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1 Introduction 

Controlled Deflection Approach 
for Rotor Crack Detection 
A transverse shaft crack is a serious malfunction that can occur due to cyclic loading, 
creep, stress corrosion, and other mechanisms to which rotating machines are subjected. 
Though studied for many years, the problems of early crack detection and warning are 
still in the limelight of many researchers. This is due to the fact that the crack has subtle 
influence on the dynamic response of the machine and still there are no widely accepted, 
reliable methods of its early detection. This paper presents a new approach to these prob­
lems. The method utilizes the coupling mechanism between the bending and torsional 
vibrations of the cracked, nonrotating shaft. By applying an external lateral force of con­
stant amplitude, a small shaft deflection is induced. Simultaneously, a harmonic torque is 
applied to the shaft inducing its torsional vibrations. By changing the angular position of 
the lateral force application, the position of the deflection also changes opening or clos­
ing of the crack. This changes the way the bending and torsional vibrations are being 
coupled. By studying the coupled lateral vibration response for each angular position of 
the lateral force one can assess the possible presence of the crack. The approach is 
demonstrated with a numerical model of a rotor. The model is based on the rigid finite 
element method (RFE), which has previously been successfully applied for the dynamic 
analysis of many complicated, mechanical structures. The RFE method is extended and 
adopted for the modeling of the cracked shafts. An original concept of crack modeling 
utilizing the RFE method is presented. The crack is modeled as a set of spring-damping 
elements (SDEs) of variable stiffness connecting two sections of the shaft. By calculating 
the axial deformations of the SDEs, the opening/closing mechanism of the crack is intro­
duced. The results of numerical analysis demonstrate the potential of the suggested 
approach for effective shaft crack detection. 

One of the most dangerous malfunctions of rotating machines 
are shaft cracks. Transverse cracks occur due to cyclic loading, 
thermal stresses, creep, corrosion, and other mechanisms to which 
rotating shafts are subjected. Once a crack has appeared, high 
stresses develop at its tip and allow the crack to propagate deeper, 
even if external loads are not changing. When the crack has 
propagated to a relevant depth, the propagation speed increases 
dramatically and the shaft may fail in a very short time, what usu­
ally leads to a catastrophic accident. That is why an early detec­
tion of the potential shaft cracks inside the rotating machine 
components is so important. 

There are numerous published contributions on the subject of 
crack modeling, early detection, location and estimation of sever­
ity of cracks. Usual crack detection methods are based on vibra­
tion signal analysis [1–3]. By studying the changes in the 
vibration spectra, the appearance of the possible shaft crack can 
be confirmed (or declined). The frequently discussed changes in 
frequency spectra induced by a crack are: a considerable increase 
of the amplitude of the synchronous frequency 1X and an appear­
ance of its second multiple 2X [3]. However, such symptoms are 
characteristic not only for cracked rotors, but can be induced by 
other faults such as: bearing malfunctions, misalignment, thermal 
sensitivity, etc. [1]. 

Other methods include changes in rotor modal parameters such 
as its natural frequencies and mode shapes [3,4], state observers 
[5,6], Kalman filters [7], genetic algorithms [8], wavelet [9,10] or  
Huang-Hilbert transforms [11], and many others. 

A relatively new approach to the problem of rotor crack detec­
tion employs the use of a specially designed diagnostic force 

positions of the external force: (a) # ¼ 0 deg, fully closed crack; 
# ¼ 120 deg, partially open crack; (c) # ¼ 180 deg, fully 

open crack; and (d) arrangement of the measuring probes 

applied to the rotating shaft [12–15]. If the force is harmonic, then 

Fig. 1 

(b) 

Schematic diagrams of the method for different angular 
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Fig. 2 Rigid finite element model of the rotor: (a) original division into 50 spring-
damping elements, (b) secondary division into 51 rigid finite elements, and (c) local 
coordinate systems of RFEs (xr ;1, xr ;2, xr ;3) and SDEs (yk ;1, yk ;2, yk ;3) 

the presence of the crack generates responses containing frequen­
cies at combinations of the angular speed, applied forcing fre­
quency, and the rotor natural frequencies [14]. It has been shown 
that the appearance of the combinational frequencies is a very 
strong signature of the shaft crack [14,15]. However, the research 
conducted so far has focused on applying the harmonic force, act­
ing in one fixed direction only [13–15]. 

