
Cleveland State University Cleveland State University

EngagedScholarship@CSU EngagedScholarship@CSU

Business Faculty Publications Monte Ahuja College of Business

2012

An Implementation of a Dynamic Partitioning Scheme for Web An Implementation of a Dynamic Partitioning Scheme for Web

Pages Pages

Timothy Arndt
Cleveland State University, t.arndt@csuohio.edu

Ben Blake
Cleveland State University, benblake@csuohio.edu

Brian Krupp

Janche Sang
Cleveland State University, J.SANG@csuohio.edu

Follow this and additional works at: https://engagedscholarship.csuohio.edu/bus_facpub

 Part of the Technology and Innovation Commons

How does access to this work benefit you? Let us know! How does access to this work benefit you? Let us know!

Original Published Citation Original Published Citation
Arndt, T., Blake, B., Krupp, B., Sang, J. (2012). An Implementation of a Dynamic Partitioning Scheme for
Web Pages. International Journal of Computer Science Issues, 9(3), pp. 37-46.

This Article is brought to you for free and open access by the Monte Ahuja College of Business at
EngagedScholarship@CSU. It has been accepted for inclusion in Business Faculty Publications by an authorized
administrator of EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.

https://engagedscholarship.csuohio.edu/
https://engagedscholarship.csuohio.edu/bus_facpub
https://engagedscholarship.csuohio.edu/bus
https://engagedscholarship.csuohio.edu/bus_facpub?utm_source=engagedscholarship.csuohio.edu%2Fbus_facpub%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/644?utm_source=engagedscholarship.csuohio.edu%2Fbus_facpub%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
mailto:library.es@csuohio.edu

An Implementation of a Dynamic Partitioning Scheme
for Web Pages

Timothy Arndt, Ben Blake, Brian Krupp and Janche Sang

 1 Department of Computer and Information Science, Cleveland State University,
Cleveland, Ohio 44118, USA

Abstract
In this paper, we introduce a method for the dynamic partitioning
of web pages. The algorithm is first illustrated by manually
partitioning a web page, then the implementation of the
algorithm using PHP is described. The method results in a
partitioned web page consisting of small pieces or fragments
which can be retrieved concurrently using AJAX or similar
technology. The goal of this research is to increase performance
of web page delivery by decreasing the latency of web page
retrieval.
Keywords: Web Browser, Partitioning, Performance, PHP,
Concurrency.

1. Introduction

There has been much research done in the area of
improving web performance by methods such as caching
static content, pre-fetching web content and differencing
and merging. However, with caching of static content the
dynamic content of the page’s performance doesn’t
improve. Also with pre-fetching, if the algorithm makes
an incorrect decision on the future content to be requested,
resources are wasted on requesting that content and
processing that content.

Our approach to decreasing web retrieval latency will
utilize existing standards and protocols to partition content
within a page at the source and allow the partitions, or
fragments, of the web page to be processed in parallel to
improve web page delivery performance. This concurrent
web page retrieval can be done using AJAX or some
similar technology. The partitions or fragments in our
implementation are created by looking for <div> tags,
though in general this could be done in any number of
ways. Our general approach then is: web page
fragmentation followed by concurrent retrieval of the
fragments in order to minimize web page retrieval latency.

In the next section of this paper we will briefly review
related work in the improvement of web page delivery
performance. Section 3 will demonstrate out methodology
for partitioning of a web page by the manual partition of

an example page. This was the initial stage of our research
and was done so that we could carry out performance
testing on the fragmented web page to see if gains in
performance were indeed possible. Having verified that
this was in fact the case, section 4 describes the
implementation of our partitioning method in a dynamic
partitioning system using PHP. Conclusions are given in
section 5.

2. Related Work

There has been a considerable amount of research in
improving web page delivery performance. Some of the
more recent and common research in this area has been in
prefetching web content and caching of static content [3],
[6], [7]. Caching, which has been implemented in web
browsers for quite some time, has been coupled with
proxies to allow caching to be done at an organizational
level for better predictability.

One hybrid method that was proposed by Huang and Hsu
[1] defined a method to mine popular sites using a
prediction-based buffer manager that resides in front of a
proxy to both cache and prefetch web pages. This method
combines both caching and prefetching and removes the
requirement for extra software to be installed on a user’s
machine.

