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A Reservation-Based Extended  
Transaction Protocol  

Wenbing Zhao, Member, IEEE, Louise E. Moser, Member, IEEE, and 
P.M. Melliar-Smith, Member, IEEE 

Abstract—With the advent of the new generation of Internet-based technology, in particular, Web Services, the automation of 
business activities that are distributed across multiple enterprises becomes possible. Business activities are different from traditional 
transactions in that they are typically asynchronous, loosely coupled, and long running. Therefore, extended transaction protocols are 
needed to coordinate business activities that span multiple enterprises. Existing extended transaction protocols typically rely on 
compensating transactions to handle exceptional conditions. In this paper, we identify a number of issues with compensation-based 
extended transaction protocols and describe a reservation-based extended transaction protocol that addresses those issues. 
Moreover, we define a set of properties, analogous to the ACID properties of traditional transactions that are more appropriate for 
business activities that span multiple enterprises. In addition, we compare our reservation protocol with other extended transaction 
protocols for coordinating business activities and present performance analyses and results. 

Index Terms—Business activity, continuous availability, extended transaction model, isolation, relaxed atomicity, reservation protocol, 
transaction processing, Web services. 

Ç 

1 INTRODUCTION 

THE automation of business activities that are distributed commit protocol works well for the coordination of 
across multiple enterprises becomes possible with the transactions within a single enterprise, the use of the two-

advent of the new generation of Internet-based technology, phase commit protocol in distributed transactions that span 
in particular, Web Services. Business activities typically multiple enterprises unavoidably involves one enterprise 
involve related tasks that are loosely coupled and carried locking a data record of another enterprise. If the transac­

out over a long period of time. The automation of business tion coordinator fails, the locking period might be too long 
activities, with direct computer-to-computer interactions for the enterprise to tolerate. Even if the transaction 
and without human involvement, can provide substantial coordinator does not fail, resources might be locked longer 
speed improvements and cost reductions for distributed than the enterprise is willing to accept. Therefore, in 
enterprise computing. However, such enterprise applica- practice, distributed transactions based on the two-phase 
tions must operate with a high degree of availability and commit protocol are seldom used for business activities that 
performance. The resolution of inconsistencies among the span multiple enterprises. Instead, such business activities 
databases of multiple enterprises is difficult, expensive, are based on extended transactions [30], where each task of 

the business activity is executed as a sequence of one ortime consuming, and error prone, much more so than the 
more local transactions, and when a business activity is resolution of inconsistencies within the databases of a single 
rolled back, compensating transactions [7] are applied to enterprise. Problems in the operation of the application 
offset the effects of the committed local transactions. services can adversely affect the relationships between an 

Compensating transactions can be difficult to design and enterprise and its customers, suppliers, and partners. 
Many enterprise applications are programmed using the program and even more difficult to test in a distributed 

transaction processing programming paradigm and are Web Service environment, resulting in a rather high level of 
executed in the context of commercial transaction proces- errors. Even if the compensating transactions are designed 
sing systems. Such systems typically employ transactional and programmed correctly, it is difficult to ensure that 
locking and the two-phase commit protocol for distributed when they are needed, the compensating transactions are 
transactions, which involves a transaction coordinator and applied correctly (for example, the number of retries must 
one or more participants [12]. Although the two-phase	 be limited for practical purposes). The typical result of an 

error in the design, programming, or deployment of a 
compensating transaction is inconsistency in the databases, 

. W. Zhao is with the Department of Electrical and Computer Engineering, either within a single database or, more probably, between 
Cleveland State University, 2121 Euclid Ave., Cleveland, OH 44115. the databases of different enterprises. It is difficult and 
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the intention of Web Services. We demonstrate that the use 
compensating transactions results in a much higher 

probability of database inconsistency than does the reserva­
tion protocol. Indeed, for entirely reasonable parameters, 

probability of inconsistency approaches unity when 
using compensating transactions. 
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Fig. 1. Example business activity. (a) In the distributed transactions with compensating transactions approach, each task of the business activity is 
executed as a traditional ACID transaction within a single enterprise, with compensating transactions applied when a fault occurs. (b) In the 
reservation protocol approach, each task is executed as two subtasks, a reservation subtask and a confirmation/cancellation subtask; one of several 
possible interleavings of the tasks is shown in the figure. 

The existing Web Services standards offer two 
alternatives: 

. classical distributed transactions based on the two-
phase commit protocol [4] and 

. extended transactions with compensating transac­
tions [5]. 

Apparently, the advocates of those strategies are unaware 
of the high probability of database inconsistency and the 
poor performance of those strategies. 

In this paper, we describe a reservation-based extended 
transaction protocol that is compatible with and easily 
implemented using Web Services, that is easy to program 
and use, and that does not depend on compensating 
transactions. In our reservation protocol, except for read-
only tasks, each task within a business activity is executed as 
two subtasks. The first subtask involves an explicit reserva­
tion of resources according to the business logic. The second 
subtask involves the confirmation or a cancellation of the 
reservation. Each subtask is executed as a separate traditional 
short-running ACID transaction. For example, the task of 
making a purchase of a certain amount of goods in a 
procurement business activity is executed as two subtasks. 
The first subtask reserves an amount of the goods to be 
purchased, and the second subtask converts the reservation 
into a purchase or a cancellation of the reservation. The 
reservation at the end of the first subtask becomes visible to 
other business activities, because fewer resources are avail­
able for them to reserve. However, this visibility does not 
compromise the isolation property, because the reservation 
can be confirmed or cancelled, and the other business 
activities cannot make any assumptions about resources that 
have not been reserved for them. For the duration of the 
reservation, the supplier grants an exclusive right to the client 
for the amount of goods reserved. During the second subtask, 
the reservation is confirmed only if the business activity can 
be completed successfully. 