A well known feature of the cracked shaft is the coupling 
between the lateral and torsional vibrations. The appearance of 
coupled bending and torsional vibrations can be utilized as a pos­
sible shaft crack indicator, which has been reported by several 
authors [16,17]. 

Similar to the previous methods, the present paper recommends 
the use of the additional diagnostic force applied perpendicularly 
to the shaft axis. However, the amplitude of this force remains 
constant, while the angular location of its application (i.e., line of 
action) changes from 0 deg to 360 deg. Moreover, the shaft is not 
rotating but excited by an additional torque inducing its torsional 
vibrations. The proposed method is based on vibration signal anal­
ysis, namely on the coupling mechanism between the lateral and 
torsional vibrations. 

The approach is demonstrated by the numerical model of the 
rotor. The model utilizes the rigid finite element (RFE) method, 
which was formulated by Kruszewski et al. [18]. Rigid finite ele­
ment method is based on a completely different approach than the 
classical finite element method (FEM). 

A given mechanical structure (such as a bar, beam, frame, or 
shell) is discretized into a finite number of rigid elements, contain­
ing inertial features of the structure. These rigid elements are con­

nected by massless and nondimensional spring-damping elements 
(SDEs), representing the stiffness and damping of the structure. 
The method has been successfully applied for the dynamic analy­
sis of mechanisms, machine tools, cranes, ship drive systems, and 
even ship hulls [18]. Lately the method has been improved and 
extended by Wittbrodt et al. [19], who used it for successful 
dynamic calculations of flexible multibody systems with changing 
configuration such as robot manipulators. 

The idea of applying the rigid finite element method for model­
ing driving shafts is not new [18]. However, it is the first time that 
RFEs will be used for modeling the opening/closing of the shaft 
crack. 

2 Concept of the New Method for Rotor Crack 
Detection 

A schematic diagram explaining the concept of the proposed 
method is shown in Fig. 1. The nonrotating cracked rotor is sub­
jected to a harmonic torsional excitation QT and simultaneously to 
the constant external force Fex applied perpendicularly to the bear­
ings centerline. 

The force is applied at different angles #, causing some small 
deflections of the shaft. By changing the angular position of the 
force, the position of the resulting deflection also affects opening 
or closing of the crack. This changes the stiffness of the shaft and 
the way the bending and torsional vibrations are being coupled. It 
is supposed that by studying the coupled bending vibration 
response for each angular position of the external force one will 
be able to assess the possible presence of the crack. 



Fig. 3 Model of the crack: (a) possible location of the crack, (b) two RFEs and several 
SDEs at the location of the crack, and (c) shaft cross section at the location of the 
crack 

Fig. 4 Possible deformations of the small SDE: (a) compres­
sion and (b) tension 

3 Rigid Finite Element Model of the Rotor 

The proposed approach will be demonstrated on a rotor sup­
ported by two ball bearings, consisting of a shaft and a disk 
(Fig. 2). The rotor is a part of a crack detection test rig utilized at 
the Center for Rotating Machinery Dynamics and Control (RoMa-
DyC) at Cleveland State University [14]. Main dimensions and 
the schematic diagram of the rotor are presented in Fig. 2(a). 

Using the rigid finite element method [18,19], the rotor is di­
vided into a selected number of lumped elements. The division 
runs in two steps. 