A different approach proposed by Pons [5] used the
Markov-Knapsack method to perform prefetching of web
content by using the current web page and a Knapsack
selector to determine the web objects to request. This
model uses a server to keep track of prefetched pages, and
pages that have been prefetched after.

An approach that focuses on improving crawling
performance proposed by Peng, Zhang, and Zuo [4] looks
at segmenting the web pages into relatively smaller units
to expand the reach of crawling by navigating through
irrelevant content to reach more important content. This
approach takes one page that may be irrelevant as a whole
and divides it up to find relevancy in a particular partition.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 37

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Finally, Jevremovic et al. [2] propose a Differencing and
Merging System (DMS). DMS makes use of structural
similarities which may exist between web pages and
retrieves the difference between a previously fetched web
page and the web page it now wants to retrieve. A model is
developed in which the web server and browser maintain a
history of web pages and differences and the web browser
requests the minimum difference from the server in order
to improve performance by sending the least amount of
data over the network.

3. Manual Partitioning

To get an idea of the performance gains with dynamic
partitioning and future design considerations, we created a
sample page that contained several candidate partitions
using the <div> tag. We put a nested <div> tag in as well
as we expect we will come across nested partitions to see
what would be the best approach of handling them. Now
in the design of the framework, we are not restricted to
<div> tags, but will use them as an example as they are the
predominant container tag in newer CSS design. After a
page has been partitioned, we foresee the concurrent
retrieval of those partitions using a technology like AJAX.
That is reflected in the discussion in this section.

3.1 Approach

Looking at a sample of the code, we see some
standalone <div> tag as well as some nested <div>
tags where we outlined those areas:

Fig. 1 Sample code.

Which, after rendering, produces the following site where
we again outlined the different partitions:

Fig. 2 Rendered site.

To do the manual partition, so that the partitioned content
stands alone, there are two approaches we can use as
shown in the next two subsections.

3.2 Separate File Approach

One approach is to separate the content of that partition,
and store it in a separate file where the browser would
make a request directly to that file. We would use the id
attribute of the tag as part of the name of the separated
content, if no ID existed, we would create one and store it
in the tag.

Fig. 3 Separate file approach.

From the above diagram, the framework would separate
the content and store it in a separate file. The sample.php
page would then include AJAX to call the partitioned
content, so that the initial request to sample.php returns the

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 38

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

AJAX code to request the partitioned content, and the
AJAX code would then place the response in the
partitioned content area that it originated from.

3.3 Separate Method Approach

Another approach is to separate the content of that
partition within the code from being executed by storing it
in its own method. Then the browser as part of the AJAX
code request for that method will execute in that particular
page, and the results returned to the browser will be placed
where the partitioned content was removed.

Fig. 4 Separate method approach.

Just like in the Separate File approach, we can use the ID
of the <div> tag that existed or the one we generated to
name the function. Our research will focus on the separate
file approach.

3.4 Parsing the Page

In either approach, when we parse the page, we need to
keep track of the partition structure. To do this, we will
create a basic tree, with a parent/child relationship to
represent the nested tag structure. When parsing the page
if we perform dynamic partitioning at the child and at the
parent, we need to partition the child first, otherwise, when
we take the partition of the parent out, it will include the
child, and the code for the child will never be created.

Therefore as we walk our tree where each node represents
a partition, we will need to check if there is a child, and if
so go to the left-most child, and repeat. If there is no
child, create the partition, move up to the parent, and
delete the child where the partition was created. We will
repeat this until there are no more elements in the tree
except the root which would be the <html> tag.

An example of how this tree would look includes the
following based on our example page is shown in figure 5.

Fig. 5 Structure of example page.

So walking through this tree, we would start at the root, go
to the Stock Quote Content, there are no children, so create
the partition, and then remove that element from the tree,
then go to the Recent Stock Transactions node, then
Purchases, there are no children, so write out the partition,
and remove the purchases node, at this state.

Fig. 6 Parsing the page.

Once we remove all nodes from the tree with exception to
the root, we are done. In our example, when we assigned
IDs to the <div> tags, we had the mapping shown in table
1.

ID	 Content	

sub1	 Stock	 Quote	 Content	
sub2	 Purchases	

sub3	 Sells	

sub4	 Recent	 Stock	 Transactions	
sub5	 News	 Content	

Table 1 Mapping.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 39

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Performing the Separate File approach, we had the
following files created: result_page.php,
result_page_sub1.php, result_page_sub2.php and so on.