Fig. 1 shows an example business activity, highly 
simplified, of purchasing a product (resource) that requires 
shipping. In the compensating transactions approach 
shown in Fig. 1a, the buyer (that is, initiator) proceeds with 
the purchase only if both the product and the shipping are 
available. The buyer first places an order for the product 
and then arranges for shipping. However, if the shipper 
cannot deliver the product in time (for example, no trucks 
are available), the buyer must reverse the previous 
purchase, and then, a compensating transaction is applied. 
In the reservation protocol approach shown in Fig. 1b, each 
task is executed as two subtasks, a reservation subtask and 
a confirmation/cancellation subtask, without the need for 
compensating transactions. If the shipper cannot deliver the 
product in time, the buyer simply cancels the reservation of 
the product. 

Despite the apparent similarity of our reservation 
protocol to the traditional two-phase commit protocol, 
there are significant differences, which we discuss later in 
this paper. In fact, our reservation protocol resembles more 
closely the escrow transactional method [23]. The similarity 
and the differences between our reservation protocol and 
the escrow transactional method are elaborated in depth. 
We also compare our reservation protocol with other 
extended transaction strategies. In addition, we present 
performance analyses and results, which indicate that the 
protocol performs similar to or better than other extended 
transaction strategies. 

2 MODEL 

A transaction is a set of operations on the application state 
that satisfies the following ACID properties [12]: 

.	 Atomicity. Either all of the operations of the transac­
tion succeed, in which case the transaction commits, 
or none of the operations is carried out, in which 
case the transaction aborts. 



. Consistency. If the application state is consistent at 
the beginning of the transaction, the application state 
remains consistent after the transaction commits. 

. Isolation. The transaction does not read or overwrite 
intermediate results produced by another transac­
tion, that is, the transactions appear to execute 
serially. 

. Durability. The updates to the application state 
become permanent (or persist) once the transaction 
is committed, even if a fault occurs. 

A local transaction is a transaction with the above ACID 
properties that is executed at a single site. 

A task is a short-duration unit of work that is executed as 
a sequence of one or more local transactions. A task can be 
modeled as an operation on one or more resources and 
typically modifies some of the attributes of those resources. 
For example, the task of purchasing/selling certain kinds of 
goods (application-defined resources) such as automobiles 
can be modeled as an operation in which the owner 
attribute of the resource is changed from the supplier to the 
buyer. An operation can be read-only, in which case the 
task is a read-only task. Examples of read-only tasks are tasks 
that obtain information such as a UPS or FEDEX shipping 
charge or a federal or state tax rate. 

A business activity is a unit of work that consists of one or 
more tasks and that spans one or more enterprises, with 
messages sent between those enterprises. The tasks in a 
business activity are partially ordered. Tasks that are not 
causally related can be executed concurrently, and causally 
related tasks are executed according to the partial order. As 
in Fig. 1a, we use T1, T2, etc., to denote different tasks of a 
business activity. The corresponding compensation tasks 
are represented as CT1, CT2, etc. As in Fig. 1b, we use TiR 
to denote the reservation subtask for the ith task of the 
business activity, and TiC , the corresponding confirmation/ 
cancellation subtask. A business activity has a number of 
participants; the participant that initiates the activity is 
called the initiator. The initiator is often the client of the 
other participants in the activity. 

We assume that the participants in a business activity are 
subject to crash faults but not arbitrary (Byzantine) faults. 
We present more details on faults within the participants in 
a business activity and discuss how those faults are handled 
later as part of the description of the reservation protocol 
instantiation. Moreover, we assume that the communication 
between different participants in a business activity is 
reliable. An implementation of a specification such as the 
Web Services Reliable Messaging (WS-RM) specification 
[16] can be used to achieve reliable communication. 

In a business activity, the ACID properties of a 
traditional transaction are not appropriate for the following 
reasons. First, it is not necessary that all of the participants 
see the same result, an observation that has been well 
recognized in practice. For example, if reservations are 
requested from several alternative participants, typically, 
one participant will see a confirmation, and the other 
participants will see a cancellation. The Web Services 
Business Activity (WS-BA) specification [5] defines two 
outcome types, atomic outcome and mixed outcome, to support 
different kinds of business activities, including those where 
only some of the participants agree on the same outcome. 
Thus, the failure of one task does not need to result in the 
rollback of the entire business activity. Moreover, the effect 
of executing a business activity might not be completely 
reversible, because of the business logic. 

Analogous to a transaction that satisfies the ACID proper­
ties, a business activity satisfies a corresponding set of 
properties that we name the D4 properties and define below: 

. Distributed atomicity. Each business activity defines a 
set of permissible outcomes and must reach one of 
those outcomes when it completes. These outcomes 
are classified as 1) defined-commit outcomes, for which 
the goal of the business activity is fulfilled either 
completely or partially, and 2) defined-abort outcomes, 
for which the goal of the business activity is not 
fulfilled. 

. Defined consistency. At the end of each transaction 
within a business activity, the transaction must leave 
its data in a state that is not only locally consistent but 
also consistent with the data of other enterprises that 
are accessed by other business activities, which we 
refer to as inter-enterprise consistency. Both local 
consistency and inter-enterprise consistency are de­
termined by the application logic, that is, business 
rules. 

. Disjoint resource isolation. Disjoint sets of resources 
are assigned to concurrent business activities. A 
business activity can see whether its own requests 
for resources are granted or refused, but it cannot see 
the details of the requests of transactions within 
other concurrent business activities. Moreover, the 
ability of the transaction of a business activity to 
complete the processing of that business activity, 
within the resources that have been reserved for it, 
cannot be impeded by the transactions of other 
concurrent business activities. 

. Durability. The results of a completed transaction 
within a business activity are persistent and cannot be 
undone accidentally by faults or other transactions. 