In the first step, the rotor is divided into 50 elements (Fig. 2(a)). 
In the middle of each prismatic element, a spring-damping ele­
ment is located. In Fig. 2(a) SDEs are marked with crossed 

Fig. 5 Frequency transfer function of the free-free rotor (con­
tinuous line) and its RFE model (dashed line) 

circles. Each of tapered elements, numbered as 3, 4, and 43, 44 is 
replaced by six prismatic elements of equal length and gradually 
decreasing diameter, according to the procedure described in 
[18,19]. The motion of each SDE is considered in an independent 
coordinate system with its three main axes yk;1, yk;2, and yk;3 (Fig. 
2(c)). The main axes of each SDE are chosen in such a way that 
the force acting along each axis causes only a translational defor­
mation in a direction along the axis. Similarly, the pair of forces 
acting around each coordinate axis causes only a torsional defor­
mation around the axis. 

In the second step, 51 rigid finite elements are located between 
the corresponding SDEs obtained in the first step. As in the first 
step, nonprismatic elements (e.g., 3, 4, 5) are replaced by six pris­
matic RFEs, according to [18,19]. 



Fig. 6 Torsional response for different angles #; uncracked shaft; fQ ¼ 60 Hz 

Fig. 7 Bending response for different angles #; uncracked shaft; fQ ¼ 60 Hz 



Fig. 8 Torsional response for different angles #; 25% crack; fQ ¼ 60 Hz 

The motion of each RFE is considered in an independent coor­
dinate system with three main axes xr;1, xr;2, xr;3 (Fig. 2(c)). The 
center of the system is located at the mass center of a given ele­
ment. At a standstill, axes xr;1, xr;2, and xr;3 coincide with three 
principal axes of the element; xr;1 coincides with the rotation axis. 

The bearings are modeled using two additional spring-damping ele­
ments (numbered as 50 and 51) connecting the basis (numbered as 0) 
with the 2nd and with the 46th RFE. The crack is located between the 
21st and the 22nd RFE, while the probes measuring the lateral and 
torsional vibrations of the rotor are near the center of the 8th RFE. 

Rigid finite elements are characterized by their masses and 
mass moments of inertia, while spring-damping elements by their 
stiffness and damping coefficients. The masses of spring-damping 
elements are neglected. Static characteristic of each spring-
damping element is linear, which means that force loading the 
element is the sum of two forces: the one that is proportional to 
deformation (stiffness) and the other that is proportional to defor­
mation velocity (damping). Spring-damping elements are loaded 
with translational forces, as well as with torques. 

After dividing the rotor into spring-damping elements and after 
assuming their coordinate systems, the flexural and torsional stiff­
ness coefficients along each six directions of each element are 
calculated according to the procedure described in [18,19]. Simi­
larly, masses and mass moments of inertia of all 51 RFEs are deter­
mined [18,19]. Then, on the basis of stiffness coefficients, masses 
and mass moments of inertia of individual SDEs and RFEs, stiff­
ness K, and mass M matrices of the rotor are created [18,19]. 

Proportional damping is assumed with the damping matrix D 
calculated according to the known formulas [18,19] 

D ¼ aDM þ bDK (1) 

where coefficients aD and bD are assumed as follows: aD ¼ 10-5, 
bD ¼ 0. 

The equation of motion of the rotor takes the following form 
[18,19]: 

Mq€ þ Dq_ þKq ¼ G þ Fex þQT (2) 

where q is a vector of general displacements of the centers of 
masses of individual RFEs, G, Fex, QT are vectors of the follow­
ing forces: gravity, external force perpendicular to the shaft axis, 
and external torque exciting one end of the shaft (Fig. 1). 

4 Model of the Crack 

The crack is usually modeled by periodical stiffness changes, 
resulting from the so called “breathing” mechanism, i.e., from the 
periodical opening and closing of the crack due to the rotational 
motion of the rotor. The very simple “hinge models” were the 
first, which included the breathing of the crack by introducing two 
different states: the completely open and the completely closed 
crack at particular angular positions of the rotor [20,21]. Mayes 
and Davies [22] introduced the model in which the changes from 



Fig. 9 Bending response for different angles #; 25% crack; fQ ¼ 60 Hz 

the completely open to the completely closed state were described 
by a continuous function (the so called “crack steering function”). 
Usually this function has the form of a simple cosine function 
depending on the torsional angle. 

