advise the use of pre-pruning during the tree-building 
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process to determine when to stop developing sub-trees.  Post-pruning can be utilized 

after a tree is completely built.  If one chooses post-pruning, decisions for pruning rules 

can then be made after the tree has been built and analyzed. 

 

 

2.7.3 The Impact of Missing Data on Association Rules 
 

Association Rules help to identify how various attribute values are related within 

a data set.  Since Association Rules are many times developed to help identify various 

regularities (patterns) within a data set, algorithms that utilize association rules have been 

found to work best with large data sets.  They are developed to predict the value of an 

attribute (or sets of attributes) in the same data set (Darling, 1997).  The main focus of 

association rule discovery is to identify rules that apply to large numbers of cases that the 

rules can directly relate to, missing data may overstate both the support and the 

confidence of any newly discovered rules sets (Witten and Frank, 2000). 

Attributes containing missing or corrupted data values may easily result in the 

creation of invalid rule sets or in the failure of identifying valid patterns that normally 

exist within the data.  However, if the data set used to train the algorithm contains only 

“pristine” data, over-fitting the model based on the patterns included in the training set 

typically results.   

Therefore, rules need to be developed for the “exceptions-to-rule-sets” that have 

been constructed in violation of correct or “clean” data.  It is then necessary to populate 

the training set for algorithms that utilize Association Rules with a sufficient percentage 

of “noisy data”, representing all possible types of exceptions to existing rules.  
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In this way, exception rules can be developed to handle all patterns of noise that 

may be associated with a given data set rather than redesigning rule sets that deal with 

“clean” data or attempting to force cases that do not belong to existing rule sets into those 

sets.  As exceptions are discovered for initial exceptions, a type of tree structure is 

created, forming a decision list for the treatment of missing and noisy data for the data 

set.  It becomes necessary to utilize both propositional rules and relational rules in the 

rule set for the treatment of missing or noisy data. 

Propositional rules test an attribute’s value against a constant value thereby 

developing very concise limits to delineate between “clean” and “noisy” data.  In extreme 

instances, the constants, breakpoints and values from associated attributes are used to 

grow a regression tree in order to estimate missing data values under various conditions.  

Incorporating an additional rule or rule set to deal with exceptions (such as 

missing data) can easily be incorporated since some rules may be developed to predict 

multiple outcomes.  Failure to allow for the missing data exception may easily 

misrepresent some of the associations between attributes.   

Although a rule may have both high support and confidence, a subjective 

evaluation by the end-user may determine how interesting a newly discovered rule is 

(Groth, 2000).  Some association rule software packages may be trained to automatically 

prune “uninteresting rules”.  Therefore, minimum values (breakpoints) must be 

established for both the confidence and support of newly discovered rules.  

In some instances, a hierarchy of rules can be developed so that some rules may 

imply other rules.  In some cases, only the strongest rule is presented as a newly 
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discovered rule and rules of “lesser strength” (support and confidence) are linked to the 

stronger rule for use at a later time (Han and Kamber, 2001). 

 

 

2.7.4 The Impact of Missing Data on Neural Networks 

Neural Networks have been found to be both reliable and effective when applied 

to applications involving prediction, classification, and clustering (Adriaans and 

Zantinge, 1997).  Missing data has a similar impact on neural networks as it does on other 

types of classification algorithms, such as k-Nearest Neighbor.  These similarities include 

variance understatement, distribution distortion, and correlation depression.  

When using neural networks are used in the presence of missing data in the data 

mining process, it may be necessary to “train” the initial network with missing data if the 

data to be tested and evaluated later is itself going to contain missing data.  By training 

the network with cases containing complete data only, the internal weights developed 

with this type of training set cannot be accurately applied to a test set containing missing 

values in later usage of the neural network model. 

Missing data actually impacts the internal execution of the neural network in 

several ways. Since the internal weights used to calculate outputs are created and 

distributed within the network without providing the insight as to how a solution is 

created, missing or dirty data can distort the weights that are assigned as the associations 

between nodes in a manner unknown to the research analyst. 

While the hidden layer is where the actual weights are developed for the network, 

the activation function combines the inputs to the network into a single output (Westphal 
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and Blaxton, 1998).  The output remains low until the combined inputs reach a 

predetermined threshold, and small changes to the input can have a dramatic effect on the 

output (Groth, 2000).  The activation function can also be very sensitive to missing data. 

The activation function of the basic unit of a neural network has two sub-

functions: the combination function and the transfer function.  The combination function 

commonly uses the “standard weighted sum” (the summation of the input attribute values 

multiplied by the weights that have been assigned to those attributes) to calculate a value 

to be passed on to the transfer function.  The transfer function applies either a linear or 

non-linear function to the value passed to it by the combination function.  Even though a 

linear function used in a feed-forward neural network is simply performing a linear 

regression, missing values can distort the coefficients in the regression equation and 

therefore pass on invalid values as output (Berry and Linoff, 1997). 

 

2.7.5 The Impact of Missing Data on Genetic Algorithms 

Genetic Algorithms relate to evolutionary computing that solves problems 

through the application of natural selection and evolution (Sethi, 2003). In a GA 

application, a chromosome is a string of binary bits in which a possible solution is 

encoded. The quality of a solution is called a “fitness function”. The search for the 

optimal solution creates a “gene pool” with associated evolving fitness values. Missing 

data can severely impact the evaluation of the most fitness functions, resulting in a 

potentially inappropriate solution being chosen as most optimal (Wang, 2003). 
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CHAPTER III 

DEVELOPMENT OF HYPOTHESIS 
 
 
 Developed on the base theories of previous research, this chapter presents a 

research model that will address the use of several knowledge discovery models that 

utilizes neural networks as their data mining algorithm. An s-Sigmoid transfer function is 

employed in the neural network as the selected transfer function, and when the secondary 

data used in each model is injected with a specified increasing level of data missingness. 

The data imputation methods of case deletion and mean substitution are utilized in the 

presence of various levels of data missingness and then compared for effectiveness.  

 
 
3.1 The Research Model 
 
 Grounded on the base theory of four various dimensions (knowledge discovery, 

data mining, missing data and data imputation), a research model is proposed to explore 

the performance effectiveness of the more popular methods of knowledge discovery and 

data mining techniques, when confronted with various increasing levels of data  
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missingness. Unique to this research model is the variation of secondary data in the 

volume of data instances employed in training and testing, as well as also varying the 

level of data missingness in each KDD model. Evaluation of the most popular data 

imputation methods for handling the problem of missing data is then tested and analyzed.  

This research model extends the traditional methodology by extending the 

constructs of previous research (Howell, (1998) and Little and Rubin, (1989)).  

The innovation proposed in this research model is to simultaneously alter the case 

volume of the secondary data and the level of data missingness within the data set, and to 

test the impact of Data Imputation and data Re-Sequencing on model performance. 

Therefore, the Initial Research Model can be stated as follows: 

An Unsupervised Knowledge Discovery Model Utilizing A Neural Network 

Algorithm with an S-Sigmoid Transfer Function Evaluating Root Mean Square Values In 

The Presence Of Various Increasing Levels of Data Frequency. 

 

Figure 3.1: The Initial Research Model 

                               INITIAL KDD MODEL                   
 
 TRAINING  DATA  SET 

 
NO MISSING DATA 

 
MULTIPLE LEVELS OF n CASES 

 
     

TEST  DATA   SET 
 

NO MISSING DATA 
 

MULTIPLE LEVELS OF n CASES 
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The overall innovation proposed in this research model is to simultaneously 

modify and/or add various constructs to Knowledge Discovery models, and to measure 

the impact of those additions/modifications.  The Case Frequency Volume of the models, 

the Level of Data Missingness within the models, the Re-Sequencing of Data Instances 

within the models, as well as and the Impact of various methods of Data Imputation on 

model performance will be tested and measured.  

 

Therefore, the proposed Research Model is stated as follows: 

 

An Unsupervised Knowledge Discovery Model Utilizing A Neural Network 

Algorithm with an S-Sigmoid Transfer Function Evaluating Various Imputation 

Methods and Data Re-Sequencing In The Presence Of Various Increasing Levels of 

Data Missingness: 
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Figure 3.2: The Proposed Research Model 

 
                             

PROPOSED RESEARCH MODEL                   
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
TRAINING  DATA  SET 

 
MULTIPLE LEVELS OF n CASES 

 
INJECTION OF MISSING DATA 

 
 
   

 TEST  DATA  SET 
 

MULTIPLE LEVELS OF n CASES 
 

INJECTION OF MISSING DATA 

 
VARIATION OF 
DATA 
SEQUENCE 

 
        DATA 
IMPUTATION  

 
VARIATION OF 
CASE 
FREQUENCY 

 
VARIATION OF 
DATA 
MISSINGNESS 

 

 

Root Mean Square (RMS) Values, ANOVA Testing, T-tests, and Tukey’s 

Honestly Significant Difference Test will be used to evaluate the differences between 

performance levels of the various Knowledge Discovery and Neural Network Models, 

both in the presence and absence of Missing Data in the Training and Testing data sets 

under study. 
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3.2 Exploratory Hypothesis 

An initial hypothesis is developed to test the impact of training, testing and 

evaluating a KDD Neural Network model employing an S-Sigmoid Transfer Function 

that contains no missing data, and training, testing and evaluating the same KDD model 

utilizing a low volume of case frequencies, and when missing data is injected into the into  

those KDD models at increasing levels.    

  

 

Hypothesis 1: 

 

Data set case frequency is a significant factor in the performance of KDD models 

that utilize a Neural Network as the Data Mining Algorithm and employ an S-

Sigmoid Transfer Function, as measured by the Root Mean Square Value calculated 

for the model. 

 

 KDD models that contain at least 1000 cases are said to achieve results similar to 

data warehouses containing an extremely high volume of case frequency. Therefore, two 

KDD models from different disciplines will be selected for testing. Randomly selected 

cases will be selected from these models to form new KDD models containing case 

frequencies from N=500 to N=5000 at increments of 500 cases, for a total of twenty new 

MDD models. 
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Root Mean Square (RMS) Values will then be calculated for each newly 

constructed model. These RMS values will be analyzed to test the impact of varying the 

number of cases used for training and testing KDD models.  

 An ANOVA Test will be conducted to test the results of all Root Mean Square 

Values obtained from the newly constructed KDD models.  

 

 

Hypothesis 2:   

 

The Level of Data Missingness in the Training and Testing data sets of a KDD 

model is a significant factor in the calculation of the Root Mean Square Value for a 

KDD model in small models (Case Frequency  N=500). 

 

 KDD models from five disciplines will be selected. Five hundred random cases 

will then be selected from each model to construct new models. Root Mean Square 

(RMS) Values will be calculated for each new model with N=500.  

Missing Data will then be injected into each model at increasing levels, beginning 

at ten percent and continuing up to seventy percent, at ten percent increments. 

 Root mean Square (RMS) values will be calculated at each level of Data 

Missingness for the models. 

An ANOVA Test will then be conducted to determine if, in KDD models 

containing 500 cases, the Level of Data Missingness is significant in the calculation of 

the Root Mean Square Value. 
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If the ANOVA test determines that a significant difference exists in the level of 

Data Missingness, the Tukey’s Honestly Significant Difference Test will be performed as 

an ad hoc test.  

 

 

Hypothesis 3:   

 

The Level of Data Missingness in the Training and Testing data sets of a KDD 

model is a significant factor in the calculation of the Root Mean Square Value for  

KDD models containing various levels of Case Frequency. 

 

 When a KDD model utilizing a neural network uses complete data to train and 

test the model, its performance may begin to degrade and perform poorly when 

confronted with data that contains missing values. The level of Data Missingness in the 

data may indicate a point at which the model degradation may begin. KDD models from 

various disciplines will be selected for training and testing. 

Missing Data will then be injected into each model at increasing levels, beginning 

at ten percent and continuing up to seventy percent, at ten percent increments. 

Root mean Square (RMS) values will be calculated at each level of Data 

Missingness for the models. 

An ANOVA Test will conducted to determine if the Level of Data Missingness is 

significant in the calculation of the Root Mean Square Value for KDD models with 

different volumes of Case Frequency. 
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Hypothesis 4:   

 

Data Imputation (Mean Substitution and Case Deletion) is a significant factor in the 

performance of KDD models containing various volumes of Case Frequency and 

various levels of Missing Data.  

 

KDD models from various disciplines will be selected for training and testing.   

A Root mean Square (RMS) Value will be calculated for each model using complete 

data.  

Missing Data will then be injected into each model at increasing levels, beginning 

at ten percent and continuing up to seventy percent, at ten percent intervals.  

Root mean Square (RMS) values will be calculated at each level of Data 

Missingness for the models. 

The two most common types of Data Imputation will then be performed on the 

KDD models containing Missing Data, Mean Substitution and Case Deletion. 

Following Data Imputation, each model will be re-trained and re-tested. 

Including the original KDD model, a total of twenty-two KDD models will be tested for 

each of the five original models, for a grand total of one-hundred and ten total models.  

 An ANOVA test will be performed to determine if performing Data Imputation is 

significantly different from not performing Data Imputation using KDD models from 

various disciplines. A marginal means plot will also be used to explore possible 

interactions between the factors of Imputation Type and the Level of Data Missingness..   
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Hypothesis 5:   

 

There is no difference between the Data Imputation Methods of Mean Substitution 

and Case Deletion, when performed on Missing Values in  KDD models containing 

various levels of Case Frequency and various levels of Data Missingness. 

 
  
           If it is discovered that Data Imputation is significantly different from not 

performing Data Imputation on the Missing Values in a KDD model, then an ad hoc a-

priory test will be conducted on the Imputation Methods of Mean Substitution and Case 

Deletion to determine if there is a significant difference between the two methods. 

   
 
 
 
 
 
 
 
Hypothesis 6:   

 

The re-sequencing of data cases in the training and test data sets of KDD models 

containing various volumes of Case Frequency is a significant factor in the 

performance of those models. 
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 This research will attempt to determine if a KDD model’s performance is 

significantly different following re-sequencing the data instances used for the training 

and testing of the KDD model. 

 KDD models from five different disciplines will be trained and tested, and a Root 

Mean Square (RMS) Value calculated for each model. 

 The Data Instances in each model will be re-sequenced. The models will then be 

re-trained and re-tested, and new Root Mean Square (RMS) Values calculated. 

 A T-test will then be conducted to test the means of the Root Mean Square (RMS) 

Values discovered for the KDD models in their original sequence and the means of the 

KDD models after the Data Instances used for training and testing have been randomly 

re-sequenced. 