3 THE RESERVATION PROTOCOL 
In this section, first, we provide an abstract description of the 
reservation protocol. Next, we elaborate an instantiation of 
the reservation protocol, after presenting specific assump­
tions on which it is based. Finally, we establish informally the 
D4 properties for the reservation protocol instantiation. 

3.1	 Abstract Description of the Reservation 
Protocol 

Consider a business activity involving n tasks T1; T2; . . . ; Tn  
and m participants P1; P2; . . . ; Pm. Each task Ti  involves ki 
participants, 1 - ki - m. A participant may be involved in 
more than one task. The reservation protocol is executed in 
two phases, as described below. 

During the first phase, for each task Ti, each of its 
ki participants is contacted to execute the reservation subtask 
TiR. Let TiRj denote the reservation subtask executed by 
participant Pj. At the end of the first phase, the initiator 
decides the outcome of the business activity based on the 
results of the first phase and the business logic. A necessary 
but not sufficient condition for the completion of the business 
activity is that at least one participant has granted the 
reservation for each task, that is, for all TiR, there exists Pj  
such that TiRj is executed successfully with the reservation 
granted. If the decision is to proceed with the business 
activity, the initiator selects a set of subtasks, one for each task, 
to confirm the reservations granted. 

During the second phase, for each subtask TiRj in the set, 
participant Pj  is contacted to confirm the reservation 



(denoted as confirmation subtask TiCj), and the rest of the 
participants are contacted to cancel the reservation. If the 
decision is not to proceed with the business activity, all of the 
participants that have granted a reservation are contacted to 
cancel the reservations during the second phase. 

Note that confirming a reservation is different from 
committing a transaction, and canceling a reservation is 
different from aborting a transaction. Read-only tasks do 
not require separate reservation and confirmation/cancella­
tion subtasks. 

3.2	 Specific Assumptions for the Reservation 
Protocol Instantiation 

We assume a flat business activity model; a hierarchical 
business activity model can be constructed based on the flat 
model. We assume that each task involves a single type of 
resource and that for each type of resource, one or more 
competing alternative participants are available to provide 
resources from which the initiator can choose. We assume 
that each subtask (that is, TiRj or TiCj) is performed as a 
local transaction, that the result of the transaction, whether 
it is committed or aborted, is communicated to the invoker, 
and that the committed local transactions are durable. 

As mentioned earlier, we assume that process crash 
faults are possible and that communication faults are not. A 
process crash fault might happen during either phase of the 
reservation protocol, and it might occur at a participant or 
at the initiator. If a participant fails after it has granted a 
reservation, we regard the failure as a second-phase failure 
(as far as the business activity is concerned). If a participant 
fails after it has processed the cancellation/confirmation 
request, it has no effect on the business activity. We assume 
that all faults are repaired in a timely manner to allow the 
fulfillment of business obligations. 

The reservation protocol is driven by the initiator of a 
business activity. Most of the “transactional” logic that 
controls the progress and outcome of the business activity is 
in the initiator process. After each reservation or cancella­
tion/confirmation subtask (that is, TiR or TiC), the initiator 
records the subtask and its result in a persistent log. When 
the business activity is completed, the logged records for 
that activity can be removed from the log (as far as the 
reservation protocol is concerned, though it would be good 
practice to preserve such records for other purposes). If the 
initiator recovers after it has failed in the middle of 
executing a protocol instance, it examines the logged 
records for all unfinished business activities and continues 
the protocol instances until they are completed. 

We assume that the initiator is also protected by other 
appropriate high-availability mechanisms (see, for example, 
[3], [20], [32]) in order for it to recover quickly from faults, 
particularly during the second phase of the reservation 
protocol, so that it does not miss a deadline for a reservation 
that it placed during the first phase. If the initiator cannot 
satisfy this requirement, the D4 properties might not be 
satisfied. 

We assume that all confirmation/cancellation messages 
are timestamped and are stored in a message log (either 
locally at or remotely from the initiator). In particular, on 
recovery from a fault, a participant can obtain such a 
message from the log. A participant determines the charge 
for the reservation based on the timestamp of the confirma­
tion/cancellation message. A participant must honor a 
granted reservation, based on the timestamp of the 
message, even if the deadline (for a timed reservation) has 
passed at the time of recovery. 

3.3	 Instantiation of the Reservation Protocol 
For each task, during the first phase of the reservation 
protocol, the reservation request is sent to the participants 
that provide the same service. The protocol proceeds 
forward only if at least one participant grants the reserva­
tion request for each task. Otherwise, the first phase is 
terminated and the initiator sends a cancellation request to 
each participant for which it granted a reservation. The 
business activity is then defined abort. 

The reservation of a resource is categorized as one of the 
following two types: 

. Untimed reservation. The resource is reserved indefi­
nitely for as long as it takes. 

. Timed reservation. The resource is reserved for a 
certain period of time. If the reservation deadline 
expires, the reservation is cancelled automatically by 
the resource holder. 

The timed reservation has been a common practice in 
many businesses, for example, for airline seat and car rental 
reservations. In some cases, a surcharge is imposed by the 
resource holder if the reservation is not cancelled or 
confirmed by the deadline, for example, most hotels charge 
for a one-night stay if a reservation is not cancelled in time. 
We consider this surcharge to be part of the reservation 
cost. The timed reservation can lead to race conditions, for 
example, the resource owner might have timed out and 
cancelled the reservation by the time the user’s confirma­
tion message arrived. It is important for the user to confirm 
the reservation as early as possible to avoid this situation. 

During the reservation period, the reserved resources are 
held exclusively for the client that made the reservation 
until the client confirms or cancels the reservation or the 
deadline has passed. In exchange for this service, the owner 
of the resources can charge the client a reservation fee. The 
reservation fee is either quoted by the resource owner or 
negotiated between the client and the resource owner prior 
to the reservation phase. 