Progressive development of the finite element method and its 
application to rotor dynamics [23,24] resulted in very sophisti­
cated crack models in which fracture mechanics methods are 
applied. Dimarogonas and Paipetis [25] introduced the full, 6 x 6 
stiffness matrix for the finite element containing the continuously 
open crack (the so called “slotted crack”). Darpe et al. [17] pre­
sented the detailed derivation of the full stiffness matrix of the 
cracked finite element including an original model of the crack 
breathing. Using their approach, the extent of crack opening/clos­
ing is evaluated by calculating the stresses at selected points along 
the crack edge line. The positive sign of these stresses corresponds 
to the compressive state of the given portion of the cracked sur­
face, and the closed crack, while the negative sign corresponds to 
the tensile state and the open crack. 

All these crack models have been developed for the rotating 
shafts. However, if there is no rotational motion, then the models 
based on the crack steering function are not very suitable. This is 
due to the fact that they depend on the torsional angle. That is 
why, in case of nonrotating shafts, the models should be used 
where stresses (or deformations) at the crack location are calcu­
lated [17,24]. 

The present article introduces a new model of the crack. As the 
whole rotor is modeled using the rigid finite element method, the 
crack is modeled by several spring-damping elements. Similar to 
[17], the crack opening/closing is evaluated by the very small 
deformations of the SDEs at the location of the crack. The details 
about the suggested model are explained below. 

The crack is supposed to be located between the two RFEs and 
is modeled using several spring-damping elements connecting 
these RFEs. Figure 3 shows two rigid finite elements and the cross 
section of the shaft at the location of the crack. The crack edge 
line located at depth a from the side surface of the shaft separates 
the uncracked (hatched) and cracked areas. 

The main SDE connecting the two RFEs (marked with a big 
crossed circle in Fig. 3(b)) is located at the geometrical center of 
the uncracked area. Stiffness coefficients kC;j of this SDE in the 
main six directions are constant and proportional to the relative 
depth of the uncracked area 

kC;j ¼ ð1 - lÞkU;j (3) 

where l ¼ a=2R is the relative depth of the crack, R is the radius 
of the shaft, kU;j are stiffness coefficients of the SDE, which would 
connect the two RFEs in case of the uncracked shaft, 
j ¼ 1; 2;…; 6. Stiffness coefficients kU;j are calculated using the 
procedure described in [18,19]. 



Fig. 10 Bending response for different angles #; 25% crack; fQ ¼ 80 Hz 

The cracked area between the two RFEs is connected with sev­
eral smaller SDEs. There are 19 SDEs (numbered from 53 to 71) 
in Fig. 3(c). In practical calculations the number of small SDEs 
should be chosen in a way ensuring the realistic opening and clos­
ing of the crack. These SDEs are located at selected points of the 
uncracked area, e.g., at the nodes of the imaginary geometrical 
array, formed with vertical and horizontal lines running perpen­
dicular and parallel to the crack edge. Stiffness coefficients kk;j of 
the individual SDEs are equal and are chosen in such a way that 
their sums in all six directions are proportional to the relative 
depth of the crack 

53þnC X
kk;j ¼ lkU;j (4) 

k¼53 

where nC is the number of small SDEs. Hence the sum of the stiff­
ness coefficients of small SDEs kk;j and a big SDE kC;j in the jth 
direction equals the stiffness of the uncracked SDE kU;j, 