 

 

Hypothesis 7:   

 

The re-sequencing of data cases in the training and test data sets of KDD models 

containing various volumes of Case Frequency and various volumes of Data 

Missingness is significant in the performance of those models. 

 

 This research will attempt to determine if the sequence of the cases containing 

Missing Values in the data sets used for training and testing a KDD model has a 

significant impact on the performance of the KDD model. 
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 KDD models from five different disciplines will be trained and tested, and a Root 

Mean Square (RMS) Value calculated for each model. 

 Data Missingness will be injected into each KDD model at increasing levels and 

model performance will be tested by calculating a Root Mean Square (RMS) Value for 

each new KDD model for each level of Data Missingness.   

In each new KDD model, all Data Instances in used for training and testing in 

each model will be re-sequenced.  

The KDD models will then be re-trained and re-tested, and new Root Mean 

Square (RMS) Values calculated. 

 A T-test will then be conducted to test the means of the Root Mean Square (RMS) 

Values discovered for the KDD models in their original sequence and the means 

discovered for the same KDD models after the Data Instances used for training and 

testing have been randomly re-sequenced. 

 

Hypothesis 8:   

 

There is no significant difference between the Imputation Methods of Mean 

Substitution and Case Deletion in the performance of KDD models when the level of 

Data Missingness in those models is increasingly varied and the Case Frequency is 

held constant,  N=500.  
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According to Howell (1998), the results of tests performed on data sets containing 

1000 cases can be used as valid estimates for data warehouses containing far greater 

volumes of Case Frequencies. 

Tests will be conducted to ascertain if KDD models containing less than 1000 

cases (N=500) perform differently when injected with varying increasing levels of Data 

Missingness (10%, 20%, 30%, 40%, 50%, 60% and 70%).  

Therefore, tests will be performed on KDD models containing less than 1000 

cases and with various increasing levels of Data Missingness. Although inaccurate 

performance statistics may be generated by “small” training and testing models, it will be 

interesting to observe if either greater performance degradation will be observed, or if 

seemingly positive, although inaccurate, results will be determined. 

ANOVA tests will then be performed on the Root Mean Square (RMS) values 

calculated for all KDD models with N=500, at various levels of Data Missingness and 

following execution of the data imputation methods of Mean Substitution and Case 

Deletion. 

 

Hypothesis 9:   

 

There is no significant difference between the imputation methods of Regression 

Imputation, Mean Substitution and Case Deletion when performed on KDD models 

containing increasing levels of Data Missingness, and when the Case Frequency of 

the models are constant, N=1000. 
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Tests will be conducted to ascertain if KDD models containing exactly 1000 cases 

for model testing and training perform differently when injected with varying increasing 

levels of Data Missingness (10%, 20%, 30%, 40%, 50%, 60% and 70%) and after the 

imputation methods of Regression Imputation, Mean Substitution and Case Deletion on 

those Missing Values have been performed. 

Root Mean Square (RMS) values will be calculated for each KDD model, both 

prior to and following Data Imputation using the three methods mentioned above. 

 

 

Hypothesis 10:   

 

There is no difference in the performance of KDD models when the level of Data 

Missingness in those models is increasingly varied and the Case Frequency is held  

constant, N=1000, and when the Imputation Methods of Multiple Imputation, 

Regression Imputation, Mean Substitution and Case Deletion are performed on 

those models. 

  

Mean Substitution and Case Deletion are the most common Data Imputation 

Methods employed when dealing with the dimension of Data Missingness. Regression 

Imputation and Multiple Imputation are also frequently employed Data Imputation 

Methods.  

A KDD model containing 1000 cases will be selected for training and testing. 
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New KDD models will be created by injecting Data Missingness into the original 

KDD model at the 10%, 20%, 30%, 40%, 50%, 60% and 70% levels.  

New KDD models will be constructed by employing the Data Imputation 

Methods of Regression Imputation, Multiple Imputation, Mean Substitution and Case 

Deletion. 

A total of thirty-six KDD models will be used for testing this hypothesis. 

Root Mean Square (RMS) values will then be calculated for each of the thirty-six KDD 

models. 

Anova Tests and Tukey’s Honestly Significantly Difference Test (if necessary) 

will be conducted to determine the effectiveness of Data Imputation on KDD models 

containing varying increasing levels of Data Missingness. 
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CHAPTER IV 

 

RESEARCH METHODOLOGY 
 
 
 This research will explore the impact of data missingness at various increasing 

levels in KDD models that contain various volumes of case frequencies that employ 

Neural Networks as the Data Mining Algorithm. The s-Sigmoid is the Transfer Function 

employed by the Neural Network in this study. Four of the most commonly utilized Data 

Imputation methods, Case Deletion, Mean Substitution, Regression Imputation and 

Multiple Imputation will then be used to determine their effectiveness in dealing with the 

issue of data missingness.  

While studies have been conducted independently in the areas Knowledge 

Discovery, Missing Data and Data Imputation, only a few have integrated all three 

dimensions. This research extends previous studies by isolating on KDD models that 

employ Neural Networks that utilize the s-Sigmoid transfer function. Further, tests are 

conducted utilizing secondary data sets containing multiple levels of case volume 

frequencies. Even more, the level of data missingness is also altered within each data set 

tested.  
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 The methodology for this research is proposed at this point. Following are 

discussions detailing the software to be employed in the study, the population of the 

secondary data to be acted upon and the manipulation of that data during the study.  

 The overall research model is designed to bring together the three focal areas of 

study: Knowledge Discovery (in conjunction with Data Mining and Neural Networks 

utilizing an S-Sigmoid Transfer function), Data Missingness and Data Imputation.  

 First, a software product was chosen that contains a particular data mining 

algorithm, and also utilizes a specific type of internal architecture. Various algorithms 

may be selected for use in the data mining phase of the Knowledge Discovery process, 

and selected options and variations may then be selected.  

 Next, the population of secondary data is selected for study. This data has been 

deemed appropriate for use in Knowledge Discovery testing and has been used in 

previous studies. Five data sets of various case frequencies were selected for this research 

and analyzed. The data was then altered along several dimensions and retested.  

 Finally, the results of each research model is evaluated, compared, summarized 

and presented by the dissertation author. 

 One goal of this study is to present an imminent approach to practitioners for 

effective Knowledge Discovery in the presence of various levels of missing data. The 

results of this research hope to present interesting guidelines for users of commercial 

KDD software packages when confronted with the real-world problem of data pollution, 

primarily data missingness.  

 The dissertation author has concentrated on areas that are generalizable to the 

most common types of both available commercial software and types of data missingness 
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issues that may be confronted in industry. Therefore, some data imputation methods that 

require strong influence from human interaction with the data were excluded from this 

study, i.e. Cold Deck Imputation. 

 

4.1 Software Utilized In This Research 

A backpropogation Neural Network architecture employing an s-Sigmoid 

Transfer Function was chosen for this study. The network is trained using a data set(s) 

with known values for the dependent variable(s).  The Root Mean Square (RMS) error 

(comparison between desired output and computed output) was selected as the metric to 

be evaluated in determining the performance of each backpropogation feed-forward 

Neural Network model. The Intelligent Data Analyzer (iDA) software product, developed 

by the Information Acumen Corporation, was selected to perform the data mining 

session. 

 The primary reason for the use of this particular software was its use of a 

backpropogation feed-forward Neural Network data mining algorithm. Further, iDA also 

utilizes an s-Sigmoid Transfer Function within the Hidden Layer of the Neural Network. 

The use of Neural Networks is one of the most commonly utilized data mining 

algorithms, and due its ability to handle both linear and non-linear data, the s-Sigmoid is 

the most commonly used Transfer Function employed in Neural Networks. Also, the iDA 

package attaches itself to Microsoft’s EXCEL spreadsheet software for ease of use and 

data manipulation. 

 The Data Mining phase of the Knowledge Discovery process employs either a 

single or a hybrid of various algorithms. Commonly used algorithms for Data Mining 
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include Nearest Neighbor, Decision trees, Association Rules, Neural Networks and 

Genetic Algorithms. Neural Networks are commonly used in commercial data mining 

applications, due to their effectiveness in dealing with various types of input data and 

their ability to handle Missing Data.  

 Neural Networks may employ various types of Transfer Functions in the Hidden 

Layer of the network. The types of Transfer Functions that may be utilized include the 

Hyperbolic Tangent, Multiple Regression and the s-Sigmoid function. The s-Sigmoid is 

the Transfer Function selected for most commercial data mining software packages, due 

to its ability to handle both linear and non-linear data types.  

 

4.1.1 Software Parameters Utilized in Testing 

 Five basic parameter values must be specified by the researcher prior to testing 

the secondary data with the iDA software package.   

First, since Neural networks may contain a multiple hidden layers that are utilized 

in Feed Forward-Back Propagation networks, the number of hidden layers to be utilized 

must be specified. Hidden layers are layers of processing elements that are not directly 

connected to the external world and are used by the neural network in the calculation of 

output nodes. The iDA software used in this research can use one or two hidden layers, 

specified prior to the execution of the training phase of neural learning for the network. 

This research will be conducted utilizing a single Hidden Layer. 

Second, a particular Learning Rate for the network must be set. The goal of robust 

and expedient network convergence is more easily obtained when the data to be used for 

training the neural network is linear in nature. However, when the instances used for the 
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training of a neural network is nonlinear in nature, the Learning Rate may be increased to 

permit robust convergence. The Learning Rate can range from 0.10 to 0.90. The lower 

the learning rate, the more training iterations will be required by the network in order for 

the network to converge. A higher learning rate will permit the network to converge more 

rapidly, sometimes allowing for a less than optimal solution to be derived by the neural 

network. 

Third, a finite number of epochs to be used for training the neural network must 

be established by the researcher. The epoch parameter is the number of iterations (cycles) 

that the entire set of training data is passed through the neural network. At the end of an 

epoch, all weight parameters within the neural network are adjusted and updated with the 

results obtained from the calculations made during that particular iteration. The default 

parameter value for the number of epochs to be initially used during testing using the 

iDA software package is 20000.  

Fourth, a convergence setting must be initialized to set a maximum level for the 

Root Mean Square Error value to be used as a threshold for terminating the training phase 

of the neural network. This convergence parameter should be set at a reasonably low 

value if the researcher determines that the termination of the training phase of the neural 

network should rather be based on the number of epochs rather than the Root Mean 

Square Error value.  

A reasonable level for the maximum Root Mean Square value has been 

determined by past researchers of neural networks to be approximately 0.10. 

Finally, the number of instances to be used by the neural network in the training 

phase must be established. If the secondary data to be tested contains n instances and m 
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instances are to be used for training the network, then the difference in the frequency of 

these instances (n-m) are then utilized for testing the neural network. However, if the 

entire set of n instances are selected for training the neural network, the entire data set 

(both the instances used for training as well as the instances initially selected for testing) 

will also be included in the testing of the neural network.  

Therefore, the parameter value usually selected for initial research is commonly 

set at 50% of the number of total instances contained in the data set to be tested.  

 

4.2 Secondary Data Selected for Research 

The data for study in this research was selected by the dissertation author 

primarily due to the format of the data and the Case Frequencies contained within the 

data sets.  

In order for data to be better utilized by a backpropogation feed-forward neural 

network, all input values must be converted to be within a range of zero to one. The data 

must also contain a dependent variable whose value can be derived from other variables 

in the data set, and can be set at either zero or one. 

A frequency of approximately 1000 cases is deemed large enough for results to be 

applicable to a much larger data warehouse (Howell, 1998). Therefore, a data set with a 

case frequency of 1000 was first selected. A data set with a less optimal case frequency 

was then selected to observe the impact of the research parameters when the case volume 

is low. For this situation, a case frequency of 500 was chosen. The entire secondary data 

model used for this experiment included five data sets containing different frequencies of 

cases obtained from various sources, where the value of a dependent variable within each 
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data set had previously been determined and verified.  Methods of data imputation are 

employed within a knowledge discovery model to attempt to identify how various levels 

of data missingness within data sets of varying frequencies of cases may impact a Data 

Mining study.  The data sets contained case frequency levels of N=500, 1000, 3500, 5000 

and 7000, respectfully. 

 

4.3 Research Methodology 

Each data set will initially be mined with no missing data, without altering the 

standard parameters necessary for data mining utilizing an untrained neural network 

(learning rate, number of input nodes, number of hidden layers, number of epochs) and 

obtaining a Root Mean Square (RMS) value.  Each data set will then be injected with a 

particular level of data missingness (e.g., 10%, 20%, 30%, 40%, 50%, 60%, 70%) and 

mined again, using the same standard neural network parameters.  A total of eight 

different tests will be performed on each data set. Data imputation will then be performed 

on the missing values using the Case Deletion and Mean Imputation methods, again with 

no missing data, and at the 10%, 20%, 30%, 40%, 50%, 60%, 70% levels of data 

missingness.  

The RMS results obtained will then be analyzed using T-Tests, two and three 

factor ANOVA tests, and Tukey’s Honestly Significant Difference (HSD) Test Statistic 

to determine if original data set size, level of data missingness, and/or data imputation 

method are significant factors in the performance of KDD models.. 
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CHAPTER V 

TEST RESULTS AND DISCUSSION 

 
  The overall mission of this research is to analyze the impact and significance of 

Missing Data on the process of Knowledge Discovery In Databases (KDD) on data sets 

that have varying volumes of case frequency and data missingness. In addition, multiple 

types of data imputation are tested and evaluated for overall performance when the 

Neural Network Algorithm employed in the Data Mining phase of Knowledge Discovery 

employs an s-Sigmoid Transfer Function . 

The Data Mining step utilizing this methodology was performed on secondary data 

sets of complete data from various disciplines at various levels of case frequency (N=500, 

N=1000, N=3500, N=5000 and N=7000 cases). Various levels of Data Missingness were 

then injected into each of the selected test data sets prior to Neural Network training and 

testing (at the 10%, 20%, 30%, 40%, 50%, 60%, 70% levels of data missingness), and 

data mining performed on those data sets. Further testing of the KDD utilizing an ANN 

with an s-Sigmoid Transfer Function was performed when the missing data values were 

imputed utilizing the most common methods of data imputation, Case Deletion, Mean 

Substitution, Multiple Regression and Multiple Imputation. Comparisons of these test 

results were then performed using ANOVA, T-Tests, and Tukey’s Honestly Significant 

Difference (HSD) test. 
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All secondary data sets containing various levels of Case Frequency Volumes 

(N=500, N=1000, N=3500, N=5000, N=7000) were selected and tested in similar 

fashion.  