By explicitly reserving the resources involved in a task, 
the application has the flexibility of going forward or 
backward after the first subtask, without concern for the 
effects of the transaction, because a reservation allows either 
outcome. Even if other transactions see the intermediate 
result of the reservation (such as a reduction in the amount 
of available resources), those transactions cannot make any 
assumptions about the future of the resources that have not 
been reserved for them. 

At the end of the first phase, the initiator determines 
which reservations to confirm and which to cancel, based 
on the application logic. For the subtasks to be executed 
during the second phase, the initiator sorts them based on 
their priorities and executes them in the following order: 

1. confirmation of timed reservations, 
2. confirmation of untimed reservations, 
3. cancellation of timed reservations, and 
4. cancellation of untimed reservations. 

The subtasks in each of these four categories are sorted 
based on their priorities, and the subtasks are executed in 
the second phase according to that order. 

The cancellation subtasks release any resources that have 
been reserved and, thus, make them available to the 
initiators of other reservations within the same or different 
business activities. 



3.4	 Maintenance of the D4 Properties by the 
Reservation Protocol Instantiation 

In the following, we establish informally that the reserva­
tion protocol instantiation described above maintains the 
D4 properties, during both fault-free and fault conditions. 

3.4.1 Distributed Atomicity 
Under fault-free conditions, the reservation protocol instan­
tiation maintains the distributed atomicity property, because 
each business activity defines its own set of permissible 
outcomes. Moreover, each reservation subtask and each 
confirmation/cancellation subtask is itself a transaction that 
satisfies the traditional ACID atomicity property. 

Now, suppose that the initiator fails during the reserva­
tion phase. If the initiator can recover quickly enough to 
make reservations for all of the resources needed to 
complete the business activity, the outcome is defined 
commit. If the initiator cannot recover quickly enough to 
confirm some of the reservations before they expire, the 
initiator cancels all of its other reservations, and the 
outcome is defined abort. 

If a participant fails and the initiator cannot reserve a 
resource from that participant, the initiator tries to find the 
resources from the alternative participants. If the initiator 
can find the resources from the alternative participants and 
successfully reserve them, a defined-commit outcome 
results unless the application logic mandates a defined-
abort outcome. 

If the initiator fails during the second phase and it can 
recover quickly enough to confirm or cancel all of the 
reservations, the failure has no effect on the outcome of the 
business activity and, thus, distributed atomicity is satis­
fied. Recall that we assumed that the initiator can recover 
promptly. If this assumption is violated and timed reserva­
tions are used in the business activity, the initiator is forced 
into a defined-abort outcome. 

Now, suppose that a participant fails during the second 
phase and that as a result, the initiator cannot get 
immediate feedback from its confirmation or cancellation 
request for the reservation it placed with that participant. 
According to our assumptions, the participant must retrieve 
the confirmation/cancellation request from a message log 
and determine the reservation charge based on the time­
stamp included in the message. In particular, if a confirma­
tion request is found with a timestamp before the deadline 
for a timed reservation, the request must be honored. 
Therefore, the failure of a participant during the second 
phase does not affect the outcome of the business activity. 
Consequently, the defined atomicity will be maintained. 

3.4.2 Defined Consistency 
The reservation protocol instantiation also maintains the 
defined consistency property of the business activity. The 
data are left in a consistent state, both locally within a single 
enterprise and distributed across multiple enterprises, be­
cause of the coordination of the reservation subtask and the 
confirmation/cancellation subtask and because the tradi­
tional ACIDconsistencyproperty holds for each such subtask. 

3.4.3 Disjoint Resource Isolation 
Because the resources are held exclusively for the client that 
made the reservation, the reservation protocol instantiation 
ensures that disjoint sets of resources are assigned to 
concurrent business activities, regardless of faults. The 

protocol allows a business activity to see whether its own 
requests for resources are granted or denied within the 
reservation subtask, but it cannot see the details of requests 
or reservations by other concurrent business activities. This 
visibility does not compromise the disjoint resource isola­
tion property, because the other business activities cannot 
make any assumptions about the future of the resources 
that have not been reserved for them. 

Furthermore, the ability to complete the processing of a 
business activity, within the resources that have been 
reserved for it, cannot be impeded by the transactions of 
other concurrent business activities. When the cancellation 
subtask releases resources that have been reserved, those 
resources are made available to the initiators of other 
reservations within the same or different business activities. 
Thus, the resource protocol instantiation satisfies the 
disjoint resource isolation property. 

3.4.4 Durability 
Each transaction within a business activity satisfies the 
ACID durability property. In particular, the reservation 
subtask and the confirmation/cancellation subtask are 
transactions that satisfy the ACID durability property. This 
fact, together with the logging at the initiator after each 
subtask, ensures that the reservation protocol instantiation 
satisfies the durability property. 

4 COMPARISON WITH OTHER TRANSACTIONAL 
MODELS 

In this section, we provide an in-depth comparison of our 
reservation protocol with other transactional models. We 
start by comparing our reservation protocol with the escrow 
transactional method, because of the strong similarities 
between the two. We then compare our reservation protocol 
with other extended transaction models. We conclude this 
section by briefly comparing our reservation protocol with 
distributed transactions based on the two-phase commit 
protocol to avoid any confusion between the two. 

4.1	 Reservation Protocol versus Escrow 
Transactional Method 

The escrow transactional method [23] allows concurrent 
updates from different transactions on some types of fields 
(typically aggregate fields) of the database records, and the 
reservation protocol also does so. The update operations are 
incremental or decremental in nature. The method involves 
some field quantities (referred to as resources in the 
reservation protocol), an application-supplied test of the 
quantity on hand (related to resource owners in the 
reservation protocol), and a final update of the field 
quantities (referred to as confirmation or cancellation in 
the reservation protocol). However, there are both funda­
mental and engineering differences between the escrow 
transactional method and the reservation protocol. 