53þnC X
kC;j þ kk;j ¼ kU;j (5) 

k¼53 

Crack closing and opening is included by stiffness changes of 
small SDEs. It is assumed that the stiffness of an individual small 
SDE in a given direction j can be zero or kk;j depending on the de­
formation Dwk;1 of this SDE along axis yk;1 (for j ¼ 1, i.e., along 

the axis of the shaft). If this deformation is greater than zero, then 
the corresponding SDE is compressed, its stiffness should be kk;j 
and the crack at its location is closed. It can be vividly presented, 
as if the spring damper touches the crack surface (Fig. 4). On the 
other hand, if this deformation is less than or equal to zero, then 
the corresponding SDE is under tension, its stiffness should be 
zero and the crack at its location is opened. It can be presented as 
if the spring damper does not touch the surface of the crack. This 
way, based on the sign of the deformation of all small SDEs in a 
direction perpendicular to the crack surface, the open/close state 
of the crack can be easily determined, and the corresponding stiff­
ness change can be introduced into the stiffness matrices. 

Deformations of a given SDE are expressed by vector Dwk 
composed of six components: the first three are translational 
deformations along corresponding axes yk;1, yk;2, yk;3, and the next 
three are rotational deformations around the same axes. The first 
component Dwk;1 is used for determining the opening or closing 
of the crack, as it is described above. According to [18,19], vector 
Dwk is calculated as follows: 

Dwk ¼ Tr;k qr - Tp;kqp (6) 

where qr and qp are vectors of displacements of the rth and pth 
RFE connected with the kth SDE, and Tr;k and Tp;k are corre­
sponding transformation matrices [18,19]. 

Hence the procedure of determining the crack open/close state 
is performed according to the following steps: 



Fig. 11 Torsional response for different angles #; 40% crack; fQ ¼ 60 Hz 

1. Initially the crack is supposed to be completely opened, i.e., 
stiffness matrices of all small SDEs are zero and only the 
stiffness matrix of the big SDE is introduced into the stiff­
ness matrix K of the whole system (Eq. (2)). 

2. For the given time step, the response vector q is calculated 
according to Eq. (2) and vectors of displacements qr and qp 
of the two RFEs between the crack are excluded from it. 

3. Deformation vectors Dwk of all small SDEs are calculated, 
according to Eq. (6). 

4. If the first component Dwk;1 of the given vector Dwk is less 
than or equal to zero, then the corresponding SDE is open 
and its stiffness matrix remains zero. Otherwise, the corre­
sponding SDE is closed and its stiffness matrix is modified 
to contain kk;j components. 

5. Stiffness matrix	 K of the whole system is updated with 
modified matrices of all small SDEs and the procedure from 
2 to 5 is repeated with the new value of K. 

5 Results 

To evaluate the quality of the proposed RFE approach the values 
of the frequency transfer function have been calculated and com­
pared with the values obtained experimentally. Figure 5 presents 
such a comparison for the uncracked, free-free rotor (with no sup­
porting bearings) obtained experimentally using the impact hammer 
modal testing (continuous line) and from the RFE model (dashed 

line). During the experiment the rotor suspended on a light thin 
string was impacted near the center of the 17th RFE and its vibra­
tions were measured at the center of the 15th RFE. Very good 
agreement between the experimental and numerical data can be 
observed; the values of the first three natural frequencies, which for 
the experiment are 84.25, 362, and 646 Hz, agree very well with the 
values obtained from the RFE model (84, 356.62, and 642 Hz, respec­
tively). Natural frequencies of the uncracked rotor supported by ball 
bearings are different than those of the free-free rotor. In this case the 
first two bending frequencies are located at fn ¼ 45 Hz and fn ¼ 225 
Hz, while the first torsional frequency is at fT ¼ 123 Hz. This is due 
to additional stiffness and damping introduced by bearings. 