Each data set was mined using the Data Mining software package, Intelligent Data 

Analyzer. An unsupervised Data Mining methodology was employed, and a Root Mean 

Square value was determined by the software through the utilization of a Neural Network 

data mining algorithm, and with the s-Sigmoid algorithm as the Transfer Function 

employed when transferring data to the Neural Network Output Layer by the ANN. 

After each KDD model was initially mined with No Missing Data and a Root 

Mean Square value calculated, each data set was injected with various levels of Data 

Missingness (10%, 20%, 30%, 40%, 50%, 60% and 70%) and the KDD model tested 

again at each level. A Root Mean Square value was determined for each level of Data 

Missingness (10%-70%).  

Each of the new KDD models for each level of Case Frequency was then re-

trained and re-tested using some of the most widely employed methods of Data 

Imputation: Case Deletion. Mean Substitution,  Regression and Multiple Imputation  

Root Mean Square values were then calculated for all data sets at various levels of 

Case Frequency. Root Mean Square (RMS) values were calculated for each data set with 

No Missing data, seven different levels of Data Missingness (10%-70%), and after the 

Data Imputation methods of Case Deletion and Mean Substitution were employed at the 

various levels of Data Missingness.  
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A total of one-hundred and twenty-six KDD models were initially developed for 

this study. Each Data Mining Session for every individual KDD model calculated a Root 

Mean Square (RMS) value for the KDD model being analyzed.  

 
 
5.1   Validity 
 

The validity of the secondary data sets selected for use in this study was first 

explored. The five KDD models initially selected were intended for the use of predicting 

the value of a dependent variable by using a set of independent variables. Each KDD 

model contained historical data from various scientific/medical/business disciplines, 

containing proven data values that had previously been used in the prediction of the 

dependent variables. Therefore, the content validity of the secondary data was inherent by 

the selection of data sets that had already been validated in the prediction of a selected 

dependent variable in each KDD model. 

 

5.1.1  Content Validity 
 

The first dimension considered in this study was that of KDD Case Volume 

Frequency. Adequate coverage for the investigation of the impact of Missing Data on the 

performance of a KDD application using a Neural Network as its Data Mining algorithm 

was addressed by selecting KDD models containing various levels of case frequency. 

According to Howell (1998), a data set containing one thousand data instances is 

sufficient in the testing of data warehouses. It was therefore determined to test in this 

research one data set containing less than one thousand instances (N=500), another data 

set containing exactly one thousand instances and several data sets with increasing levels 
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of case frequency (N=3500,N=5000 and N=7000). All data sets were selected from 

sources guaranteeing the validity of the data.  A group of educators and practitioners 

reviewed the data sets prior to testing. 

 
 

5.1.2 Criterion Validity 
 

The predictive type of criterion validity is tested in this KDD study through the 

use of Data Mining software utilizing a Neural Network that employed an S-Sigmoid 

Transfer Function in its Activation Function as its Data Mining algorithm. In order to 

facilitate this type of validity, the data sets selected had to contain a dependent attribute 

whose value could be predicted by other independent attributes within the same KDD 

model. All secondary data sets selected for this study met all criteria of data 

dependence/independence and predictability. 

 
 

5.1.3 Construct Validity  
 

As Neural Network algorithms perform more effectively when both the dependent 

and independent attributes being tested contain values between zero and one (Berry and 

Linnoff, 2000), this feature was also a necessary factor in the selection of the KDD 

models to be tested. The secondary data selected for this study met all criteria necessary 

for maximum efficiency of Neural Network performance, as well as the aforementioned 

criteria for the prediction of a dependent attribute within each KDD model. 

In order to test the second dimension of this study, the impact of data missingness, 

a methodology had to be developed to randomly inject specific levels of data missingness 

into the data sets. This issue was addressed and performed by the development and 
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execution of a Visual Basic module that allowed for the random selection of cases and a 

specific level of data missingness was be injected into the data set. Standard parameters 

for the Data Mining segment of the Knowledge Discovery process were also set by the 

module. The Neural Network Architecture’s Backpropagation Learning Parameters were 

not altered from their initial default settings prior to training and testing each KKD 

model. These parameters included the Number of Hidden Layers to be used by the Neural 

Network, the Neural Network’s Learning Rate, the number of Epochs to be used and the 

Convergence Level of the network.  

A selected percentage of random attribute values were selected by the module and 

replaced those values with null (missing) values to complete the injection of data 

missingness at the specified level.  

Root Mean Square values were then calculated by the iDA ANN software 

architecture for each data set containing complete data and at each of the seven levels of 

data missingness (10%-70%). 

The third dimension tested in this study was the type of Data Imputation method 

employed on the selected KDD models in the presence of Missing Data. The most 

commonly used types of data imputation employed in KDD and data mining applications 

are case deletion and mean imputation. A Visual Basic module was developed to 

automatically prepare all data sets utilizing the aforementioned data imputation methods 

prior to performing the re-training and re-testing of the KDD models. Therefore, all 

criteria necessary to provide adequate data sets meeting all dimensions and constraints of 

this analysis were met. 
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5.2   Analysis 
 

Root Mean Square (RMS) values were obtained from all data mining sessions 

performed on the KDD models under analysis by utilizing the Intelligent Data Analyzer 

Data Mining software (iDA), and are displayed in Table 5.1. 

These calculations were performed on all data sets at various levels of case 

frequency (N=500, N=1000, N=3500, N=5000, N=7000), with different levels of injected 

data missingness (10%, 20%, 30%, 40%, 50%, 60%, 70%), and after employing the Data 

Imputation methods of Case Deletion and mean Substitution.  

 

Table 5.1    Root Mean Square Statistics for all KDD Models 

 
  

 
 
 

 
 

 
 

% of Missing Data  
 

 
 

 
 

Original Data 
Set Size 

Imputation 
Method 

10% 
 

20% 
 

30% 
 

40% 
 

50% 
 

60% 
 

70% 
 

500 No Method .449 .454 .454 .454 .454 .445 .453 
 Mean Sub. .255 .200 .250 .290 .199 .240 .270 
 Case Del. .249 .230 .210 .269 .270 .230 .200 
1000 No Method .144 .144 .144 .144 .144 .144 .144 
 Mean Sub. .087 .087 .087 .087 .085 .087 .087 
 Case Del. .083 .094 .098 .097 .096 .101 .107 
3500 No Method .105 .340 .020 .250 .096 .360 .420 
 Mean Sub. .254 .196 .248 .287 .195 .234 .261 
 Case Del. .243 .225 .208 .261 .267 .228 .198 
5000 No Method .125 .340 .020 .250 .430 .360 .420 
 Mean Sub. .251 .189 .241 .280 .190 .230 .259 
 Case Del. .240 .209 .200 .260 .259 .221 .193 
7000 No Method .105 .340 .200 .250 .430 .360 .420 
 Mean Sub. .250 .190 .240 .280 .190 .230 .260 
 Case Del. .240 .221 .200 .261 .260 .218 .191 
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5.2.1   Hypothesis Testing 
  
 Hypothesis 1 tested the significance of the volume of data set case frequency in 

KDD models that employ a Neural Network as the data mining algorithm, and  

utilizing a S-Sigmoid Transfer function within the Activation Function of the Artificial 

Neural Network (ANN).  

The two largest of the original five KDD models with complete data (N=5000, 

N=7000) were selected for testing.  

This hypothesis tested the ten new models that were constructed for each of the 

two original KDD models. Random instances were selected to construct these ten new 

models with Case Frequencies of N=500, N=1000, N=1500, N=2000, N=2500, N=3000, 

N=3500, N=4000, N=4500 and N=5000 instances, respectively, for a total of twenty new 

KDD models. 

 These twenty new KDD models were trained and tested using the iDA data 

mining software. Root Mean Square (RMS) values were calculated employing iDA’s 

Neural Network Algorithm utilizing an S-Sigmoid Transfer Function within the 

Activation Function. The standard default parameters of the ANN architecture were left 

intact prior to training and testing each KDD model. 

Figure 5.1 illustrates the resulting Root Mean Square (RMS) values for the twenty 

KDD models that were analyzed when Complete Data was used for testing by the iDA 

software: 
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Figure 5.1 Root Mean Square Values For Two Models: Complete Data 
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 It can be seen from the above graph that a slight positive variation (lower RMS 

value) was observed when the Case Frequency Volume was increased from 500 to 1000 

instances in both of the original KDD models. As the Case Frequency Volume was 

increased in increments of five hundred, only slight positive or negative variation was 

observed.  

An ANOVA test was then performed on the new Root Mean Square (RMS) 

values calculated by the iDA software. This test concluded that data set size (case 

frequency volume) of a KDD does not significantly impact the Root Mean Square values 

calculated by the proposed KDD’s that utilize an S-Sigmoid transfer function employing 

a Neural Network as it’s data mining algorithm.  

 

 

 66



                                                                                                                                                                        
    

 

 

Table 5.2 illustrates the results of the ANOVA test: 

 

Table 5.2  ANOVA Results for Root Mean Square Values 

 
Source of Variation SS df MS F P-value F crit 

Rows 0.005756 9 0.00064 2.149023 0.134937 3.178893 
Columns 0.680436 1 0.680436 2286.369 3.83E-12 5.117355 

Error 0.002678 9 0.000298    
 

Therefore, at the 0.05 level of significance, we accept the null hypothesis that data 

set case frequency is not a significant factor in the calculation of Root Mean Square 

Values when a Neural Network utilizing an S-Sigmoid Transfer Function within the 

Activation Function is employed as the Data Mining Algorithm by a KDD model. 

.  

Hypothesis 2 tested the significance of data missingness on  KDD models from 

various scientific/medicine/business disciplines that contain a case frequencies of less 

than 1000 instances (N = 500). That is, no significant difference exists in the RMS values 

calculated in a KDD model containing less than 1000 instances using complete data, and 

when data missingness is injected into the model at the 10%, 20%, 30%, 40%, 50%, 60% 

and 70% levels.  

Five new KDD models were constructed by randomly selecting 500 cases from 

the original KDD models (N=500, N=1000, N=3500, N=5000, N=7000) selected for this 

study. Using complete data for these new KDD models containing 500 cases, the models 

were trained and tested, and the resulting Root Mean Square (RMS) values recorded. 
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Data missingness was then injected into each of these five new KDD models 

(N=500) at the aforementioned levels (10%-70%). The KDD models were re-trained and 

re-tested and new Root Mean Square (RMS) values calculated.  

 The following graphs illustrate a comparison of all Root Mean Square (RMS) 

values that were calculated when the datasets used for training and testing the ANN in the 

KDD model contained N=500 instances only, and when noise was randomly injected into 

each model, 10%-70%. 

 
 
Figure 5.2   500 Instances – Missing Data Plot 
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igure 5.3   500 Instances – Missing Data Area Chart  F
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Figures 5.2 and 5.3 illustrate that in four out of the five models tested (80%), 

significant degradation occurred immediately upon the original injection of data 

missingness into the model at the 10% level. It can also be seen that all five of the KDD 

models failed to significantly degrade (or improve) with increased levels of data 

missingness (20%-70%). 

The only model that did not spike (show a significant increase in the calculated 

Root Mean Square value) at the 10% level of data missingness was the model that 

originally contained N=7000 cases. This may be attributed to inheritance factors 

contained in the original data set prior to case selection to create the smaller data subset 

of N=500 cases.  

 An ANOVA test was executed to test if the level of Data Missingness injected  

to the KDD models using only N=500 cases for ANN training and testing was a  

significant factor.  

 
in
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The resulting ANOVA testing the level of Data Missingness is shown in Table 5.3: 
 
 
Table 5.3 ANOVA Test for Level of Data Missingness 
 
 
ANOVA       
Source of Variation SS Df MS F P-value F crit 
Between Groups 0.813433 4 0.203358 162.7526 4.28E-22 2.641465
Within Groups 0.043732 35 0.001249    
       
Total 0.857165 39         

 
 
 
 The ANOVA test indicates that we must accept the null hypothesis that the level 

of data missingness injected into a KDD model containing less than 1000 cases for 

training and testing is therefore not a significant factor. 

 However, it should be noted that the Root Mean Square value (RMS) value spiked 

significantly at the original introduction of Missing Data (at the 10% level) in four of the 

five models, with the exception being the model that had the largest original case 

frequency (N=7000). 

 

Hypothesis 3, Hypothesis 4 and Hypothesis 5 were tested simultaneously. 

 

Hypothesis 3 tested the significance of the level of data missingness in the 

training and testing of KDD models that utilize Artificial Neural Networks (ANN’s) that 

employ an s-Sigmoid Transfer Function within the Activation Function when the KDD 

models are from multiple disciplines of study (Business, Science and Health) and contain 

various case frequencies (N=500, N=1000, N=3500, N=5000, N=7000).    
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Hypothesis 4 tested the impact of performing Data Imputation on KDD models 

when Missing Data is encountered, versus performing No Data Imputation (leaving 

Missing Data in the KDD model for training and testing) on KDD models that contain 

larger case frequencies (N=3500). Recall that for Hypothesis 2, at the 0.05 level of 

significance, we accepted the null hypothesis that the level of data missingness is not a 

significant factor in the calculation of the RMS value(s) in KDD models that contain less 

than 1000 cases.  

Hypothesis 5 tested the performance of Mean Imputation versus Case Deletion 

performance as the method of Data Imputation in the replacement of Missing Data in 

KDD models that utilize ANN’s that employ an s-Sigmoid Transfer Function within the 

Activation Function. 

More precisely, the Data Mining phase of the Knowledge Discovery process is 

tested utilizing Neural Network software that employs the s-Sigmoid as its Transfer 

Function in the Activation Function.  Previous studies have investigated missing data 

treatments applied within the context of data mining (Acuna and Rodriguez, (2004); 

Batista and Monard, (2003), Razi and Athappily, (2005) and  Sehgal, Gondal, and 

Dooley, (2005)), but few have specifically studied the effects of missing data on the 

neural network s-Sigmoid function. 

An experimental design to explain the impact of the level of data missingness and 

missing data, and the effect of Data Imputation, on the KDD process was developed. 

The experiment in this study is comparable in breadth and depth (i.e., 

approximately equal in the number of missing data treatments, size of data sets, and 

number of data sets used) to previous missing data treatment experiments (Acuna and 
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Rodriguez (2004), Batista and Monard (2003), Razi and Athappily (2005), Sehgal, 

Gondal, and Dooley (2005)).  Analogous to past experiments where missing data 

treatments were investigated, data sets were employed from the Machine Learning 

Database Repository at the University of California, Irvine and a standard algorithm was 

used to generate missing values within each data set (Matlab, 2007).  