3.5 Performance Testing

We carried out an array of tests to verify whether our
approach to increased performance was valid. We wanted
to compare the retrieval time for the non-partitioned page
(monolithic retrieval) versus concurrent retrieval of the
partitioned page (fragmented retrieval). We set up
software on the client side to generate the appropriate calls
to the server. Our testing environment used a single server
machine. With a single core machine, the performance
gains were minimal. However, as would be expected with
the concurrent approach we are aiming at, increasing the
number of cores available on the server machine to two
shows an appreciable performance gain, cutting the
response time almost in half. This shows the validity of
our approach.

4. Implementation of Dynamic Partitioning

In this section we discuss our implementation of the
dynamic partitioning.

4.1 Designing the Parser

When looking at ways to do the dynamic partitioning,
there were several approaches that we could take. One
approach was to use a DOM parser that is available in PHP.
We tested this approach first and found through our testing
that the DOM parsers that are available are more suitable
for traditional XML documents and not the kind of input
that we would be working with where we will also have a
mix of server side code and HTML.

Designing our own parser, we use regular expressions and
build our own tree data structure to represent the nesting of
elements and content. This allows us to easily walk the
tree and extract elements for the dynamic partitioning.

Our parser will function as follows:

1. Create a ROOT element in the tree

2. Extract Content (optional), div tag then

Remaining Content

3. Create Content as child of current element

4. If we hit end tag, go back to #2

If we were to parse the following HTML document:

<html>
 <body>
 Welcome
 <div id=’msg’>
 Content before nested div
 <div id=’nested’>
 Nested Content
 </div>
 Content after nested div
 </div>
 Goodbye
 </body>
</html>

We would get the following tree data structure:

Fig. 7 Parsed tree data structure.

Once we have our tree data structure, we can then print out
our HTML file by going to the left child that has not been
accessed, printing its contents out, and repeating that
process for each child that has not been accessed.

4.2 Implementation of Node Tree Structure in PHP

We built this implementation in PHP using an object
oriented approach where we have a tree node object that
can contain an array of children objects. These children
objects would be other tree node objects. Other properties
of this node contain an ID which would be used as the ID
attribute in the div HTML tag, the tree node type which
can be a nondiv, opendiv, and closediv, and the content of
the node. Using the content of the node, if we walked the

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 40

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

tree from the root element to the left most element and
repeat this for each untouched node, we would print out all
the content in order.

The tree walk method that we designed allows us to pass a
callback method that will be run on each node that the tree
walk method reaches. This allows us to perform several
operations on the tree with the same tree walk method.

4.3 ID Assignment

We need a unique ID for each partition. We designed the
parser to use an existing ID if it exists, and if not, create a
dynamic ID and increment it by one for each succeeding
partition without an existing ID. This ID is then stored in
the tree for quick retrieval as a property of the TreeNode
class.

4.4 Separate File Approach

For this research, we implemented the separate file
approach. To implement this approach, we had to come
up with a way of storing the files effectively on the local
filesystem. To do this, we create a directory where the
parsed page is contained with a naming format of:

_<source_page>-dynpart

Within this directory, we store files based on the ID
attribute of the Tree node. While we create these files
however, we will more than likely have nested div tags:

<div id=’1’>
 Content Before
 <div> Content Nested</div>
 Content After
</div>

In this scenario, we need two files for the content of the
div tag with the ID of 1. One file will have “Content
Before” as its content, the other will have “Content After”.
To work around this, we add a sub index to the file name.
Following this approach, a div tag that has an existing ID
would have the following file convention:

<id>_<sub_index>

And a dynamic generated ID would have the following file
convention:

dynamic_partition_<dynamic
id>_<sub_index>

4.5 Pseudocode of Parser

The parser was created in PHP and used regular
expressions within the code to grab tokens which were
defined as content before <div> tags, <div> tags, content
within <div> tags, and content after <div> tags and stored
them in the tree such. The core pseudo code for the parser
is as follows, note that comments start with the #.