The escrow transactional method is intended for both 
long-running local transactions and distributed transac­
tions. For distributed transactions, it uses the two-phase 
commit protocol, with the associated risk of long delays in 
the event of coordinator failure. In contrast, the reservation 
protocol involves the use of a reservation phase and a 
confirmation/cancellation phase to coordinate the tasks of a 
business activity across multiple enterprises. 



In the escrow transactional method, once the database 
system has decided that the quantity-on-hand test is 
successful and has informed the application, it holds the 
escrow amount indefinitely until the application eventually 
performs the update operation and commits the transaction. 
The test-and-escrow operation is equivalent to the untimed 
reservation in the reservation protocol. However, real-
world business rules typically do not allow the holding of 
resources indefinitely, especially if they are held for other 
enterprises. For practical applications, timed reservations 
must be supported. The reservation protocol specifies how 
the tasks are coordinated, and the redundancy level of the 
resources specifies how to achieve the D4 properties of the 
business activities. 

Because of the context in which it was introduced, the 
escrow transactional method does not (and does need to) 
consider the recoverability of the applications that drive a 
long-running transaction (the application can simply abort all 
outstanding transactions on recovery). For the reservation 
protocol, this is not the case. The application that drives the 
reservation protocol must be made highly available, and all 
successful reservations must belogged, whichimplies that the 
failure of a local transaction can be accommodated by retrying 
that transaction or by selecting an alternative participant. For 
the escrow transactional method, the failure of a participant 
causes the entire distributed transaction to abort and be 
retried. Consequently, the risk of inconsistency for the escrow 
transactional method is similar to the risk of inconsistency for 
compensating transactions, shown in Fig. 4a. 

The reservation protocol and the escrow transactional 
method also differ in their implementations. The escrow 
transactional method is implemented inside the database 
system as an additional mechanism to enable concurrent 
updates to some fields of the database records. The 
database system must maintain escrow records in an 
escrow journal. For this model to work, the application 
must indicate the test criteria and the desired update 
operations through SQL-like statements. For each escrow 
type field, the database system must maintain an extra data 
structure to store information needed for the recovery of the 
database system, such as a timestamp and the range of the 
quantity on hand (the lower limit is the original quantity 
minus the escrow amount, and the higher limit is the 
original quantity minus the committed amount). If the 
escrow test succeeds, the database system flushes the 
escrow record from the escrow journal. 

The reservation strategy eliminates the need for the 
database system to be an expert on which fields are escrow 
types and to perform the associated escrow journaling 
tasks. In the reservation protocol, the application devel­
opers are responsible for determining which fields are 
escrow type fields and for introducing any additional fields 
that are necessary to perform the reservation and confirma­
tion/cancellation subtasks. This approach is sensible, 
because the application developers know the data seman­
tics best, not the database system, which is intended to carry 
out generic database services. The reservation protocol 
approach makes it unnecessary to introduce a proprietary 
extension to standard SQL, which the escrow transactional 
method requires. 

4.2	 Reservation Protocol versus Other Extended 
Transaction Models 

Due to the limitations of traditional ACID transactions, 
other extended transaction models have been developed. 

Following the classification of Weikum [30], there are two 
major types of extended transaction models: 1) the transac­
tional workflow model [1], [17], [31], which regards a business 
activity as a number of tasks executed as independent 
transactions, and 2) the semantic transaction model, which 
aims to preserve the ACID properties as much as possible 
while improving the performance of transactions by 
exploiting application semantics (for example, to allow 
relaxation of the atomicity and isolation properties). 

The semantic transaction model can be further differ­
entiated into two kinds of models: 1) the transaction 
interleaving model and 2) the open nested transaction model. 
The transaction interleaving model exploits the compat­
ibility of different transactions to allow the concurrent 
execution of some transactions while ensuring the serial­
izability of those transactions. In contrast, the open nested 
transaction model focuses on the compatibility of opera­
tions on abstract data types. Open nested transactions are 
naturally hierarchical. If an operation on a certain data type 
is open, a new sphere of control can be spawned. Such an 
operation is often executed as a subtransaction, and its 
result can be viewed by other subtransactions before the 
top-level transaction is committed. Operations within the 
subtransaction can be further mapped to lower-level 
subtransactions. The multilevel transaction model of Wei­
kum [29] is a special case of the open nested transaction 
model in that its transaction tree is strictly layered. In 
contrast, the traditional multilevel transaction model of 
Lynch [19] can be regarded as closed nested transactions in 
which the sphere of control of a closed operation is its 
parent operation. A comprehensive discussion of nested 
transactions can be found in [22]. 

The well-known extended transaction protocol sagas [7] 
can be categorized as an open nested transaction strategy 
where the operations on the data types involved in a 
transaction are compatible with other transactions. How­
ever, sagas are also widely used in workflows as a means of 
coordinating different transactions within a business 
activity, in which case the operations on some data types 
might not be fully compatible with those of other transac­
tions. Similarly, the reservation protocol can be regarded as 
a special open nested transaction strategy (specifically, a 
two-level open nested transaction strategy), and it can also 
be used in the context of workflows. However, there exist 
subtle differences between the reservation protocol and 
typical open nested transaction strategies. The reservation 
protocol always requires two phases of executions, whereas 
other open nested transaction protocols involve only a 
single phase if the transaction is successful. In a sense, the 
reservation protocol involves some loss of efficiency to gain 
the ease of cancellation  of the  reservation operations  
executed in the first phase. 

All of the above extended transaction models rely on the 
use of compensating transactions to cancel (partially) the 
effects of some earlier committed transactions to ensure 
(partial) atomicity. For the semantic transaction model, this 
approach works well if the operations (or transactions) can be 
compensated. Unfortunately, that is not always the case. 
Some operations either cannot be compensated or are too 
expensive to compensate. In workflows, because the opera­
tions from different transactions on some data types cannot 
be guaranteed to be fully compatible, there is the additional 
risk of cascading compensations. These problems are well 
recognized in the literature [11], [28]. However, no effective 
solutions have been proposed to address them. For the 



semantic transaction model, unless appropriate concurrency 
control is identified and enforced consistently to preserve the 
atomicity of a transaction, such operations must be deferred 
to commit time, which essentially forces the model to behave 
like the traditional transaction model [28]. In workflows, once 
such an operation is executed, the workflow must commit, 
which might lead to nonatomicity [11]. 