The Intelligent Data Analyzer (iDA) software product was selected to perform the 

data mining session (Roiger and Geatz, 2003).  A backpropogation Neural Network 

architecture employing an s-Sigmoid Transfer Function was chosen for this study.  The 

network is trained using the data set(s) with known values for the dependent variable(s).  

The Root Mean Square (RMS) error (comparison between desired output and computed 

output) was selected as the metric to be evaluated in determining the performance of each 

Neural Network model ad was normalized for scaling purposes.  Methods of data 

imputation are employed within the data mining model to attempt to identify how various 

levels of data missingness within data sets and type of imputation method impact a Data 

Mining study.   

Each data set was initially mined with no missing data, and without altering the 

standard parameters necessary for data mining utilizing a neural network (the default 

parameters for learning rate, number of hidden layers and number of epochs were 

accepted) and obtaining an RMS value.   

Data imputation was then performed on the missing values in each KDD model 

using the Case Deletion and Mean Imputation methods.  Each data set was then modified 

with respect to the amount of missing data within each model.  Once again, data 

imputation was performed on the missing values using the two imputation methods, and 
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new RMS values calculated.  The RMS results were then analyzed using a two factor 

ANOVA and Tukey’s Honestly Significant Difference (HSD) statistic to determine if the 

percent level of data missing, and/or data imputation method employed, are significant 

factors.  

A two-factor ANOVA test was conducted at the 0.05 significance level.  The two 

factors include level of data missingness and imputation method.   

 

The results of the two-factor ANOVA test are displayed in Table 5.4. 

 
Table 5.4  ANOVA Results 
 

Source Sum of  
Squares 

df Mean Square F Significance Partial Eta 
Squared 

Corrected Model 0.0475 8 0.0059 3.354 .029 .691 
Intercept 1.1870 1 1.1870 671.055 .000 .982 

% Data Missingness 0.0055 6 0.0009 0.522 .782 .207 
Imputation Method 0.0419 2 0.0210 11.852 .001 .664 

Error 0.0212 12 0.0018    
Total 1.2550 21     

Corrected Total 0.0687 20     
 

Concerning Hypothesis 3, the ANOVA results at the .05 level of significance 

indicate that we must accept the null hypothesis, and conclude that the percentage level 

of data missingness is not a significant factor in the performance of KDD models from 

multiple disciplines containing a large frequency of cases (N=3500).  

In support of the ANOVA and Multiple Comparisons tests, the following graphs 

illustrate the variation of the Root Mean Square values when various levels of data 

missingness are injected into each of the KDD models evaluated:   
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Figure 5.4   Comparison of RMS Values –500 Instances 
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Figure 5.5  Comparison of RMS Values – 1000 Instances 
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Figure 5.6   Comparison of RMS Values – 3500 Instances 
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Figure 5.7   Comparison of RMS Values – 5000 Instances 
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Figure 5.8   Comparison of RMS Values – 7000 Instances 
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Prior to this research, it was believed that the KDD models would begin to 

degrade at some point as the level of data missingness was increased in each data set, 

regardless of the original volume of case frequency. It can be seen that all models tested 

began showing a significant increase in degradation in the value of the Root Mean Square 

at the 10% level of data missingness, and in most cases did not significantly increase or 

decrease as higher levels of data missingness were injected into the model.   

However, the two-factor ANOVA test and Tukey’s Honestly Significant Test 

concluded that, at the 0.05 level of significance, the level of data missingness injected 

into the KDD models did not significantly impact the calculated Root Mean Square 

(RMS) values in those proposed models.  
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 While the ANAOVA test and Tukey’s Test indicated that while there was not a 

significant difference discovered in the levels of the Root Mean Square (RMS) values 

when various levels of data missingness were injected into the KDD models, all models 

illustrated a significant increase in the degradation of the Root Mean Square whenever 

data missingness is initially injected into the KDD models at the 10% level.  

This further illustrates that once a model has been initially introduced to missing 

data, the model is not significantly altered by the injection of greater amounts of data 

missingness. 

Hypothesis 4, Performing Imputation versus Not Performing Data Imputation, set 

out to prove if any difference exists between employing a data imputation methodology 

and “no data imputation being performed” on the missing values in the data sets of the 

proposed KDD model in the computation of RMS values.  

The two-factor ANOVA test displayed above indicates that one of the two factors 

tested (Data Imputation) is significant at the 0.05 significance level.  

Therefore, we fail to accept the null hypothesis that Imputation Method does not 

have an effect on the calculated Root Mean Square values (RMS), and conclude that 

performing Data Imputation on KDD models that contain missing values does have an 

effect on the calculated RMS values in the KDD models tested when the ANN utilizes an 

s-Sigmoid Transfer Function within the Activation Function. 

The following graph further illustrates the comparison of Root Mean Square 

(RMS) values obtained from the ANN in the various Knowledge Discovery Models when 

no Imputation Method was employed, and when Missing Data was permitted in the 

Training and Testing of the KDD models, and after the two most common methods of 
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data imputation were employed, Case Deletion and Mean Imputation. It can be seen that 

better (lower) Root Mean Square (RMS) values are obtained in all instances when Data 

Imputation is performed on the KDD models. 

Figure 5.9    Comparison of Root Mean Square Values (RMS) 
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To further reinforce the results of Hypothesis 4, the interaction effect between the 

level of Data Missingness and Imputation Method was examined by using a marginal 

means plot.   

Figure 5.10 displays the marginal means plot for the level of Data Missingness 

and Imputation Method.  This plot illustrates interaction between the two factors and the 

level percent of Data Missingness and Imputation Method.  Here, the lines of the effect of 

Imputation Type for all Levels of Data Missingness are parallel to each other.  Parallel 

lines imply that if the level (type) of the Imputation Method is changed, the 

corresponding change in the Root Mean Square (RMS) value is the same regardless of 

the value of the percent level of  Data Missingness.  Similarly, a change in the level of  
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Data Missingness produce the same change in RMS value, regardless of the level (type) 

of Imputation Method employed. 

 

Figure 5.10   Estimated Marginal Means of RMS 

 

 

Marginal Means Plot for percent level of Data Missingness and Imputation Type 

  

Hypothesis 5 tested the significance of Data Imputation Method (Case Deletion 

and Mean Substitution) performed prior to the training and testing of KDD models 

containing a large number of cases (N=3500).   

Due to the fact that the two-factor ANOVA test displayed above resulted in a 

rejection of the null hypothesis (that performing Data Imputation was not significant), a 

test of multiple comparisons was then performed on the type of Data Imputation method 

(Case Deletion and Mean Substitution). Tukey’s Honestly Significant Test was chosen 

for this test at the 0.05 significance level.  
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The results from Tukey’s test are illustrated below in Table 5.5: 

 

 Table 5.5   Results of Tukey's HSD Multiple Comparisons for Imputation Method 
 

|Tukey’s HSD  
Imputation 

Method 
Mean 

Substitution 
Case 

Deletion 
No 

Imputation 
.0931 (*) .0964  (*) 

Mean 
Substitution 

--- .0033 

 
*The mean difference is significant at the .05 level. 

 
 

The results of Turkey’s Honestly Significant Difference Test indicate that there is 

no significant difference between the type of Data Imputation Method employed (Case 

Deletion vs. Mean Substitution) on Missing Data in KDD models of various case 

frequencies (N=500, N=1000, N=3500, N=5000, N=7000) and from multiple disciplines 

of study. 

The following supporting graphs illustrate the variation of the RMS values when Data 

Imputation is performed on the large KDD models prior to training and testing:  
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Figure 5.11 Comparison of Imputation Methods  - 3500 Instances 
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Figure 5.12   Comparison of Imputation Methods – 5000 Instances  
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Figure 5.13  Comparison of Imputation Methods – 7000 Instances 
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Hypothesis 6 was tested to determine if the Root Mean Square (RMS) value 

computed by an ANN in a KDD model using an S-Sigmoid Transfer Function is 

significantly different from a new RMS value obtained after the data instances used in the 

training and testing of the model has been introduced to an algorithm that re-sequences 

the data instances prior to re-training and re-testing the KDD model. 

Due to factors such as the timeliness of data entry, implementation of indexes, 

data sorting, original data sequence, data deletion and data aging, data clusters may be 

formed within the training data for the ANN in KDD. Even if the data is presumed 

smooth and no clustering is known to exist, this test will determine if data re-sequencing 

has an effect on the calculated Root Mean Square values in KDD models of various case 

frequencies. 
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 The following graph illustrates a comparison between the differences in RMS 

values calculated by the ANN in using an S-Sigmoid Transfer function in a KDD using 

data instances in their original order and after the instances have been randomly re-

sequenced. 

 

Figure 5.14  RMS Values for Original Data Sequence vs. Re-Ordered Data 
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It can be seen from Figure 5.12 that the data set containing 500 instances showed 

a considerable difference in the calculated RMS value, with a lower (better) RMS value 

than that obtained when the instances were reordered. However, in all other cases a 

slightly lower (better) RMS value was obtained when the instances were randomly re-

sequenced prior to training and testing the ANN for the KDD. 

A T-Test was then conducted to test the means of the Original Order vs. Re-

sequenced data sets. The results shown in Table 5.6 indicate that the difference in means 

is not statistically significant at the .05 level. 
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Table 5.6 Test: Paired Two Sample for Means 
 

  Variable 1     Variable 2 
Mean 0.117 0.114
Variance 0.000286 0.000363
Observations 5 5
Pearson Correlation -0.726514649  
Hypothesized Mean Difference 0  
Df 4  
t Stat 0.200625141  
P(T<=t) one-tail 0.425389857  
t Critical one-tail 2.131846782  
P(T<=t) two-tail 0.850779713  
t Critical two-tail 2.776445105   

 

In summation, this research indicates that the re-sequencing of cases in a KDD 

model has no statistically significant impact on the calculation of Root Mean Square 

(RMS) Values by an Artificial Neural Network (ANN) utilizing an S-Sigmoid Transfer 

Function as a component of the ANN’s Activation Function, regardless of the volume of 

Case Frequency used for ANN training and testing for the KDD. 

 

Hypothesis 7 tested the significance of re-sequencing (“Smoothing”) the Data 

Missingness in a KDD model on the computed Root Mean Square (RMS) value for KDD 

models containing various volumes of case frequencies, both before and after the cases in 

each KDD model were re-sequenced prior to being tested with the S-sigmoid transfer 

function. Each test was conducted twice.  

The first test computed a Root Mean Square (RMS) value for each KDD model at 

each level of Data Missingness (10%-70%), and then re-tested after the data instances in 

the data set had been re-sequenced.  
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Data sets with case frequencies of 500, 1000, 3500, 5000 and 7000 were all 

injected with missing data at the 10%, 20%, 30%, 40%, 50%, 60% and 70% level of data 

missingness,  and the KDD models trained and tested. All KDD models were then re-

sequenced, then re-trained and tested again. 

The following graphs illustrate the variation in the calculation of RMS values 

when various levels of data missingness are injected into data sets containing a variable 

number of data instances (N=500, N=1000, N=3500, N=5000 and N= 7000),  re-

sequenced and re-tested. 

 

Figure 5.15    Original vs. Re-Sequenced Data – 500 Instances 
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Figure 5.16   Original vs. Re-Sequenced Data – 1000 Instances 

 
Original Data vs Re-Ordered Data

1000 Instances

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Missing

Shuffled Missing

 
 
 
 
Figure 5.17    Original vs. Re-Ordered Data – 3500 Instances 
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Figure 5.18     Original Data vs. Re-Ordered Data – 5000 Instances 

Original Data vs Reordered Data
5000 Instances

0.16

0.14

0.12

0.1

Missing
0.08

Shuffled Missing

0.06

0.04

0.02

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

 
 

Figure 5.19   Original Data vs. Re-Ordered Data – 7000 Instances 
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It can be seen from the charts above that when the data set is small (N=500, 

N=1000), the RMS values calculated are consistently higher (worse) at all levels of data 

missingness. However, when the Case Frequency is higher (N=3500, N=5000, N=7000), 

the calculated RMS values are lower (better) at nearly all levels of data missingness. 

At N=500 and at the 10% level of data missingness, the RMS values were equal 

for both the original data sequence and when the data was randomly re-sequenced prior to 

training and testing. Only at the 40% level did the re-sequencing of the training and 

testing data result in a Root Mean Square (RMS) value less than the RMS value obtained 

from the data being in its original sequence.  

When N=1000, re-sequencing the data resulted in higher (worse) calculated RMS 

values at all levels of data missingness, from 0% through 70%. 

When data missingness was injected into a data set containing 3500 instances, the 

impact was quite different. This data set, in it’s original sequence, resulted in very erratic 

RMS calculations as greater levels of data missingness were injected into the model. 

The best RMS values were obtained when the level of missingness was set at 20% 

and 50%. However, when the KDD model was re-trained and re-tested following the re-

sequencing of the data instances, lower and more consistent RMS values were obtained. 

A similar pattern was discovered when the KDD models with N=5000 and 

N=7000 were run. The RMS values calculated by the models that contained re-sequenced 

data resulted with better performance (lower RMS values) than when the models were 

run with their original data sequences. 
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An ANOVA test was used to test the significance of data order (original data 

sequencing vs. random re-sequencing) on the calculation of the Root mean Square (RMS) 

Value for a KDD at the 0.05 significance level.   

 

The results of the ANOVA test are displayed in Table 5.7.  

 

Table 5.7 ANOVA Test for RMS Values Original Data Sequence vs. Re-Sequenced 

 

Anova: Single Factor       
       
SUMMARY       

Groups Count Sum Average Variance   
Column 1 40 7.141 0.178525 0.003218   
Column 2 40 6.463 0.161575 0.002393   
       
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 0.005746 1 0.005746 2.048018 0.156399 3.963472
Within Groups 0.218842 78 0.002806    
       
Total 0.224588 79         

 

 

The results of the ANOVA test indicate that the re-sequencing of data instances 

containing Missing Data in KDD models using an ANN as the Data Mining Algorithm 

had no statistically significant impact on the calculation of the Root Mean Square (RMS) 

Value for those models. 
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Hypothesis 8 tested the impact of variable levels of Data Missingness on the 

calculation of RMS values in a KDD model using an ANN that utilized an S-sigmoid 

transfer function when the dataset used in the model for training and testing was small 

(N=500), and when the imputation methods of Mean Substitution and Case Deletion are 

employed on the Missing Data. 