Create partition tree from
input file
Create root element for partition
tree and set as current node
While file has content

If remaining content has a
div tag, grab content up to
div tag and div tag

Add content before
div to tree as child
of current node
If div tag is open
div
 Add tag as
child of current node
 Set current
node to just created
child
If div tag is close
div
 Add as child
node to parent of
current node
 Set current
node equal to parent
Set remaining content
equal to content
after div tag

Else
Add content of
remaining file
content as child to
current node

Return tree to parser

Walk tree and add unique
identifier for each div tag
Set current node equal to root
node
function walkTree

If current node is an open
div tag

If current node
doesn’t have ID
attribute

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 41

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Assign dynamic
ID to node

If current node has
children
 Foreach child
 walkTree of
child

Prepare for dynamic partitioning
by creating filesystem for
separate file method using input
file name

Dynamically partition the tree
function dynPartTree

Foreach child of current
node

dynPartTree child
If child type is
within a div tag and
is a nondiv type

Write child
content to
filesystem
using ID
if concurrent
AJAX library
has not been
included

Include
concurren
t AJAX
library
in child
content

Set content of
child =
concurrent AJAX
request for
child content
on filesystem

Walk tree and print out
partitioned file to original file
Set current node equal to root
node
function walkTree
 Write to file node content

If current node has
children
 Foreach child
 walkTree child

The actual code for this parser can be found in Appendix
A.

4.6 Execution of Parser

The execution of the parser successfully performed
dynamic partitioning of the page in a similar structure of
the manual partitioned page, thus yielding the same
performance results as the manual partition.

5. Conclusions and Future Research

In this paper we have described our approach to the web
retrieval performance problem. First we partition a
monolithic web page into fragments and then we retrieve
those fragments concurrently. Our experiments show that
are definite performance gains to be achieved using this
approach, and we have shown that the web pages can be
partitioned automatically, without manual intervention.
This approach is especially appropriate where the web
page contains dynamic content since in this case the
caching techniques that others have developed are not
relevant. In a future paper we will show how we can use
AJAX to perform the concurrent retrieval and do
performance testing on a prototype
fragmentation/concurrent retrieval system.

Appendix A. – Dynamic Partition Parser PHP Code

#!/usr/bin/php -f
<?php
 /* First check if we want to get a
help for usage */
 if ($argc == 1 && $argv[1] == 'help')
{
 echo "\nUsage: dynPartPage.php
source_file\n\n";
 exit();
 }

/* Then check for the arguments
passed to the user, if the number of
arguments equals the number of
arguments equals the number of
arguments we need, don't prompt the
user, otherwise prompt the user for
everything */

 if ($argc == 2) {
 // Get the input file
 $input_file = trim($argv[1]);
 } else {
 /* Prompt the user for a source
file */
 $input_file = getInput("Enter file
to convert");
 }

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 42

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 $output_file = $input_file . "_new";

 // Perform input validation
 if (!file_exists($input_file))
die("Error: File ($input_file) does not
exist\n");

 // Grab the suffix of the file
 preg_match("/.*?\.(.*)/",
$input_file, $suffix);
 $suffix = $suffix[1];

 /* Create a tree from a source html
file */
 $root = createTree($input_file);

 /* Walk the tree, calling
addIdentifier callback */
 walkTree($root, 'addIdentifier');

 /* Prep dynamic partititon creates
the filesystem data structure needed */
 prepDynamicPartition($input_file);

 /* This does the magic and
dynamically partitions page */
 dynamicPartitionTree($root);

 /* Open the output file, and call
walkTree with callback of writeToFile
which will print the node content to
the file */
 $fh = fopen($output_file, "w");
 fwrite($fh, walkTree($root,
'writeToFile'));
 fclose($fh);

 /* Now that we made it this far,
rename the partitioned file and move
the newly created one on this one */
 $backup_file_name = $input_file .
".predynpart";
 $i=0;
 while
(file_exists($backup_file_name)) {
 $backup_file_name =
$backup_file_name . "_$i";
 $i++;
 }
 if (rename($input_file,
$backup_file_name)) {
 if (! rename($output_file,
$input_file)) {
 echo "Failed to move $output_file
to $input_file, exiting\n";

