High-Throughput Assessment of Developmental Stages of NSCs via Promoter-Reporter Assay System Using Recombinant Lentiviruses

Emily Serbinowski
Cleveland State University

Pranav Joshi
Cleveland State University

Kyeong Nam Yu
Cleveland State University

Yana Sichkar
Cleveland State University

Follow this and additional works at: https://engagedscholarship.csuohio.edu/u_poster_2016
How does access to this work benefit you? Let us know!

Recommended Citation
Serbinowski, Emily; Joshi, Pranav; Yu, Kyeong Nam; and Sichkar, Yana, "High-Throughput Assessment of Developmental Stages of NSCs via Promoter-Reporter Assay System Using Recombinant Lentiviruses" (2016). Undergraduate Research Posters 2016. 45.
https://engagedscholarship.csuohio.edu/u_poster_2016/45
High-Throughput Assessment of Developmental Stages of NSCs via Promoter-Reporter Assay System Using Recombinant Lentiviruses

Washkewicz College of Engineering

Student Researchers: Emily Serbinowski, Pranav Joshi, Kyeong Nam Yu, and Yana Sichkar

Faculty Advisors: Chandra S. Kothapalli and Moo- Yeal Lee

Abstract

Many drugs and chemicals currently available have not been fully evaluated for their toxic effects on the developing brain. Expensive and low-throughput in vivo studies are still being used to evaluate developmental neurotoxicity (DNT). Thus, there is a need to develop an in vitro assay system which is economically feasible and high-throughput. Among various cellular models used for in vitro assay, human neural stem cells (NSCs) are highly desired due to their ability to self-renew and differentiate into neurons, astrocytes and oligodendrocytes. In vitro assessment of developmental stages (proliferation and differentiation) of human NSC is highly important to predict the in vivo effect of various chemicals on developing brain. However, conventional in vitro assay uses immunofluorescence staining to monitor changes in cell morphology and neural cell-specific biomarkers which can either be inaccurate or cumbersome. Therefore, we have developed an in vitro promoter-reporter assay system to monitor the proliferation and differentiation of NSCs using recombinant lentiviruses. Four NSC-specific biomarkers can be monitored by infecting NSCs with recombinant lentiviruses such as synapsin1 for neuron differentiation, glial fibrillary acidic protein (GFAP) for astrocyte differentiation, myelin basic protein (MBP) for oligodendrocyte differentiation, and SOX2 for self-renewal.