 A Root Mean Square (RMS) value was first calculated using the KDD model 

originally containing N=500 instances only. Data Missingness was then injected into the 

model at the 10%, 20%, 30%, 40%, 50%, 60% and 70% levels and the KDD models re-

trained and re-tested.  

Similarly, 500 data instances from each of the other four data sets from other 

disciplines of study were randomly selected for the re-training and re-testing of those 

KDD models. Missing Data was then injected into each of those four new KDD models 

with N=500 data instances at the 10%, 20%, 30%, 40%, 50%, 60% and 70% levels. RMS 

values were then calculated for each new KDD model. 

The data imputation method of Case Deletion was then performed on the datasets 

and the ANN’s in the KDD models were re-trained and re-tested. RMS values were again 

calculated using the modified models. 

In a like manner, the data imputation method of Mean Imputation was performed 

on the new KDD models with Missing data (10%-70% Missing Data). The KDD models 

were then re-trained and re-tested following Mean Imputation. New RMS values were 

again calculated from these modified models. 
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The following charts illustrate the results of the RMS calculations both before and 

after the data imputation methods of Case Deletion and Mean Imputation were employed 

in the models at N=500, and following the injection of Missing Data: 

 

Figure 5.20  RMS Values N=500 

 

MISSING DATA  N=500

 

 

 Prior to running the KDD models at N=500, it was expected that an erratic 

pattern may emerge in the calculation of RMS values. Especially in regard to Case 

Deletion data imputation, the extremely small number of data instances used to train the 

ANN would expectedly result in inconsistent RMS calculations. However, even at 

N=500, all but one of the KDD models illustrated similar behavior as that of KDD 

models utilizing a greater number of data instances in the training and testing of the 

ANN.  
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In all of the KDD models tested, data imputation resulted in lower (better) RMS 

values being obtained in a majority of the models at various levels of noise injection than 

when the missing data (noise) was left in the model for training and testing.  

Only one KDD model (Abalone data) resulted in higher (worse) RMS values at 

the 10%, 40% and 60% levels of noise injection when Case Deletion was employed as 

the data imputation method when compared to the KDD RMS calculations when missing 

data (noise) was left in the model for training and testing. 

Although the RMS values calculated were no better (lower) in the KDD model 

utilizing Diabetic data when Mean Imputation was employed, they were not worse 

(higher) either.  

In the other three KDD models, both methods of data imputation resulted in lower 

(better) RMS calculations than when missing data (noise) was left in the model for 

training and testing. 

Surprisingly, this is not inconsistent with similar tests conducted with larger 

frequencies of data instances in other KDD models. 

 An ANOVA test was performed on the level of Data Missingness in the five KDD 

models with N=500 instances. 

 
The results of the test are displayed in Table 5.8. 
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Table 5.8 ANOVA Results for Data Missingness 
 
SUMMARY       

Groups Count Sum Average Variance   
0 5 1.281 0.2562 0.036596   

0.1 5 1.697 0.3394 0.023397   
0.2 5 1.952 0.3904 0.026424   
0.3 5 1.703 0.3406 0.023683   
0.4 5 1.653 0.3306 0.025679   
0.5 5 1.632 0.3264 0.027301   
0.6 5 1.692 0.3384 0.023375   
0.7 5 1.702 0.3404 0.023722   

       
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 0.047123 7 0.006732 0.256238 0.966285 2.312741
Within Groups 0.840705 32 0.026272    
       
Total 0.887828 39         

 
The ANOVA results indicate that there is no significant difference in the Root 

Mean Square Values (RMS) calculated for the five KDD models from various disciplines 

when tested with N=500  randomly selected data instances containing Missing Data 

injected at the 10%, 20%, 30%, 40%, 50%, 60% and 70% levels. 

Hypothesis 9 tested the impact of the Regression Imputation Method as 

compared to the data Imputation Methods of Mean Substitution and Case Deletion on 

KDD models that were injected with various increasing levels of Data Missingness, and 

the calculation of Root Mean Square (RMS) values in those KDD models (using an 

Artificial Neural network (ANN) and utilizing an S-sigmoid transfer function when the 

dataset used in the model for training and testing was considered to be large (N=1000). 

A KDD model that originally contained 1000 data instances was selected for this 

test, and a Root Mean Square (RMS) value calculated for the model.  
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Data Missingness was then randomly injected into the independent variables in 

the model at increasing levels of Data Missingness, 10%, 20%, 30%, 40%, 50%, 60% and 

70%. Root mean Square values were calculated for the new KDD models at each of the 

specified levels of Data Missingness.  

Regression Imputation, Mean Substitution and Case Deletion were then 

performed on the Missing Data in each of these new KDD models. All KDD models were 

re-trained, re-tested and new Root Mean Square (RMS) values calculated.  

 

The results of all tests were tabulated and are presented in Table 5.9. 

 Table 5.9   Root Mean Square Statistics, N=1000 
 
                                                               N=1000 
 

   
 

 
 

 
 

% of Missing Data  
 

 
 

 
 

Imputation Method 0% 
 

10% 
 

20% 
 

30% 
 

40% 
 

50% 
 

60% 
 

70% 
 

No Imputation 0.175 0.168 0.169 0.169 0.169 0.168 0.169 0.169
Case Deletion 0.175 0.176 0.176 0.216 0.172 0.197 0.209 0.238
Mean Substitution 0.175 0.163 0.162 0.164 0.162 0.162 0.163 0.163
Regression Imputation 0.175 0.167 0.186 0.185 0.186 0.172 0.169 0.171
 
 
 
 Figure 5.21 illustrates a comparison of Root Mean Square values after the 

methods of Regression Imputation, Mean Substitution and Case Deletion have been 

performed on a KDD model containing 1000 data instances, and after having been 

injected with increasing levels of Data Missingness (up to 70%): 
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Figure 5.21 Imputation Method Comparison    
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It can be seen from the figure above that the Mean Substitution imputation 

method was the only method of imputation that resulted in Root Mean Square (RMS) 

values that were lower (better) than performing no data imputation at all (with nearly 

identical RMS values when compared to no imputation being performed, only a very 

slight positive variance) at all levels of Data Missingness. 

Also, performing Regression Imputation prior to the re-training and re-testing of 

the KDD models following the injection of Data Missingness actually resulted in lower 

(better) Root Mean Square (RMS) values than the Case Deletion method of Data 

Imputation. This is most likely due to the fact that the number of remaining data instances 

used for training and testing the KDD models following Case Deletion dipped blow the 

1000 case level at the 10%-70% levels of Data Missingness.  
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Figure 5.21 indicates that as the level of Data Missingness increased, and as N 

became smaller following Case Deletion, the Root Mean Square (RMS) values grew 

increasingly large (worse).  

A two-factor Analysis of Variance (ANOVA) test was then performed at the .05 

level of significance, testing the level of Data Missingness and the type of Imputation 

Method employed (prior to training and testing the KDD models) when calculating Root 

mean Square (RMS) values for the KDD models.   

Table 5.91 displays the ANOVA results of Root Mean Square values for Data 

Missingness and Data Imputation Method in KDD models with 1000 data instances: 

 

Table 5.9.1 ANOVA Results for Level of Data Missingness and Imputation Method 

N=1000 

 
Anova: Two-Factor 
Without Replication       

SUMMARY Count Sum Average Variance   
Missing Data 8 1.356 0.1695 5.14E-06   
Mean Substitution 8 1.314 0.16425 1.94E-05   
Case Deletion 8 1.559 0.194875 0.000592   
Regression 8 1.411 0.176375 6.46E-05   
       

0 4 0.7 0.175 0   
0.1 4 0.674 0.1685 2.97E-05   
0.2 4 0.693 0.17325 0.000105   
0.3 4 0.734 0.1835 0.00055   
0.4 4 0.689 0.17225 0.000102   
0.5 4 0.699 0.17475 0.000237   
0.6 4 0.71 0.1775 0.000449   
0.7 4 0.741 0.18525 0.001248   

ANOVA       
Source of Variation SS Df MS F P-value F crit 

Rows 0.004292 3 0.001431 7.766367 0.001124 3.072467
Columns 0.000896 7 0.000128 0.694888 0.675797 2.487578
Error 0.003868 21 0.000184    
       
Total 0.009056 31         
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The two-factor ANOVA test shows that the null hypothesis stating that the level 

of Data Missingness is not significant at the .05 level of significance cannot be rejected.  

However, the null hypothesis that the type of data imputation method performed 

on the KDD’s tested is rejected at the .05 level of significance, and it is determined that at 

least one of the imputation methods is different from the others. 

 

At this point it was necessary to perform an ad hoc test to determine which of the 

imputation methods performed differently from the others.  

Tukey’s Honestly Significant Different Test was selected as the ad hoc test to be 

used. 

Table 5.92 displays the results of Tukey’s Honestly Significant Different Test 

(HSD) on the type of Data Imputation Method employed: 

 

Table 5.9.2  Tests of Between-Subjects Effects 

 
Dependent Variable: RMS 

Source 
Type III Sum of 

Squares df Mean Square F Sig. 
Corrected Model .008(a) 11 .001 3.608 .003
Intercept 1.195 1 1.195 6063.947 .000
IMPUTATION .006 4 .002 7.790 .000
DATAMISS .002 7 .000 1.217 .326
Error .006 28 .000    
Total 1.208 40     
Corrected Total .013 39     

a  R Squared = .586 (Adjusted R Squared = .424) 
 
 
 
 
 

 97



                                                                                                                                                                        
    

 
 
 
 

Multiple Comparisons 
 
Dependent Variable: RMS  
Tukey HSD  

(I) IMPUTATION (J) IMPUTATION 

Mean 
Difference 

(I-J) Std. Error Sig. 
95% Confidence 

Interval 

          
.00 1.00 .0254(*) .00702 .009 .0049 .0458
  2.00 .0306(*) .00702 .001 .0102 .0511
  3.00 .0185 .00702 .091 -.0020 .0390
  4.00 .0356(*) .00702 .000 .0152 .0561
1.00 .00 -.0254(*) .00702 .009 -.0458 -.0049
  2.00 .0053 .00702 .943 -.0152 .0257
  3.00 -.0069 .00702 .862 -.0273 .0136
  4.00 .0103 .00702 .596 -.0102 .0307
2.00 .00 -.0306(*) .00702 .001 -.0511 -.0102
  1.00 -.0053 .00702 .943 -.0257 .0152
  3.00 -.0121 .00702 .434 -.0326 .0083
  4.00 .0050 .00702 .952 -.0155 .0255
3.00 .00 -.0185 .00702 .091 -.0390 .0020
  1.00 .0069 .00702 .862 -.0136 .0273
  2.00 .0121 .00702 .434 -.0083 .0326
  4.00 .0171 .00702 .134 -.0033 .0376
4.00 .00 -.0356(*) .00702 .000 -.0561 -.0152
  1.00 -.0103 .00702 .596 -.0307 .0102
  2.00 -.0050 .00702 .952 -.0255 .0155
  3.00 -.0171 .00702 .134 -.0376 .0033

Based on observed means. 
*  The mean difference is significant at the .05 level. 
 
 
 RMS 
 
Tukey HSD  

Subset 
IMPUTATION N 1 2 
4.00 8 .1593  
2.00 8 .1643  
1.00 8 .1695  
3.00 8 .1764 .1764
.00 8  .1949
Sig.   .134 .091

Means for groups in homogeneous subsets are displayed. 
  Based on Type III Sum of Squares 
  The error term is Mean Square(Error) = .000. 
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a  Uses Harmonic Mean Sample Size = 8.000. 
b  Alpha = .05. 
 
 
 
Multiple Comparisons 
 
Dependent Variable: RMS  
Tukey HSD  

(I) DATAMISS 

Mean 
Difference 

(I-J) (J) DATAMISS Std. Error Sig. 95% Confidence Interval 

          
.00 1.00 .0112 .00888 .905 -.0178 .0402
  2.00 .0008 .00888 1.000 -.0282 .0298
  3.00 -.0074 .00888 .989 -.0364 .0216
  4.00 .0112 .00888 .905 -.0178 .0402
  5.00 .0068 .00888 .994 -.0222 .0358
  6.00 -.0010 .00888 1.000 -.0300 .0280
  7.00 -.0044 .00888 1.000 -.0334 .0246
1.00 .00 -.0112 .00888 .905 -.0402 .0178
  2.00 -.0104 .00888 .934 -.0394 .0186
  3.00 -.0186 .00888 .442 -.0476 .0104
  4.00 .0000 .00888 1.000 -.0290 .0290
  5.00 -.0044 .00888 1.000 -.0334 .0246
  6.00 -.0122 .00888 .861 -.0412 .0168
  7.00 -.0156 .00888 .652 -.0446 .0134
2.00 .00 -.0008 .00888 1.000 -.0298 .0282
  1.00 .0104 .00888 .934 -.0186 .0394
  3.00 -.0082 .00888 .981 -.0372 .0208
  4.00 .0104 .00888 .934 -.0186 .0394
  5.00 .0060 .00888 .997 -.0230 .0350
  6.00 -.0018 .00888 1.000 -.0308 .0272
  7.00 -.0052 .00888 .999 -.0342 .0238
3.00 .00 .0074 .00888 .989 -.0216 .0364
  1.00 .0186 .00888 .442 -.0104 .0476
  2.00 .0082 .00888 .981 -.0208 .0372
  4.00 .0186 .00888 .442 -.0104 .0476
  5.00 .0142 .00888 .747 -.0148 .0432
  6.00 .0064 .00888 .996 -.0226 .0354
  7.00 .0030 .00888 1.000 -.0260 .0320
4.00 .00 -.0112 .00888 .905 -.0402 .0178
  1.00 .0000 .00888 1.000 -.0290 .0290
  2.00 -.0104 .00888 .934 -.0394 .0186
  3.00 -.0186 .00888 .442 -.0476 .0104
  5.00 -.0044 .00888 1.000 -.0334 .0246
  6.00 -.0122 .00888 .861 -.0412 .0168
  7.00 -.0156 .00888 .652 -.0446 .0134
5.00 .00 -.0068 .00888 .994 -.0358 .0222
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  1.00 .0044 .00888 1.000 -.0246 .0334
  2.00 -.0060 .00888 .997 -.0350 .0230
  3.00 -.0142 .00888 .747 -.0432 .0148
  4.00 .0044 .00888 1.000 -.0246 .0334
  6.00 -.0078 .00888 .986 -.0368 .0212
  7.00 -.0112 .00888 .905 -.0402 .0178
6.00 .00 .0010 .00888 1.000 -.0280 .0300
  1.00 .0122 .00888 .861 -.0168 .0412
  2.00 .0018 .00888 1.000 -.0272 .0308
  3.00 -.0064 .00888 .996 -.0354 .0226
  4.00 .0122 .00888 .861 -.0168 .0412
  5.00 .0078 .00888 .986 -.0212 .0368
  7.00 -.0034 .00888 1.000 -.0324 .0256
7.00 .00 .0044 .00888 1.000 -.0246 .0334
  1.00 .0156 .00888 .652 -.0134 .0446
  2.00 .0052 .00888 .999 -.0238 .0342
  3.00 -.0030 .00888 1.000 -.0320 .0260
  4.00 .0156 .00888 .652 -.0134 .0446
  5.00 .0112 .00888 .905 -.0178 .0402
  6.00 .0034 .00888 1.000 -.0256 .0324

Based on observed means. 
 