 }
 }
 else {
 echo "Failed to move $input_file to
$backup_file_name, exiting\n";
 }

 echo "Successfully created partition
page!\n\tStored pre-partition page at
$backup_file_name\n\tCreated dynamic
partition content in $dir_name\n\n";

 function getInput($prompt) {
 echo $prompt . " : ";
 return trim(fgets(STDIN));
 }

 function writeToFile($node) {
 global $fh;
 fwrite($fh, $node->content);
 }

 function printContentCallback($node)
{
 echo $node->content;
 }

 function
prepDynamicPartition($file_name) {
 global $dir_name;
 $dir_name = "_" . $file_name . "-
dynpart";
 if (is_dir($dir_name)) {
 $dh = opendir($dir_name);
 while (false != ($file =
readdir($dh))) {
 unlink($dir_name . "/" .
$file);
 }
 rmdir($dir_name);
 }
 mkdir($dir_name);
 }

 function dynamicPartitionTree($node)
{
 global $dir_name;
 global $first_pass;
 global $suffix;
 $children = $node->getChildren();
 foreach($children as $child) {
 dynamicPartitionTree($child);
 if ($child->isindiv && $child-
>type == "nondiv") {
 // Create our id and filename

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 43

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 $id = $child->parent->id . "_" .
$child->parent->partition_count;
 $file_name = $dir_name . "/" .
$id . "." . $suffix;

/* Open file handler, and write the
content, and close the file handler */
 $fh = fopen($file_name, "w");
 fwrite($fh, $child->content);
 fclose($fh);

 /* Check if we made our first
pass, if we didn't, then add the script
content */
 if ($first_pass != "done") {
 $child->content = "<script
src='../common/js/concurrentAjax.js'
language='JavaScript'></script> " .
 "<script> var
cAjaxRequestQueue = new Array();
</script>";
 $first_pass = "done";
 }
 else {
 $child->content = "";
 }

 $child->content .= "

 <script>

cAjaxRequestQueue[cAjaxRequestQueue.len
gth] = new cAjaxRequest('$file_name',
 function(response) {

 document.getElementById('$id').in
nerHTML += response;
 }
);

cAjaxRequestQueue[cAjaxRequestQueue.len
gth - 1].doGet();
 </script>
 ";

 /* Increment the parent partition
count */
 $child->parent-
>partition_count++;
 }
 }
 }

 /* This will add a unique identifier
to each div tag */
 function addIdentifier($node) {

 /* Check to see if we have an open
div */
 if ($node->type == "opendiv") {
 /* If we do have an open div,
extract the ID attribute, and store it
in the object */
 $id_pattern =
"/.*?id\s*?=[\'\"](.*?)[\'\"].*?[\s\>]/
si";
 $nonid_pattern =
"/(<div)(.*)/si";
 if (preg_match($id_pattern,
$node->content, $matches)) $node->id =
$matches[1];
 // Else, add an ID
 else {
 preg_match($nonid_pattern, $node-
>content, $matches);
 $node->id = getUniqueId();
 $node->content = $matches[1] . "
id='" . $node->id . "' " . $matches[2];
 }
 }
 }

 /* This will create a unique ID and
return it */
 function getUniqueId() {
 global $id;
 if (! isset($id)) $id = 10000;
 else $id++;
 return "dynamic_partition_$id";
 }

 /* Function to walk tree in order the
way the elements were added, allows you
to pass the callback function */
 function walkTree($current_node,
$callback) {
 /* Call the callback on our current
node */
 $callback($current_node);

 /* Check if our current node has a
child, if so go through all of them */
 if ($current_node->getChildCount()
> 0) {
 /* Get list of children, and make
a recursive call to walkTree for each
child */
 $children = $current_node-
>getChildren();
 foreach($children as $child)
walkTree($child, $callback);
 }
 }

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 44

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 /* Will need to have a separate node
called closediv, that will close a
previous tag */
 /* Tree node types nondiv, opendiv,
closediv */
 class TreeNode {
 function TreeNode($type, $content,
$parent) {
 $this->type = $type;
 $this->content = $content;
 $this->parent = $parent;
 $this->children = array();
 $this->id = "";
 $this->partition_count = 0;

 if ($this->parent->type ==
"opendiv" || $this->parent->isindiv ==
true) $this->isindiv=true;
 else $this->indiv=false;
 }
 function addChild($child) {
 array_push($this->children,
$child);
 }
 function getChildCount() {
 return sizeof($this->children);
 }
 function getChildren() {
 return $this->children;
 }
 }

 /* This function returns a Tree
structure */
 function createTree($source_file) {
 /* Store the source file in a
single string */
 $source_file =
file_get_contents($source_file);

 /* Create root and store it in
current_node */
 $root = new TreeNode("root", "",
"0");
 $current_node = &$root;

