Cleveland State University

EngagedScholarship@CSU

Undergraduate Research Posters 2017

Undergraduate Research Posters

2017

P1: Using Modified Dean Flow designs to Increase Mixing **Performance**

Joshua Clark Cleveland State University

Follow this and additional works at: https://engagedscholarship.csuohio.edu/u_poster_2017

Part of the Biomedical Engineering and Bioengineering Commons, Chemistry Commons, and the

Physics Commons

How does access to this work benefit you? Let us know!

Recommended Citation

Clark, Joshua, "P1: Using Modified Dean Flow designs to Increase Mixing Performance" (2017). Undergraduate Research Posters 2017. 42.

https://engagedscholarship.csuohio.edu/u_poster_2017/42

This Book is brought to you for free and open access by the Undergraduate Research Posters at EngagedScholarship@CSU. It has been accepted for inclusion in Undergraduate Research Posters 2017 by an authorized administrator of EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.

Using Modified Dean Flow Designs to Increase Mixing Performance

College of Sciences and Health Professions and Washkewicz College of Engineering

Student Researcher: Joshua Clark

Faculty Advisors: Chandra Kothapalli and Petru S. Fodor

Abstract

We are using numerical solutions for the Navier-Stokes equations and the concentration - diffusion equation to model fluid flow and reactant distribution in serpentine type channels for micromixers/microreactors development. These mixers exploit centripetal forces on the fluid to induce cross-sectional fluid mixing, aka Dean flows. Various modifications are used to increase the mixing character of these cross-sectional flows. We found that the performance of these mixers exceeds that of unmodified channels and we currently assess their performance relative to other state of the art methodologies used to induce mixing on the microscale.