 

The results of Tukey’s Honestly Significant Different Test (HSD) indicate that 

although the factor of the Level of Data Missingness is not significant in the KDD 

models tested (as previously enforced by the ANOVA test), the test does in fact indicate 

that performing some method of Data Imputation (as opposed to not performing any type 

of Data Imputation) is significant at the .05 level. 

Further, Tukey’s HSD Test illustrates that although only one of the Data 

Imputation methods tested in this research is not statistically significant at the .05 level, 

and that all Imputation Methods are statistically significant at the .10 level of 

significance. 

Therefore, it can be seen from the ANOVA and Tukey’s Honestly Significant 

Difference Test, that when the volume of Case Frequency is considered to be large 

(N=1000), the level of Data Missingness does not significantly impact the calculation of 
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the Root Mean Square Value by a KDD model that utilizes an Artificial Neural Network 

employing an S-Sigmoid Transfer Function as it’s Data Mining Algorithm. 

However, the employment of some type of Data Imputation Method is significant, 

and all but one of the Imputation Methods is significant at the .05 level of significance 

and all Imputation Methods are significant at the .10 level of significance. In summation,  

KDD models tested with a Case Frequency Volume of N=1000, the imputation method 

of Regression Imputation does not result in better (lower) Root Mean Square (RMS) 

values than the imputation methods of Mean Substitution and Case Deletion. 

Hypothesis 10 tested the impact of performing Multiple Imputation on missing 

values in KDD models that were injected with various increasing levels of Data 

Missingness, and the calculation of Root Mean Square (RMS) values in those KDD 

models (using an Artificial Neural network (ANN) and utilizing an S-sigmoid transfer 

function) when the dataset used in the KDD model for training and testing was 

considered to be large (N=1000). 

The Multiple Imputation Method employed consisted of randomly imputing 50% 

of the Missing Values using Regression Imputation and the remaining 50% of the 

Missing Values utilizing Mean Substitution. 

The KDD model originally consisting of 1000 data instances was selected for this 

test, and a Root Mean Square (RMS) value calculated for the model.  

Random Data Missingness was then injected into the independent variables to be 

used for the Regression Imputation in the model at increasing levels of Data Missingness, 

10%, 20%, 30%, 40%, 50%, 60% and 70%.  
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Root mean Square values were calculated for each new KDD model at each of the 

specified levels of Data Missingness.  

Multiple Regression Imputation (utilizing a hybrid method of data imputation 

combining Regression Imputation and Mean Substitution) was then randomly performed 

on the Missing Data Values in each of the new KDD models.  

Fifty per cent of these Missing Values were imputed utilizing Regression 

Imputation, and the remaining 50% were imputed using Mean Substitution. All of the 

KDD models that had been injected with increasing levels of Data Missingness were 

processed in like manner. 

All of the KDD models were re-trained and re-tested, and new Root Mean Square 

(RMS) values were calculated. 

The results of all tests are displayed in Table 5.93: 

 

Table 5.9.3   Root Mean Square Statistics 

                                                               N=1000 
 

   
 

 
 

 
 

% of Missing Data  
 

 
 

 
 

Imputation Method 0% 
 

10% 
 

20% 
 

30% 
 

40% 
 

50% 
 

60% 
 

70% 
 

No Imputation 0.175 0.168 0.169 0.169 0.169 0.168 0.169 0.169
Case Deletion 0.175 0.176 0.176 0.216 0.172 0.197 0.209 0.238
Mean Substitution 0.175 0.163 0.162 0.164 0.162 0.162 0.163 0.163
Regression Imputation 0.175 0.167 0.186 0.185 0.186 0.172 0.169 0.171
Multiple Imputation 0.175 0.145 0.178 0.178 0.130 0.142  0.170    0.156

 

Figure 5.22 illustrates a comparison of how Multiple Imputation compares in the 

performance in the calculation of Root Mean Square (RMS) values in KDD models 

against the same models when no Data Imputation method is performed and when three 
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other types of Data Imputation (Regression Imputation, Mean Substitution and Case 

Deletion) are utilized: 

 

Figure 5.22  Multiple Imputation Method Comparison 

 

RMS Comparison of Imputation Methods N=1000 

 

 

Interestingly, the RMS values calculated for the KDD’s by utilizing the Multiple 

Imputation Method (combining Regression Imputation and Mean Substitution) to impute 

Missing Data, were the lowest (best) in four of the KDD models tested when Data 

Missingness was injected into the original model.  

When Data Missingness was first injected into the model at the 10% level,  and 

also at the 40%, 50% and again at the 70% levels, Multiple Imputation resulted in the 

lowest (best) Root Mean Square (RMS) values.  

However, when Mean Substitution alone was implemented as the Data Imputation 

method, the tests resulted in lower (better) Root Mean Square (RMS) values than when 

Multiple Imputation (combining Regression Imputation and Mean Substitution) at the 
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20%, 30% and 60% levels of Data Missingness, when the model contained 1000 data 

instances. 

A two-factor ANOVA test was performed on the calculated Root Mean Square 

(RMS) values for KDD models containing 1000 data instances when Data Missingness 

was injected at the 10%, 20%, 30%, 40%, 50%, 60% and 70% levels, and when no Data 

Imputation was performed on the Missing Values and when the Imputation Methods of 

Multiple Imputation, Regression Imputation, Mean Substitution and Case Deletion were 

performed on the models prior to re-training, Re-testing and calculating new Root mean 

Square (RMS) values for the KDD models. 

 The results of the two-factor ANOVA test are displayed in Table 5.94: 

Table 5.9.4 ANOVA Test for Level of Data Missingness and Imputation Method 

N=1000 

Anova: Two-Factor Without Replication    
       

SUMMARY Count Sum Average Variance   
No Imputation 8 1.356 0.1695 5.14E-06   
Case Deletion 8 1.559 0.194875 0.000592   
Mean Substitution 8 1.314 0.16425 1.94E-05   
Regression 
Imputation 8 1.411 0.176375 6.46E-05   
Multiple Imputation 8 1.274 0.15925 0.000348   

0 5 0.875 0.175 0   
0.1 5 0.819 0.1638 0.000133   
0.2 5 0.871 0.1742 8.32E-05   
0.3 5 0.912 0.1824 0.000418   
0.4 5 0.819 0.1638 0.000433   
0.5 5 0.841 0.1682 0.000392   
0.6 5 0.88 0.176 0.000348   
0.7 5 0.897 0.1794 0.001107   

ANOVA       
Source of Variation SS Df MS F P-value F crit 
Rows 0.006141 4 0.001535 7.790414 0.000237 2.714076
Columns 0.00168 7 0.00024 1.217415 0.326199 2.35926
Error 0.005518 28 0.000197    
       
Total 0.013339 39         
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The two-factor ANOVA test shows that the null hypothesis that the level of Data 

Missingness is not significant at the .05 level of significance cannot be rejected.  

However, the null hypothesis that the type of data imputation method performed 

on the KDD’s tested is rejected at the .05 level of significance. It is determined that at 

least one of the imputation methods is different from the others. 

At this point it was necessary to perform an ad hoc test to determine which of the 

imputation methods performed differently from the others. Tukey’s Honestly Significant 

Different Test was selected as the ad hoc test to be used. 

Table 5.95 displays the results of Tukey’s Honestly Significant Different Test on 

the type of Data Imputation Method: 

 

Table 5.9.5  Tests of Between-Subjects Effects 

 
Dependent Variable: RMS  

Source 
Type III Sum 
of Squares Df Mean Square F Sig. 

Corrected Model .008(a) 11 .001 3.608 .003 
Intercept 1.195 1 1.195 6063.947 .000 
IMPUTATION .006 4 .002 7.790 .000 
DATAMISS .002 7 .000 1.217 .326 
Error .006 28 .000     
Total 1.208 40      
Corrected Total .013 39      

a  R Squared = .586 (Adjusted R Squared = .424) 
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 Multiple Comparisons 
Dependent Variable: RMS  
Tukey HSD  
 

(I) 
IMPUTATION 

(J) 
IMPUTATION 

Mean 
Difference 

(I-J) 
Std. 
Error Sig. 

95% Confidence 
Interval 

         
Lower 
Bound 

 
Upper 
Bound

.00 1.00 .0254(*) .00702 .009 .0049 .0458 
  2.00 .0306(*) .00702 .001 .0102 .0511 
  3.00 .0185 .00702 .091 -.0020 .0390 
  4.00 .0356(*) .00702 .000 .0152 .0561 
1.00 .00 -.0254(*) .00702 .009 -.0458 -.0049 
  2.00 .0053 .00702 .943 -.0152 .0257 
  3.00 -.0069 .00702 .862 -.0273 .0136 
  4.00 .0103 .00702 .596 -.0102 .0307 
2.00 .00 -.0306(*) .00702 .001 -.0511 -.0102 
  1.00 -.0053 .00702 .943 -.0257 .0152 
  3.00 -.0121 .00702 .434 -.0326 .0083 
  4.00 .0050 .00702 .952 -.0155 .0255 
3.00 .00 -.0185 .00702 .091 -.0390 .0020 
  1.00 .0069 .00702 .862 -.0136 .0273 
  2.00 .0121 .00702 .434 -.0083 .0326 
  4.00 .0171 .00702 .134 -.0033 .0376 
4.00 .00 -.0356(*) .00702 .000 -.0561 -.0152 
  1.00 -.0103 .00702 .596 -.0307 .0102 
  2.00 -.0050 .00702 .952 -.0255 .0155 
  3.00 -.0171 .00702 .134 -.0376 .0033 

Based on observed means. 
*  The mean difference is significant at the .05 level. 
 
 RMS 
 
Tukey HSD  

Subset 
IMPUTATION N 1 2 
4.00 8 .1593  
2.00 8 .1643  
1.00 8 .1695  
3.00 8 .1764 .1764
.00 8  .1949
Sig.   .134 .091

Means for groups in homogeneous subsets are displayed. 
  Based on Type III Sum of Squares 
  The error term is Mean Square(Error) = .000. 
a  Uses Harmonic Mean Sample Size = 8.000. 
b  Alpha = .05. 
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 Multiple Comparisons 
 
Dependent Variable: RMS  
Tukey HSD  

(I) DATAMISS (J) DATAMISS 

Mean 
Difference 

(I-J) Std. Error Sig. 95% Confidence Interval 

          
.00 1.00 .0112 .00888 .905 -.0178 .0402
  2.00 .0008 .00888 1.000 -.0282 .0298
  3.00 -.0074 .00888 .989 -.0364 .0216
  4.00 .0112 .00888 .905 -.0178 .0402
  5.00 .0068 .00888 .994 -.0222 .0358
  6.00 -.0010 .00888 1.000 -.0300 .0280
  7.00 -.0044 .00888 1.000 -.0334 .0246
1.00 .00 -.0112 .00888 .905 -.0402 .0178
  2.00 -.0104 .00888 .934 -.0394 .0186
  3.00 -.0186 .00888 .442 -.0476 .0104
  4.00 .0000 .00888 1.000 -.0290 .0290
  5.00 -.0044 .00888 1.000 -.0334 .0246
  6.00 -.0122 .00888 .861 -.0412 .0168
  7.00 -.0156 .00888 .652 -.0446 .0134
2.00 .00 -.0008 .00888 1.000 -.0298 .0282
  1.00 .0104 .00888 .934 -.0186 .0394
  3.00 -.0082 .00888 .981 -.0372 .0208
  4.00 .0104 .00888 .934 -.0186 .0394
  5.00 .0060 .00888 .997 -.0230 .0350
  6.00 -.0018 .00888 1.000 -.0308 .0272
  7.00 -.0052 .00888 .999 -.0342 .0238
3.00 .00 .0074 .00888 .989 -.0216 .0364
  1.00 .0186 .00888 .442 -.0104 .0476
  2.00 .0082 .00888 .981 -.0208 .0372
  4.00 .0186 .00888 .442 -.0104 .0476
  5.00 .0142 .00888 .747 -.0148 .0432
  6.00 .0064 .00888 .996 -.0226 .0354
  7.00 .0030 .00888 1.000 -.0260 .0320
4.00 .00 -.0112 .00888 .905 -.0402 .0178
  1.00 .0000 .00888 1.000 -.0290 .0290
  2.00 -.0104 .00888 .934 -.0394 .0186
  3.00 -.0186 .00888 .442 -.0476 .0104
  5.00 -.0044 .00888 1.000 -.0334 .0246
  6.00 -.0122 .00888 .861 -.0412 .0168
  7.00 -.0156 .00888 .652 -.0446 .0134
5.00 .00 -.0068 .00888 .994 -.0358 .0222
  1.00 .0044 .00888 1.000 -.0246 .0334
  2.00 -.0060 .00888 .997 -.0350 .0230
  3.00 -.0142 .00888 .747 -.0432 .0148
  4.00 .0044 .00888 1.000 -.0246 .0334
  6.00 -.0078 .00888 .986 -.0368 .0212
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  7.00 -.0112 .00888 .905 -.0402 .0178
6.00 .00 .0010 .00888 1.000 -.0280 .0300
  1.00 .0122 .00888 .861 -.0168 .0412
  2.00 .0018 .00888 1.000 -.0272 .0308
  3.00 -.0064 .00888 .996 -.0354 .0226
  4.00 .0122 .00888 .861 -.0168 .0412
  5.00 .0078 .00888 .986 -.0212 .0368
  7.00 -.0034 .00888 1.000 -.0324 .0256
7.00 .00 .0044 .00888 1.000 -.0246 .0334
  1.00 .0156 .00888 .652 -.0134 .0446
  2.00 .0052 .00888 .999 -.0238 .0342
  3.00 -.0030 .00888 1.000 -.0320 .0260
  4.00 .0156 .00888 .652 -.0134 .0446
  5.00 .0112 .00888 .905 -.0178 .0402
  6.00 .0034 .00888 1.000 -.0256 .0324

Based on observed means. 
 