 /* Keep going while the source file
contents are > 0 */
 while(strlen($source_file) > 0) {
 /* Check for any type of div tag,
have the s at the end of the reg ex to
span multiple lines */
 if
(preg_match("/(.*?)(<\/*?div.*?>)(.*)/s
i", $source_file, $matches)) {

 /* Add nondiv element which is
the content before the div */
 $current_node->addChild(new
TreeNode("nondiv", $matches[1],
$current_node));

 /* Check if we have a beginning
div, or an end div, first check for an
end div by checking for a / in the tag
 First check if we have an end by
checking if there is a / in the tag */
 if (preg_match("/.*?\/.*/si",
$matches[2])) {
 /* Add the close div to the
parent of this child */
 $current_node->parent-
>addChild(new TreeNode("closediv",
$matches[2], $current_node->parent));

 /* Point the current node to
the parent */
 $current_node = $current_node-
>parent;
 }
 /* Else we have an open tag, so
sent that to the current node, so we
can place the children underneath it */
 else {
 /* Create a temporary node, and
add it to the current node */
 $temp_node = new
TreeNode("opendiv", $matches[2],
$current_node);
 $current_node-
>addChild($temp_node);

 /* Store in current node the node
we just created since we will now be
adding whatever it contains to this */
 $current_node = $temp_node;
 }

 /* Store the remaining match into
the source file */
 $source_file = $matches[3];
 }
 /* Else, if we don't have any
divs left in the source, add to the
current node which should be the root
the left over content */
 else {
 $current_node->addChild(new
TreeNode("nondiv2", $source_file,
$current_node));
 $source_file = "";
 }

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 45

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 } /* End of going through the
source file */

 /* Return the root node so we can
print out the tree */
 return $root;
 } // End of createTree function
?>
.

References

 [1] Y.-F. Huang, and J.-M. Hsu. "Mining Web Logs to Improve

Hit Ratios of Prefetching and Caching", Knowledge Based
Systems, Vol. 21, 2008, pp. 62-69.

[2] A. Jevremovic, R. Popovic, D. Zivkovic, M. Veinnovic, and
G. Shimic, “Improving Web Performance by a Differencing
and Merging System”, International Journal of Computer
Science Issues, Vol. 9, Issue 1, No. 1, January 2012, pp. 349-
355.

[3] A. Kannanmmal, R. Padmanabhan, and R. Iyengar, “Web
Cache Consistency Maintenance Through Agents”, in
Proceedings of the Second International Conference on
Communication Software and Networks, 2010, pp. 329-333.

[4] T. Peng, C. Zhang, and W. Zuo. "Tunneling Enhanced by
Web Page Content Block Partition for Focused Crawling."
Concurrency and Computation : Practice and Experience,
2007, pp. 61-74.

[5] A. P. Pons, "Improving the Performance of Client Web
Object Retrieval." The Journal of Systems and Software, Vol.
74, 2005, pp. 303-311.

[6] L. Ramaswamy, L. Liu, and A. Iyengar, “Cache Clouds:
Cooperative Caching of Dynamic Documents in Edge
Networks”, in Proceedings of the 25th IEEE International
Conference on Distributed Computing Systems, 2005, pp.
229-238.

[7] R. Sharman, S. S. Ramanna, R. Ramesh, and R. Gopal, “A
Novel Hierarchical Cache Architecture for On-Demand
Streaming on the Web”, ACM Transactions on the Web, Vol.
1, No. 3, 2007, pp. 23-49.

Timothy Arndt Received a Ph.D. in Computer Science from the
University of Pittsburgh. He is currently an Associate Professor of
Computer and Information Science at Cleveland State University.
He is a Senior Member of the Association for Computing
Machinery.

Ben Blake Received a Ph.D. in Computer Science from the Ohio
State University. He is currently an Associate Professor of
Computer and Information Science at Cleveland State University..

Brian Krupp Received a Master’s Degree in Computer and
Information Science from the Cleveland State University. He is
currently a Doctoral student in Software Engineering at Cleveland
State University and Enterprise Security Architect at Key
Bank.

Janche Sang Received a Ph.D. in Computer Science from Purdue
University. He is currently an Associate Professor of Computer
and Information Science at Cleveland State University..

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 46

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

	An Implementation of a Dynamic Partitioning Scheme for Web Pages
	Original Published Citation

	tmp.1418143684.pdf.eA9WD