During the numerical analysis three different models of the 
rotor have been considered: the first with no crack, the second 
with a 25% deep crack, and the third with a 40% deep crack. The 
number of small spring-damping elements connecting the 21st 
and the 22nd elements of the shaft was nC ¼ 260 for the 25% 
deep crack and nC ¼ 488 for the 40% deep crack. In all cases the 
value of the lateral force was Fex ¼ 10 N, while the form of the 
external torque QT ¼ AQ sinð2pfQtÞ, where the amplitude AQ ¼ 50 
N m. The torque can be also presented as QT ¼ AQ sinð2pnQ þ /QÞ, 
where /Q and nQ are its phase and number of cycles, respectively 
(0 < /Q < 2p). The force and the torque were applied at the cen­
ter of the 35th and 49th RFE for the force and torque, respectively 
(Fig. 2(b)). Two different frequencies of the exciting torque have 
been considered: fQ ¼ 60 Hz and fQ ¼ 80 Hz. 



Fig. 12 Bending response for different angles #; 40% crack; fQ ¼ 60 Hz 

The calculations have been conducted for the rotor made of 
steel of Young’s modulus E ¼ 2:08 x 1011 Pa, Poisson’s ratio 
v ¼ 0:3, and density q ¼ 7850 kg/m3. The values of the radial 
bearings’ stiffness and damping were assumed as kB ¼ 3:6 x 106 

N/m, and dB ¼ 10 N s/m. Furthermore, the torsional stiffness and 
damping at the left bearing were chosen to be kT ¼ 4 x 104 N m/  
rad and dT ¼ 20 N m s/rad, as the left end of the shaft is fixed 
(Fig. 1). 

Figures 6–13 present frequency responses for different angles # 
of the lateral force Fex. Bending response is shown only for the 
horizontal x3 axis, as the vibrations along axes x2 and x3 are much 
the same. 

Figures 6 and 7 present torsional and bending responses of the 
uncracked rotor. As expected, the torsional spectrum contains 
only one component of the exciting torque frequency fQ ¼ 60 Hz. 
In the bending response only the first natural frequency fn ¼ 45 
Hz is slightly induced. Such characteristics are typical for the lin­
ear model of the rotor. 

Figures 8, 9, and 10 present responses of the 25% cracked rotor. 
Due to the nonlinearities introduced by the crack, subsequent inte­
ger multiples of the exciting torque frequency fQ denoted as 2X 
(120 Hz), 3X (180 Hz), 4X (240 Hz), etc. appear in the torsional 
response (Fig. 8). However, all these frequencies are observed 
only for particular angles #, i.e., for # from 40 deg to 150 deg and 
for # from 210 deg to 320 deg. It should be noticed that such 

angle ranges correspond to the situations when the crack is par­
tially open. For other ranges, only one component is present in the 
vibration spectra. This is the frequency of the exciting torque fQ. 
In this case, the angles are near 0 deg and 180 deg, what corre­
sponds to the (almost) fully open and (almost) fully closed crack. 

The similar, yet more important situation, is in the bending 
spectra (Figs. 9 and 10), where for the same angle ranges the same 
frequency components can be observed (including the multiples 
2X, 3X, and so on). For other angle ranges, the bending frequency 
spectrum contains only slightly induced natural frequency fn and 
exciting torque frequency fQ. 

The rotor with a 40% deep crack excited with a 60 Hz torque 
behaves similarly (Figs. 11 and 12), yet the angle ranges for which 
additional bending frequencies are induced are wider: from 
# ¼ 30 deg to # ¼ 160 deg and from # ¼ 200 deg to 
# ¼ 330 deg. This would suggest that for deeper cracks it is more 
difficult to completely close (or completely open) the crack and 
consequently not to induce the additional bending frequencies. 

The situation for a 40% cracked rotor excited with a 80 Hz tor­
que is completely different (Fig. 13). For most angular positions 
of the lateral force the bending response contains a full spectrum 
of different frequencies of relatively high amplitudes. Only for 
# ¼ 170 deg, # ¼ 180 deg, and # ¼ 190 deg two distinct fre­
quencies fn and fQ are observed. This can be explained by the 
unique crack behavior due to a different exciting torsional 