4.3	 Reservation Protocol versus Transactional 
Locking and Two-Phase Commit 

Distributed transactions based on transactional locking and 
two-phase commit involve both the locking of database 
records within a single enterprise and the two-phase 
commit protocol. At an abstract level, resource reservation 
and locking of a resource are similar in that, in both, the 
resource is put on hold temporarily. Furthermore, like the 
two-phase commit protocol, our reservation protocol 
involves two phases. Despite the apparent similarity of 
our reservation protocol to transactional locking and two-
phase commit, there are a number of differences, which we 
discuss below. 

In our protocol, the reservation of a resource is executed 
as a traditional ACID transaction. The application has full 
control over the reservation and how long the resource is 
reserved, whereas, in the two-phase commit protocol, the 
locking of a resource is internal to the database system and 
is transparent to the application, which has no control over 
how long the resource is locked. Note that this property is 
not unique to the reservation protocol—many other ex­
tended transaction protocols possess it as well. 

Another difference between our reservation protocol and 
locking is the effect on other transactions that need to access 
the resource. If a resource is reserved and another 
transaction wants to access it, the transaction can acquire 
a lock on the resource, and the application can be informed 
immediately of the state of the resource (that is, some of the 
resource has been reserved, but a sufficient quantity of the 
resource remains to satisfy the reservation). Thus, the 
application can take an appropriate action without delay. 
However, if the resource is locked by the database system 
and another transaction wants to access it, the new 
transaction must wait until the lock is released. The waiting 
time might be long, in which case the application cannot 
take immediate action. Once again, this characteristic is not 
unique to the reservation protocol. The escrow transactional 
method also has this characteristic. 

In the two-phase commit protocol, a fault at a participant 
might cause the rollback of the transaction, in which case 
that participant decides unilaterally to abort the transaction. 
In contrast, in our reservation protocol, only the initiator is 
authorized to commit or roll back the business activity. A 
fault at other  participants  might  affect the  initiator’s  
decision and, thus, the outcome of the business activity; 
however, it does not necessarily result in the rollback of the 
entire business activity. Again, this characteristic is not 
unique to our reservation protocol. There exist other 
extended transaction protocols such as the business agree­
ment protocols described in the WS-BA specification [5] that 
have this characteristic. However, they are based primarily 
on compensating transactions. 

5 AVAILABILITY AND CONSISTENCY ANALYSES 

For the purposes of the availability and consistency analyses, 
we model a business activity as a sequence of one or more 
tasks, each of which is a traditional ACID transaction. The 

concurrency of tasks within the business activity has no effect 
on our availability and consistency analyses. 

We consider only faults that are detected immediately so 
that a transaction can be aborted and retried immediately. 
Detection might involve the operating system, the database, 
the transaction or communication middleware, and custom-
coded application data validity checks. We do not consider 
faults that allow a transaction to appear to complete even 
though they yield incorrect results that were not detected. 

Following the detection of a fault in a transaction, the 
transaction or the entire business activity is aborted and 
retried. We assume that the standard transaction commit 
and abort mechanisms operate correctly. We consider only 
a single retry of the business activity and a single retry of 
compensating transactions when they are used. 

5.1	 Architectures 
For comparison and evaluation, we consider four archi­

tectures: 

.	 No Fault Recovery Architecture. There are no attempts 
at recovery from faults. 

.	 Single Distributed Transaction Architecture. A business 
activity is modeled as a single distributed transac­
tion using the two-phase commit protocol. If any 
part of the business activity fails, the entire dis­
tributed transaction is aborted and the business 
activity is then retried once only. 

.	 Abort of Transactions with Compensating Transactions 
Architecture. A business activity is still modeled as a 
single distributed transaction. If any subtransaction 
fails, every completed subtransaction is aborted by a 
compensating transaction, and the entire business 
activity is retried once only. 

.	 Reservation Protocol Architecture. A business activity 
is modeled as a sequence of individual transactions 
that comprise pairs of reservation and confirmation/ 
cancellation transactions. If a transaction within the 
business activity fails, the transaction is aborted and 
is retried individually, rather than the entire busi­
ness activity being retried. We allow only one 
transaction within the business activity to be retried. 
This restriction is imposed to yield a fair comparison 
with the other architectures in which the single 
distributed transaction is retried once only. 

We consider the effect that each of these architectures has 
on the availability of the business application and the 
consistency of the databases, particularly when it involves 
multiple enterprises. In particular: 

.	 We investigate the probability that all or a large 
number of business activities will complete success­
fully. Many businesses must process thousands or 
millions of activities every day. Each activity that 
does not complete successfully can involve difficult 
and expensive manual intervention. 

.	 We investigate the probability that the databases of the 
business activity might be left in an inconsistent state, 
an inconsistency that might spread across multiple 
enterprises. Even a potential inconsistency can require 
difficult and expensive manual intervention. 

There is no intention that the calculations presented here 
provide accurate probabilities for any particular business 
application. They are intended only to investigate the effects 



Fig. 2. The Markov models for the four architectures. (a) No Fault Recovery Architecture. (b) Single Distributed Transaction Architecture. 
(c) Compensating Transaction Architecture. (d) Reservation Protocol Architecture. 

on availability and consistency for the particular architec­
ture chosen. 

5.2 Markov Models and Parameters 
We estimate the probability that all of the transactions in 
a business activity complete successfully and the prob­
ability that the databases might have been left in an 
inconsistent state. We use a discrete-time Markov model 
for each architecture. The parameters of the Markov 
models are given as follows: 

. n: the number of transactions in a business activity. 