Similar to the results found in the testing of Hypothesis 9, the results of Tukey’s 

Honestly Significant Different Test (HSD) indicate that the Level Of Data Missingness is 

not significant in the KDD models tested (also enforced by the ANOVA testing). The test 

also indicates that performing some method of Data Imputation (as opposed to not 

performing any type of Data Imputation) is significant at the .05 level. 

Tukey’s Honestly Significant Difference test (HSD) discovered that only one of 

the Data Imputation methods tested in this research is not statistically significant at the 

.05 level, but all Imputation Methods are statistically significant at the .10 level of 

significance. 

Therefore, it can be seen from the ANOVA and Tukey’s Honestly Significant 

Difference Test (HSD), that when the volume of Case Frequency is considered to be 

large (N=1000), the level of Data Missingness does not significantly impact the 

calculation of the Root Mean Square Value by a KDD model that utilizes an Artificial 

Neural Network employing an S-Sigmoid Transfer Function as it’s Data Mining 

Algorithm. 
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Next, the employment of some type of Data Imputation Method was tested and 

found to be significant. All but one of the Imputation Methods are significant at the .05 

level of significance, and, as also discovered in Hypothesis 9,  all Imputation Methods are 

significant at the .10 level of significance.  

In summation, utilizing large KDD models (tested at a Case Frequency Volume of 

N=1000), the imputation method of Multiple Imputation does not result in better (lower) 

Root Mean Square (RMS) values than the imputation methods of Regression Imputation, 

Mean Substitution and Case Deletion. 
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CHAPTER VI 

IMPLICATIONS AND CONCLUSIONS 

 
Knowledge Discovery in Databases (KDD) is defined as “the non-trivial multi-

step process of identifying valid, novel, potentially useful, and ultimately understandable 

patterns in data” (Fayyad, 2001). Data Mining is known as the “discovery” step of the 

Knowledge Discovery process. 

Data mining is based on searching the concatenation of multiple databases that 

usually contain some amount of missing data along with a variable percentage of 

inaccurate data, pollution, outliers and noise. Various Data Mining Algorithms may be 

employed in the discovery step of Knowledge Discovery.  

Nearest Neighbor, Decision Trees, Association Rules, Neural Networks, Genetic 

Algorithms and multiple hybrid algorithms are some of the methods employed when 

performing a Data Mining operation. 

A Neural Network algorithm contains an Activation Function that is triggered 

when data has been processed and is ready to be sent to the Output Layer of the Neural 

Network. This Activation Function consists of a Combination Function and a Transfer 

Function.  
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Several types of Transfer Functions may be employed by the Neural Network 

Architecture, the most common being the S-Sigmoid Transfer Function. Due to its robust 

ability to handle both linear and non-linear data, this is the function chosen for study in 

this research. 

The issue of Missing Data must be addressed, as ignoring this problem can 

introduce bias into the Knowledge Discovery models being evaluated and may lead to 

inaccurate data mining conclusions.  

Therefore, the volume of original data under analysis, when confronted with 

various increasing levels of Missing Data, must be tested to challenge the sensitivity of 

Knowledge Discovery models when using a Neural Network employing an S-Sigmoid 

Transfer Function within its Activation Function.  

Various Transfer Functions may be employed to transfer the value obtained from 

the Combination Function to the output nodes of the Neural network. Some of the 

commonly employed Transfer Functions include the Linear Transfer Function, The 

Hyperbolic Tangent and the S-Sigmoid Transfer Function. 

Due to it’s robust handling of both linear and non-linear data, the most commonly 

employed Transfer Function is the S-Sigmoid, by far (Berry and Linoff, 1997). 

Although Missing Data may be categorized as Missing At Random (MAR), 

Missing Completely At Random (MCAR), Non-Ignorable Missing Data and Outliers 

Treated As Missing Data, they are all simply data that are not complete and may be 

treated as Missing Data. 
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Data Imputation Methods may be employed to replace missing values. Commonly 

employed Imputation Methods include Case Deletion, Mean Substitution, Hot Deck 

Imputation, Cold Deck Imputation, Regression Imputation and Multiple Imputation.   

 
 
6.1  Implications of this Research 
 
 
 The significant goals of this research are to test the most commonly used 

architectures employed in a typical Knowledge Discovery environment along three 

dimensions. Those dimensions include Data Set Size (Case Frequency Volume), Level of 

Data Missingness and type of Data Imputation Method. 

The most common algorithm used in “off the shelf” commercial Data Mining 

software packages is the Neural Network, employing an S-Sigmoid Transfer Function. 

Using the Default Parameters of a commercial KDD package, the three aforementioned 

dimensions were tested. 

 This research sought to determine if the size of a KDD model (in terms of the 

Number Of Data Instances) resulted in more effective results and if the amount of data 

that is missing in a KDD model also had an impact on those results, when utilizing the 

most commonly employed  KDD methodologies. 

 
 
6.2  Goals of this Research 
 
 

This research took to task the goal of determining how the three aforementioned 

factors impact a data mining process. The factors of original KDD Case Frequency 

Volume, Level of Data Missingness and Data Imputation Method were selected, and a 
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KDD and Data Mining analysis completed for five independent KDD models.  

Data missingness was injected into each KDD model at various levels and 

compared to Data Mining results obtained when complete data was used in each KDD 

model, and when no Data Imputation was performed on the injected Data Missingness.  

ANOVA tests, T-Tests and Tukey’s Honestly Significant Difference tests were 

performed to determine which factors were significant for a more effective KDD and 

Data Mining results. Root Mean Square (RMS) values were used as the metric for 

measuring the effectiveness of the KDD and Data Mining processes.  

This research explores two specific steps in the Knowledge Discovery of 

Databases (KDD) process, Data Cleansing and Data Mining, as well as the impact of the 

volume of data being analyzed. The actual data mining process deals significantly with 

prediction, estimation, classification, pattern recognition and the development of 

association rules. Therefore, this analysis depends heavily on the accuracy of the database 

and on the chosen sample data to be used for model training and testing. One objective of 

this research is to address the Effects of the Neural Network S-Sigmoid Function on 

KDD models containing various levels of data instances in the Presence of Imprecise 

Data using three-factor ANOVA tests, two-factor ANOVA tests, T-Tests and Tukey’s 

Honestly Significant Difference test.  

This research further investigates the accuracy and impact of Data Imputation 

Methodologies that are employed when a specific Data Mining algorithm is utilized 

within a Knowledge Discovery In Databases (KDD) process. This study will employ 

certain Knowledge Discovery processes that are widely accepted in both the academic 

and commercial worlds. This work includes testing the impact of Missing Data on KDD 
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models that utilize the Neural Network S-Sigmoid Transfer Function type in the Data 

Mining process, by experimenting with three factors: Imputation Method, Level of Data 

Missingness, and the Volume of Case Frequency in the KDD model. 

 
 
6.3    Contributions of this Research 
 
 
 The first contribution of this research was to test and analyze the performance of  

KDD models utilizing a Neural Network as it’s Data Mining Algorithm, and when that 

algorithm employed an S-Sigmoid Transfer Function,  and when the KDD models 

contained various Case Frequency volumes in the training and testing of those models. 

It was discovered in this research that Data Model Size (Case Frequency Volume) 

was not a significant factor in the training and testing of KDD models, both in KDD 

environments where the volume of Case Frequency was considered to be low (N=500) 

and again when the KDD models contained their original volume of Case Frequencies. 

The second contribution of this research was the testing and analysis of the 

sensitivity of KDD models that had different volumes of Case Frequency, and when those 

models were confronted with various increasing levels of Data Missingness. 

This research first tested this dimension of Case Frequency Volume and Level of 

Data Missingness by testing and analyzing KDD models from five different disciplines at 

a low level of Case Frequency (N=500).  

It was discovered in this research that the performance of all models used in this 

study (with N=500) degraded significantly immediately when exposed to Missing Data 

(at the 10% level), but did not suffer further degradation upon exposure to greater levels 

of Data Missingness (20%-70%). 
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The dimension of Level of Data Missingness was further tested on the KDD 

models containing their original Case Frequencies.  

In total, these tests indicate that the Level of Data Missingness in the Data 

Instances used to train and test KDD models did not significantly impact the performance 

of those models past the 10% level of Data Missingness. This further supported the 

results of tests that had been performed on KDD models that contained a low volume of 

Case Frequency. That is, the volume of Case Frequency again did not significantly 

impact the performance of KDD models containing increasing levels of Missing Data. 

The third contribution of this research was the testing and analysis of the 

performance of KDD models following the employment of Data Imputation 

methodologies on KDD models that contained various increasing levels of Data 

Missingness. 

The tests performed in this research showed that performing Data Imputation did 

in fact have a significant impact on the performance of KDD models than when no 

imputation was performed. Further testing performed on the type of Data Imputation 

Method utilized did not distinguish a significant difference between the types of 

Imputation Method employed, Mean Substitution and Case Deletion. 

The dimensions of Level of Case Frequency and Data Imputation were again 

tested in like manner. Five hundred randomly selected Data Instances from each KDD 

model were chosen for training and testing. These tests disagreed with the tests 

performed on the KDD models containing all Data Instances. When the Level of Case 

Frequency was below 1000 (N=500), Data Imputation did not significantly impact the 

performance of the KDD model. 
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Further testing in this research indicated that the Data Imputation methods of 

Regression Imputation and Multiple Imputation performed on KDD models that 

contained various levels of Data Missingness performed no better than the Imputation 

Methods of Mean Substitution and Case Deletion. 

 
 

6.4  Limitations and Directions for Future Research 
 
 

Research in the areas of Knowledge Discovery, Data Mining, Missing Data and 

Data Imputation may be limited by a lack of standardized information regarding new 

methodologies as the field evolves into the state of maturity. Currently, Data Mining is 

viewed as an evolving, but not yet mature, field (KDNuggets, 2007).  

Also, as the focus on other technical dimensions (such as Data Warehousing and 

Data Shaping) continue to evolve concurrently, KDD and Data Mining software will also 

following adaptation to those areas and continue to evolve in order to adapt to them. 

In future areas of research, other dimensions such as more complex methodology 

in the design of hybrid data mining algorithms employed (including merging concepts 

from Nearest Neighbor, Decision Trees, Association Rules, Genetic Algorithms and 

newly developed hybrids) in conjunction with varying the parameters within a specific 

algorithm which may be added/and tested for their impact of the Knowledge Discovery 

process.  

Also, the parameters used within a particular data mining algorithm, such as the 

neural network, may be adjusted in an attempt to determine which combination of 

parameter settings perform most effectively when implemented upon various types (size 

and structure) of data sets.  
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Concerning neural networks specifically, a comparison of different combination 

and/or transfer functions within the Activation Function of an ANN can be performed to 

determine the most effective type of function or combination of functions is most 

desirable for data sets of various dimensions. 

The type of imputation method utilized when confronted with missing data is yet 

another area of research that may be explored. The imputation techniques of Hot Deck, 

Cold Deck, Regression and Multiple Imputation are just a few methods that may be 

tested in conjunction with the aforementioned imputation methods utilized in this 

research for more effective Knowledge Discovery and Data Mining. 

 

7.0  Conclusions 

 
From the T-tests, ANOVA results and Tukey’s Honestly Significant Difference 

(HSD) Tests, this research revealed that original the KDD Case Frequency and the type 

of Imputation Method employed are significant factors in the performance of KDD 

models that utilize a Neural network as its Data Mining Algorithm and employ an S-

Sigmoid Transfer Function. 

 However, while the level of data missingness in a KDD model was found to 

promote a higher (worse) Root Mean Square (RMS) Value when Missing Data is first 

introduced to a KDD model, increased levels of Data Missingness was not proven to be 

significant in this study.   

It was also discovered, via that Tukey’s Honestly Significant Difference Test 

(HSD) analysis, that while there is a significant difference between employing and not 

employing a Data Imputation Method, there is no significant difference between the 
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Imputation Methods of Multiple Imputation (utilizing a hybrid of Regression Imputation 

and Mean Substitution), Regression Imputation, Mean Substitution and Case Deletion. 
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APPENDIX A 

VISUAL BASIC MODULE EMPLOYED IN THIS STUDY 

 

 DATA IMPUTATION MODULE 

 

Sub Imputation IDA() 
 
 
Application.DisplayAlerts = False 
Dim counter As Integer 
 
Dim delrows(6500) As Integer 
 
 
For I = 1 To 6500 
delrows(I) = 0 
Next 
 
Sheets(1).Select 
Sheets(1).Name = "Master" 
 
strCol = InputBox("What is the letter(s) of the rightmost column?") 
If strCol = "" Then 
Exit Sub 
End If 
 
 
If Len(strCol) > 2 Then 
MsgBox "You have too many columns for this program" 
Exit Sub 
End If 
 
strOutputCol = InputBox("What is the letter(s) of your output column?") 
 
intOutputCol = getColNum(strOutputCol) 
 
strRow = InputBox("What is the row number of the last record of data?") 
If strRow = "" Then 
Exit Sub 
End If 
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' 
' 
If strRow > 6500 Then 
MsgBox "Cannot exceed 6500" 
Exit Sub 
End If 
 
 
intCol = getColNum(strCol) 
 
 
 
 
If intCol = 999 Then 
MsgBox "Error" 
Exit Sub 
End If 
 
 
 
intIgnore = InputBox("How many top rows do you want to ignore?") 
 