Fig. 13 Bending response for different angles #; 40% crack; fQ ¼ 80 Hz 

Fig. 14 Crack breathing at subsequent phases of the exciting torque; 25% crack; 
fQ ¼ 60 Hz; # ¼ 90 deg 

frequency. To illustrate this behavior, the crack opening/closing at 
subsequent phases /Q of the exciting torque has been calculated, 
and is presented in Figs. 14–17. For the 25% cracked shaft excited 
with a 60 Hz torsional frequency, the crack remains partially open 
during the whole period of the exciting torque. This is shown in 
Fig. 14 for the angular location # ¼ 90 deg, where the crack 
remains half open. For other angular locations the crack behavior 
is similar, i.e., it remains partially open, yet the extent of this 
opening changes for various #. The behaviors of the 25% cracked 
shaft excited with 80 Hz as well as the 40% cracked shaft excited 
with 60 Hz are similar, though not presented here. 

However, for the 40% cracked shaft excited with an 80 Hz tor­
sional frequency, the crack behavior changes radically. For most 
angular locations of the lateral force the crack randomly opens 

and closes during one period of the exciting torque. This is pre­
sented in Figs. 15 and 16 for # ¼ 0 deg and # ¼ 90 deg. Such 
behavior results in an almost white noise spectrum observed in a 
vibration response (Fig. 13 for # from 0 deg to 160 deg and from 
200 deg to 340 deg). For angular locations between # ¼ 170 deg 
and # ¼ 190 deg the crack remains constantly closed (Fig. 17), 
what results in simple vibration spectra (Fig. 13 for # from 
170 deg to 190 deg) consisting of two components fn and fQ only. 

Hence, the frequency of the exciting torque and other parame­
ters should be selected very carefully, which suggests further 
studies on the proposed method. Nevertheless, it should be 
emphasized that if the parameters are chosen correctly then the 
proposed method can be presumably applied to effectively diag­
nose the health of the machine. 



Fig. 15 Crack breathing at subsequent phases of the exciting torque; 40% crack; fQ ¼ 80 Hz; 
# ¼ 0 deg 

Fig. 16 Crack breathing at subsequent phases of the exciting torque; 40% crack; fQ ¼ 80 Hz; 
# ¼ 90 deg 



Fig. 17 Crack breathing at subsequent phases of the exciting torque; 40% crack; 
fQ ¼ 80 Hz; # ¼ 180 deg 

6 Conclusions 

The main advantage of the proposed RFE approach is its sim­
plicity. The model of the rotor is obtained quickly and intuitively 
using a uniform procedure. The crack is represented by a selected 
number of small spring-damping elements located between its 
lips. Introduction of several subsequent SDEs into the crack 
model is easy and is performed in a very systematic way that is 
natural for the RFE method. Modeling of the crack breathing 
mechanism using deformations of individual small SDEs is 
straightforward and results in fast computations involving only 
simple matrix operations. No complicated calculations of integrals 
for flexibilities, complex formulas for stress intensity factors, or 
so on, are required. Although fast and simple, the RFE method 
ensures very good accuracy as well. This has been preliminarily 
confirmed by the experimental and numerical results for the fre­
quency transfer functions. 

The presented approach amplifies the rotor sensitivity to the 
presence of crack and its propagation. Application of controlled 
deflection of the nonrotating shaft, excited by small amplitude 
harmonic torque, produces the unique patterns of coupled bending 
vibrations. If the deflection is applied in a direction corresponding 
to partial opening of the crack, the maximum amplification and 
the appearance of the multiples of the torsional frequency in the 
bending spectrum are observed. On the other hand, the minimum 
coupled bending amplitudes are observed if the deflection is 
directed in a way ensuring the fully opening or closing of the 
crack. Such behavior can be explained by the fact that in a case of 
a partially open crack, the multiples of the forced frequency 
appear quite naturally in the torsional spectrum. These frequencies 
are transformed by the off diagonal nonzero elements of the stiff­
ness matrix to the coupled bending vibrations resulting in the 
same multiples in the bending vibration spectra. The coupling 
between the bending and torsional vibrations takes place only if 
the cracked shaft is considered, as only then the off diagonal non­
zero elements appear in the stiffness matrix. 