. m: the number of business activities over the period 
of interest (per hour, per day, etc.). 

. f : the probability that a single transaction does not 
complete successfully, 0 < f < 1. 

. g: the probability that a compensating transaction 
does not complete successfully, 0 < g < 1. 

Thus, we assume that each transaction has the same 
probability f of failure and that each corresponding compen­

sating transaction has the same probability g of failure. 
In the illustrations of the Markov models, for conve­

nience of presentation, we show only n ¼ 6 transactions. 
The illustrations of the Markov models can be easily 
extended to more transactions. Real business activities 
typically involve more than six transactions, as do the 
business activities shown in our results below. 

5.2.1 No Fault Recovery Architecture 
Fig. 2a shows the Markov model for calculating the 
probability that a business activity with n transactions 



completes successfully with no attempts at recovery from 
faults. This architecture is included as a baseline. 

The probability that all of the m business activities 
complete successfully is given by 

nmð1- fÞ : 

5.2.2	 Single Distributed Transaction Architecture 
Fig. 2b shows the Markov model for a business activity that 
is processed as a single distributed transaction using the 
two-phase commit protocol. If a subtransaction fails, the 
entire business activity is aborted and retried once only. We 
assume that the abort is correct and, thus, that there is no 
risk that the databases are left in an inconsistent state. 

The probability of success on the first attempt of the 
nbusiness activity is ð1- fÞ , and the probability of aborting 

nthe first attempt of the business activity is 1- ð1- fÞ . The 
probability of success of the retry of the business activity is 

nð1- fÞ . The overall probability of success of the business 
activity is given by 

n n n n nð1- fÞ þ ð1- ð1- fÞ Þ * ð1- fÞ ¼ ð1- fÞ ð2- ð1- fÞ Þ: 

Thus, the probability that all of the m business activities 
complete successfully is given by (	 )m 

n nð1- fÞ ð2- ð1- fÞ Þ : 

5.2.3	 Abort of Transactions with Compensating 
Transactions Architecture 

Fig. 2c shows the Markov model for this architecture, where 
a business activity is still processed as a single transaction, 
but if a subtransaction fails, each completed subtransaction 
is aborted by a compensating transaction. The entire 
business activity is retried once only, and each compensat­
ing transaction is retried once only. If a compensating 
transaction cannot be completed successfully, even after a 
retry, the potential exists that databases are left in an 
inconsistent state and that manual intervention is required. 

This model is also appropriate for the distributed escrow 
transactional method, although the value of g will be less 
because for the distributed escrow transactional method, 
the compensations are simple rather than arbitrarily 
complex as they might be for the general compensating 
transactions architecture. 

The probability of success on the first attempt of the 
business activity is given by 

nð1- fÞ : 

If a fault occurs in the second subtransaction and the first 
transaction is compensated, the probability that the first 
attempt of the compensation fails and the retry of that 
attempt fails is g2, and the probability that either the first 
attempt of the compensation or the retry of that attempt 
succeeds is 1- g2. If a fault occurs in the third subtransac­
tion, the first and second subtransactions are compensated. 
The probability that the compensations of both the first and 

2second subtransactions succeed is ð1- g2Þ , and the prob­
ability that one or the other of those compensations does not 

2succeed is 1- ð1- g2Þ . 

Thus, the probability that a fault occurs during the first 
attempt of the business activity so that the first attempt is 
aborted and the successful transactions of the first attempt 
are compensated successfully to allow the retry of the 
business activity is given by 

2 2f þ ð1- fÞfð1- g 2Þ þ ð1- fÞ fð1- g 2Þ þ . . .þ 
n-1 n-1ð1- fÞ fð1- g 2Þ(	 )n n1- ð1- fÞ ð1- g2Þ¼ f	 ;
1- ð1- fÞð1- g2Þ 

using the formula for the sum of a finite geometric series. 
The probability of success on either the first or the 

second attempt of the business activity is given by ( (	 ))n n 
n n 1- ð1- fÞ ð1- g2Þð1- fÞ þ ð1- fÞ f 

1- ð1- fÞð1- g2Þ (	 ( ))n n 
n 1- ð1- fÞ ð1- g2Þ¼ ð1- fÞ 1þ f	 : 

1- ð1- fÞð1- g2Þ 

Consequently, the probability that all of the m business 
activities complete successfully is given by ( ( (	 )))mn n 

n 1- ð1- fÞ ð1- g2Þð1- fÞ 1þ f	 : 
1- ð1- fÞð1- g2Þ 

If a compensating transaction fails and the retry of the 
compensating transaction also fails, the databases are left in 
a potentially inconsistent state, and manual intervention is 
required. 

The potential inconsistency might arise due to a fault in 
the first attempt of the business activity and the failure to 
compensate the first attempt with probability 

2 22Þð1- fÞfð1- ð1- g 2ÞÞ þ ð1- fÞ fð1- ð1- g Þ þ . . .þ 
n-1 n-12Þð1- fÞ fð1- ð1- g Þ (	 )

2 n-1¼ f 1þ ð1- fÞ þ ð1- fÞ þ . . .þ ð1- fÞ(
2 22Þ- f 1þ ð1- fÞð1- g 2Þ þ ð1- fÞ ð1- g þ . . .þ )

n-1 n-12Þð1- fÞ ð1- g (	 )n n n1- ð1- fÞ 1- ð1- fÞ ð1- g2Þ¼ f -	 ;
1- ð1- fÞ 1- ð1- fÞð1- g2Þ 

using the sum of a finite geometric series twice. 
The potential inconsistency might also arise due to a 

fault in the first attempt that is successfully compensated, 
followed by a retry of the entire business activity, during 
which a further fault occurs for which compensation is not 
successful. The probability that a fault occurs in the first 
attempt and is successfully compensated is given by (	 )n n1- ð1- fÞ ð1- g2Þ

f	 : 
1- ð1- fÞð1- g2Þ 

The probability that a fault occurs in the second attempt 
and cannot be compensated is the same as the probability 
that a fault occurs in the first attempt and cannot be 
compensated. Thus, the probability of a potential incon­
sistency in either attempt is given by 