If intIgnore = "" Then 
intIgnore = 0 
End If 
 
 
 
 
 
intRecords = (strRow - intIgnore) 
 
'pct = InputBox("There are " & intRecords & " records of data.  What percentage of 
records do you wish to corrupt? (one attribute in each random record will be blanked)") 
 
'If pct = "" Then 
'Exit Sub 
'End If 
 
If MsgBox("Will create missing values, mean values and case deletion for 10% - 70% in 
increments of 10%.  Proceed?", vbYesNo) = vbNo Then 
 
Exit Sub 
End If 
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For M = 1 To 7 
 
 
Sheets("Master").Copy After:=Sheets("Master") 
Sheets(2).Select 
Sheets(2).Name = "Missing " & M & "0 pct" 
Sheets("Master").Copy After:=Sheets("Master") 
Sheets(2).Select 
Sheets(2).Name = "Case Delete " & M & "0 pct" 
'    Columns("A:A").Select 
'    Selection.Insert Shift:=xlToRight 
Sheets("Missing " & M & "0 pct").Select 
 
 
pct = M & "0" 
 
Dim intCorruptRecords As Integer 
 
intCorruptRecords = intRecords * (pct / 100) 
 
 
'If MsgBox("Will corrupt one attribute in each of " & intCorruptRecords & " random 
records.  Proceed?", vbYesNo) = vbNo Then 
' 
'Exit Sub 
'End If 
 
For I = 1 To intCorruptRecords 
 
    Do 
        intLetter = Rand(1, intCol) 
         
        If intLetter <> intOutputCol Then 
         
            letter = getColLetter(intLetter) 
            Number = Rand(intIgnore + 1, strRow) 
            cell = letter & Number 
            If InStr(1, strDeleted, Number & " ") = 0 Then 
                Exit Do 
            End If 
             
        End If 
 
    Loop 
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    strDeleted = strDeleted & Number & " " 
     
'    Sheets("Case Delete " & M & "0 pct").Select 
' 
'    Range("A" & Number).Select 
'    ActiveCell.Formula = 1 
 
    delrows(I) = Number 
     
    Sheets("Missing " & M & "0 pct").Select 
     
    Range(cell).Select 
    ActiveCell.FormulaR1C1 = "" 
    Selection.Interior.ColorIndex = 3 
 
     
 
Next 
 
 
Sheets("Missing " & M & "0 pct").Copy After:=Sheets("Missing " & M & "0 pct") 
Sheets(4).Select 
Sheets(4).Name = "Mean " & M & "0 pct" 
 
 
 
 
 
 
 
For I = 1 To intCol 
 
letter = getColLetter(I) 
cell = letter & strRow + 1 
Formula = "=AVERAGE(" & letter & intIgnore + 1 & ":" & letter & strRow & ")" 
Range(cell).Select 
ActiveCell.Formula = Formula 
colavg = ActiveCell.Value 
 
    Columns(letter & ":" & letter).Select 
    'Range("AD979").Activate 
    Selection.Replace What:="", Replacement:=colavg, LookAt:=xlPart, _ 
        SearchOrder:=xlByRows, MatchCase:=False, SearchFormat:=False, _ 
        ReplaceFormat:=False 
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Next 
 
 
    Rows(strRow + 1 & ":" & strRow + 1).Select 
    Selection.Delete Shift:=xlUp 
     
    Sheets("Case Delete " & M & "0 pct").Select 
     
'    tempstr = "" 
'    For R = 1 To 10 
'    tempstr = tempstr & " " & delrows(R) 
'    Next 
'    MsgBox tempstr 
' 
' 
'    For Q = 1 To 5999 
' 
'        temp = "" 
' 
'        'MsgBox delrows(Q) & " " & delrows(Q + 1) 
'        If delrows(Q + 1) = 0 Then 
'            Exit For 
'        End If 
' 
'        If delrows(Q) > delrows(Q + 1) Then 
' 
'            temp = delrows(Q + 1) 
'            delrows(Q + 1) = delrows(Q) 
'            delrows(Q) = temp 
'        'MsgBox delrows(Q) & " " & delrows(Q + 1) 
'        End If 
' 
'    Next 
' 
'    tempstr = "" 
'    For R = 1 To 10 
'    tempstr = tempstr & " " & delrows(R) 
'    Next 
'    MsgBox tempstr 
 
 
Sheets.Add 
    For Q = 1 To 6500 
        If delrows(Q) = 0 Then 
            Exit For 
        End If 
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        Range("A" & Q).Select 
        ActiveCell.Formula = delrows(Q) 
    Next 
     
    Columns("A:A").Select 
    Selection.Sort Key1:=Range("A1"), Order1:=xlAscending, Header:=xlGuess, _ 
        OrderCustom:=1, MatchCase:=False, Orientation:=xlTopToBottom, _ 
        DataOption1:=xlSortTextAsNumbers 
     
    For Q = 1 To 6500 
        Range("A" & Q).Select 
        If ActiveCell.Formula = "" Then 
        Exit For 
        End If 
        delrows(Q) = ActiveCell.Formula 
    Next 
         
    Application.DisplayAlerts = False 
    ActiveWindow.SelectedSheets.Delete 
     
     
'    tempstr = "" 
'    For R = 1 To 10 
'    tempstr = tempstr & " " & delrows(R) 
'    Next 
'    MsgBox tempstr 
' 
     
 
     
    For Q = 1 To 6500 
        If delrows(Q) = 0 Then 
            Exit For 
        End If 
        Rows(delrows(Q) - (Q - 1) & ":" & delrows(Q) - (Q - 1)).Select 
        Selection.Delete Shift:=xlUp 
     
    Next 
     
    For Q = 1 To 6500 
        delrows(Q) = 0 
    Next 
     
     
     
'    For Q = 1 To strRow 
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' 
'        Range("A" & Q).Select 
'        If ActiveCell.Formula = 1 Then 
'            Rows(Q & ":" & Q).Select 
'            Selection.Delete Shift:=xlUp 
'            Q = Q - 1 
'        End If 
' 
'    Next 
' 
'    Columns("A:A").Select 
'    Selection.Delete Shift:=xlToLeft 
     
     
 
    strDeleted = "" 
 
Next 'M 
 
 
 
 
For M = 1 To 7 
 
    Sheets("Missing " & M & "0 pct").Select 
    Application.Run "IDA.XLA!ESXMacro" 
    Application.DisplayAlerts = False 
    Sheets("Missing " & M & "0 pct").Delete 
         
    Sheets("Mean " & M & "0 pct").Select 
    Application.Run "IDA.XLA!ESXMacro" 
    Application.DisplayAlerts = False 
    Sheets("Mean " & M & "0 pct").Delete 
     
    Sheets("Case Delete " & M & "0 pct").Select 
    Application.Run "IDA.XLA!ESXMacro" 
    Application.DisplayAlerts = False 
    Sheets("Case Delete " & M & "0 pct").Delete 
 
 
Next 
 
    Sheets("Master").Select 
    Application.Run "IDA.XLA!ESXMacro" 
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Dim RMS(0 To 7, 1 To 3) As String 
 
Sheets("Master RES NN").Select 
        Range("A1").Select 
        Cells.Find(What:="Test Data RMS", After:=ActiveCell, LookIn:=xlFormulas, _ 
        LookAt:=xlPart, SearchOrder:=xlByRows, SearchDirection:=xlNext, _ 
        MatchCase:=False, SearchFormat:=False).Activate 
        RMS(0, 1) = Right(ActiveCell.Formula, 5) 
        RMS(0, 2) = Right(ActiveCell.Formula, 5) 
        RMS(0, 3) = Right(ActiveCell.Formula, 5) 
 
 
For M = 1 To 7 
    Sheets("Missing " & M & "0 pct RES NN").Select 
        Range("A1").Select 
        Cells.Find(What:="Test Data RMS", After:=ActiveCell, LookIn:=xlFormulas, _ 
        LookAt:=xlPart, SearchOrder:=xlByRows, SearchDirection:=xlNext, _ 
        MatchCase:=False, SearchFormat:=False).Activate 
        'MsgBox ActiveCell.Formula 
        RMS(M, 1) = Right(ActiveCell.Formula, 5) 
    Sheets("Mean " & M & "0 pct RES NN").Select 
        Range("A1").Select 
        Cells.Find(What:="Test Data RMS", After:=ActiveCell, LookIn:=xlFormulas, _ 
        LookAt:=xlPart, SearchOrder:=xlByRows, SearchDirection:=xlNext, _ 
        MatchCase:=False, SearchFormat:=False).Activate 
        RMS(M, 2) = Right(ActiveCell.Formula, 5) 
    Sheets("Case Delete " & M & "0 pct RES NN").Select 
        Range("A1").Select 
        Cells.Find(What:="Test Data RMS", After:=ActiveCell, LookIn:=xlFormulas, _ 
        LookAt:=xlPart, SearchOrder:=xlByRows, SearchDirection:=xlNext, _ 
        MatchCase:=False, SearchFormat:=False).Activate 
        RMS(M, 3) = Right(ActiveCell.Formula, 5) 
Next 
 
Sheets.Add 
 
Application.ActiveSheet.Name = "RMS" 
 
Range("B1").Select 
ActiveCell.Formula = "Missing" 
Range("C1").Select 
ActiveCell.Formula = "Mean" 
Range("D1").Select 
ActiveCell.Formula = "Case Delete" 
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For M = 0 To 7 
Range("A" & M + 2).Select 
ActiveCell.Formula = M & "0%" 
Range("B" & M + 2).Select 
ActiveCell.Formula = RMS(M, 1) 
Range("C" & M + 2).Select 
ActiveCell.Formula = RMS(M, 2) 
Range("D" & M + 2).Select 
ActiveCell.Formula = RMS(M, 3) 
Next 
 
Charts.Add 
ActiveChart.ChartType = xlColumnClustered 
ActiveChart.SetSourceData Source:=Sheets("RMS").Range("A1:D9"), PlotBy _ 
    :=xlColumns 
ActiveChart.Location Where:=xlLocationAsNewSheet 
With ActiveChart 
    .HasTitle = False 
    .Axes(xlCategory, xlPrimary).HasTitle = False 
    .Axes(xlValue, xlPrimary).HasTitle = False 
End With 
 
 
End Sub 
 
 
 
 
Public Function Rand(ByVal Low As Long, _ 
                     ByVal High As Long) As Long 
  Rand = Int((High - Low + 1) * Rnd) + Low 
End Function 
 
 
Public Function getColNum(ByVal strCol As String) As Integer 
 
strCol = UCase(strCol) 
 
If Len(strCol) = 2 Then 
     
    letter1 = Left(strCol, 1) 
    letter2 = Right(strCol, 1) 
Else 
    letter1 = strCol 
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End If 
 
 
 
 
Select Case letter1 
    Case "A" 
        num1 = 1 
    Case "B" 
        num1 = 2 
    Case "C" 
        num1 = 3 
    Case "D" 
        num1 = 4 
    Case "E" 
        num1 = 5 
    Case "F" 
        num1 = 6 
    Case "G" 
        num1 = 7 
    Case "H" 
        num1 = 8 
    Case "I" 
        num1 = 9 
    Case "J" 
        num1 = 10 
    Case "K" 
        num1 = 11 
    Case "L" 
        num1 = 12 
    Case "M" 
        num1 = 13 
    Case "N" 
        num1 = 14 
    Case "O" 
        num1 = 15 
    Case "P" 
        num1 = 16 
    Case "Q" 
        num1 = 17 
    Case "R" 
        num1 = 18 
    Case "S" 
        num1 = 19 
    Case "T" 
        num1 = 20 
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    Case "U" 
        num1 = 21 
    Case "V" 
        num1 = 22 
    Case "W" 
        num1 = 23 
    Case "X" 
        num1 = 24 
    Case "Y" 
        num1 = 25 
    Case "Z" 
        num1 = 26 
End Select 
 
Select Case letter2 
    Case "A" 
        num2 = 1 
    Case "B" 
        num2 = 2 
    Case "C" 
        num2 = 3 
    Case "D" 
        num2 = 4 
    Case "E" 
        num2 = 5 
    Case "F" 
        num2 = 6 
    Case "G" 
        num2 = 7 
    Case "H" 
        num2 = 8 
    Case "I" 
        num2 = 9 
    Case "J" 
        num2 = 10 
    Case "K" 
        num2 = 11 
    Case "L" 
        num2 = 12 
    Case "M" 
        num2 = 13 
    Case "N" 
        num2 = 14 
    Case "O" 
        num2 = 15 
    Case "P" 
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        num2 = 16 
    Case "Q" 
        num2 = 17 
    Case "R" 
        num2 = 18 
    Case "S" 
        num2 = 19 
    Case "T" 
        num2 = 20 
    Case "U" 
        num2 = 21 
    Case "V" 
        num2 = 22 
    Case "W" 
        num2 = 23 
    Case "X" 
        num2 = 24 
    Case "Y" 
        num2 = 25 
    Case "Z" 
        num2 = 26 
    Case Else 
        num2 = "" 
End Select 
 
 
 
If Len(strCol) = 1 Then 
 
    getColNum = num1 
Else 
    getColNum = num1 * 26 + num2 
 
End If 
 
 
End Function 
 
 
Public Function getColLetter(ByVal intCol As Integer) As String 
Dim num1 As Integer 
Dim num2 As Integer 
 
 
 
If intCol <= 26 Then 
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    getColLetter = numToLetter(intCol) 
Else 
     
    div = intCol / 26 
     
    a = InStr(1, div, ".") 
    If a > 0 Then 
        num1 = Left(div, a - 1) 
    Else 
        num1 = div - 1 
    End If 
 
    num2 = intCol Mod 26 
     
    If num2 = 0 Then 
        num2 = 26 
    End If 
     
    getColLetter = numToLetter(num1) & numToLetter(num2) 
 
 
End If 
 
End Function 
 
 
 
Public Function numToLetter(ByVal num As Integer) As String 
 

    Case 1 
        numToLetter = "A" 
    Case 2 
        numToLetter = "B" 
    Case 3 
        numToLetter = "C" 
    Case 4 

    Case 5 
        numToLetter = "E" 
    Case 6 
        numToLetter = "F" 
    Case 7 
        numToLetter = "G" 
    Case 8 

Select Case num 

        numToLetter = "D" 

        numToLetter = "H" 
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    Case 9 
        numToLetter = "I" 
    Case 10 
        numToLetter = "J" 
    Case 11 
        numToLetter = "K" 
    Case 12 
        numToLetter = "L" 
    Case 13 
        numToLetter = "M" 
    Case 14 
        numToLetter = "N" 
    Case 15 
        numToLetter = "O" 
    Case 16 
        numToLetter = "P" 
    Case 17 
        numToLetter = "Q" 
    Case 18 
        numToLetter = "R" 
    Case 19 
        numToLetter = "S" 
    Case 20 
        numToLetter = "T" 
    Case 21 
        numToLetter = "U" 
    Case 22 
        numToLetter = "V" 
    Case 23 
        numToLetter = "W" 
    Case 24 
        numToLetter = "X" 
    Case 25 
        numToLetter = "Y" 
    Case 26 
        numToLetter = "Z" 
    Case Else 
        numToLetter = "ERROR" 
End Select 
 
 
End Function 
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