Since the technique requires simultaneous application of the 
harmonic torsional excitation and the constant magnitude load to 
the nonrotating rotor, it is not an online method and it can be used 
only during a major machine overhaul. The lateral force deflecting 
the shaft should be applied by a noncontacting force actuator, as 
for example an active magnetic bearing actuator. By proper con­
trolling of the AMB, the angular direction of the applied force can 
be conveniently changed. The application of harmonic torque 
requires dedicated torsional noncontact exciters, similar to those 
developed by Sihler et al. [26] or Gaddis et al. [27], where the 
electromagnetic or piezoelectric actuators have been applied. 

Numerical results confirm the potential of the proposed 
approach. The changes in coupled bending vibrations are observed 
only for the cracked shaft. However, further analysis is needed to 
determine the most optimal amplitude of the external force induc­
ing the shaft deflection, the amplitude and frequency of the excit­
ing torque, the axial location of the application for these forces, 
the placement of the measuring probes, etc. 

The experimental validation of the proposed method is under­
way, as well as its extension to the case of rotating shafts. The 
approach has potential to become a robust technique for the con­
tinuous structural health monitoring of the rotors, without putting 
the machine out of service. The authors believe that the applica­

tion of the method would allow one not only to detect the presence 
of the crack but also to identify its angular location. 

Nomenclature 
AQ ¼ amplitude of the exciting torque 

a ¼ crack depth 
D ¼ damping matrix of the rotor 

dB ¼ radial damping coefficient of ball bearings 
dT ¼ torsional damping coefficient of the left ball 

bearing 
E ¼ Young’s modulus of the rotor’s material 

Fex ¼ external lateral force deflecting the shaft 
Fex ¼ vector of the external lateral force deflecting the 

shaft 
fn ¼ first bending natural frequency of the rotor 
fQ ¼ frequency of the exciting torque 
fT ¼ first torsional natural frequency of the rotor 
G ¼ vector of gravity forces loading the rotor 
K ¼ stiffness matrix of the rotor 
kB ¼ radial stiffness coefficient of ball bearings 

kC;j ¼ stiffness coefficient of the big SDE in the jth 
direction 

kk;j ¼ stiffness coefficient of the kth SDE in the jth 
direction 

kT ¼ torsional stiffness coefficient of the left ball 
bearing 

kU;j ¼ stiffness coefficient of the uncracked shaft in the 
jth direction 

M ¼ mass matrix of the rotor 
nC ¼ number of small SDEs modeling the crack 
nQ ¼ number of cycles of the exciting torque 
QT ¼ harmonic torque exciting the shaft 
QT ¼ vector of the harmonic torque exciting the shaft 

q ¼ vector of generalized displacements of centers of 
masses of RFEs 

qp ¼ vector of displacements of the pth RFE 
q ¼ vector of displacements of the rth RFE r 
R ¼ shaft radius
 

RFE ¼ rigid finite element
 
SDE ¼ spring-damping element
 
Tr;k ¼ transformation matrix from yk;1, yk;2, yk;3 to xr;1, 

xr;2, xr;3 coordinates 
Tp;k ¼ transformation matrix from yk;1, yk;2, yk;3 to xp;1, 

xp;2, xp;3 coordinates 
t ¼ time 

Dwk;1 ¼ translational deformation of the kth SDE along 
axis yk;1 

Dwk ¼ vector of deformations of the kth SDE 
xr;1, xr;2, xr;3 ¼ axes of the local coordinate system of the rth RFE 
yk;1, yk;2, yk;3 ¼ axes of the local coordinate system of the kth 

SDE 
aD, bD ¼ coefficients of the damping matrix D
 

# ¼ angle of the lateral force application
 
l ¼ relative depth of the crack
 
v ¼ Poisson’s ratio of the rotor’s material
 
q ¼ density of the rotor’s material
 

/Q ¼ phase of the exciting torque 
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