 

 

( )n n n1 - ð1 - fÞ 1 - ð1 - fÞ ð1 - g2Þ
f -

1 - ð1 - fÞ 1 - ð1 - fÞð1 - g2Þ ( )n n1 - ð1 - fÞ ð1 - g2Þþ f 
1 - ð1 - fÞð1 - g2Þ ( )n n n1 - ð1 - fÞ 1 - ð1 - fÞ ð1 - g2Þx f -
1 - ð1 - fÞ 1 - ð1 - fÞð1 - g2Þ ( )n n1 - ð1 - fÞ ð1 - g2Þ¼ f 1 þ f 

1 - ð1 - fÞð1 - g2Þ ( )n n n1 - ð1 - fÞ 1 - ð1 - fÞ ð1 - g2Þx - : 
1 - ð1 - fÞ 1 - ð1 - fÞð1 - g2Þ 

Consequently, the probability that within m business 
activities, the databases are left in a potentially inconsistent 
state is given by ( ( )n n1 - ð1 - fÞ ð1 - g2Þ

1 - 1 - f 1 þ f 
1 - ð1 - fÞð1 - g2Þ (  ))n n n m1 - ð1 - fÞ 1 - ð1 - fÞ ð1 - g2Þx - : 

1 - ð1 - fÞ 1 - ð1 - fÞð1 - g2Þ 

5.2.4 Reservation Protocol Architecture 
Fig. 2d shows the Markov model for this architecture, 
where each transaction of the business activity is retried 
individually, rather than the entire business activity being 
retried. We assume that only one transaction in a business 
activity can be retried to yield a fair comparison with the 
distributed transaction architecture, where the entire 
distributed transaction is retried once only. If that retry 
also fails, the business activity fails, and all of its 
reservations are cancelled. Those cancellations can be either 
explicit cancellations or expirations of reservations. In both 
cases, the cancellation requires the execution of a transac­

tion that might not complete, and the model includes the 
probability of such a fault. One retry is allowed for each 
explicit cancellation or expiration of a reservation. 

The probability that the business activity completes 
nsuccessfully with no transactions failing is ð1 - fÞ . The 

probability that exactly one of n transactions failed and then 
succeeded when retried while the other n - 1 transactions 

nsucceeded is nfð1 - fÞ . Thus, the probability that a 
business activity completes successfully is given by 

n n nð1 - fÞ þ nfð1 - fÞ ¼ ð1 - fÞ ð1 þ nfÞ: 

Consequently, the probability that all of the m business 
activities complete successfully is given by 

n mðð1 - fÞ ð1 þ nfÞÞ : 

The probability that two transactions or one transaction 
and its retry have failed is given by 

n-1f2 þ 2f2ð1 - fÞ þ 3f2ð1 - fÞ2 þ . . .  þ nf2ð1 - fÞ : 

In this case, all successfully completed reservations must be 
cancelled. Two attempts are allowed for each cancellation 
transaction. The probability that one of the reservations is 
not cancelled (because the local transaction for a reservation 
cancellation failed even when retried) is given by 

2 22Þ2f2ð1 - fÞð1 - ð1 - g 2ÞÞ þ 3f2ð1 - fÞ ð1 - ð1 - g Þ þ . . .  þ 
n-1 n-12Þnf2ð1 - fÞ ð1 - ð1 - g ÞÞ ( )

2 n-1¼ f2 1 þ 2ð1 - fÞ þ 3ð1 - fÞ þ . . .  þ nð1 - fÞ(
2 - f2 1 þ 2ð1 - fÞð1 - g 2Þ þ 3ð1 - fÞ2ð1 - g 2Þ þ . . .  þ )

n-1 n-1nð1 - fÞ ð1 - g 2Þ  ! 
n nþ11 - ðn þ 1Þð1 - fÞ þ nð1 - fÞ¼ f2 

2ð1 - ð1 - fÞÞ  ! 
n n nþ1 nþ11-ðnþ1Þð1-fÞ ð1-g2Þ þnð1-fÞ ð1-g2Þ- f2 ;

2ð1 - ð1 - fÞð1 - g2ÞÞ

where we have applied the following formula twice: 

1 - ðn þ 1Þxn þ nxn-1 ¼1 þ 2x þ 3x 2 þ . . .  þ nx 
nþ1 

:
2ð1 - xÞ

Consequently, the probability that for m business 
activities, the reservation cancellations succeed is given by ! 

n nþ11 - ðn þ 1Þð1 - fÞ þ nð1 - fÞ
1 - f2 

2ð1 - ð1 - fÞÞ !!m n n nþ1 nþ11-ðnþ1Þð1-fÞ ð1-g2Þ þnð1-fÞ ð1-g2Þþf2 
2ð1-ð1-fÞð1-g2ÞÞ

and, thus, the probability that within m business activities, 
the databases are left in a potentially inconsistent state is 
given by ! 

n nþ11 - ðn þ 1Þð1 - fÞ þ nð1 - fÞ
1 - 1 - f2 

ð1 - ð1 - fÞÞ2 !!m n n nþ1 nþ12Þþ f2 : 
1-ðnþ1Þð1-fÞ ð1-g2Þ þnð1-fÞ ð1-g

2ð1 - ð1 - fÞð1 - g2ÞÞ

5.3 Comparison of Availability and Consistency 
For this comparison, we assume that there are n ¼ 20 
transactions per business activity for the No Fault Recovery 
Architecture, the Single Distributed Transaction Architec­
ture, and the Abort of Transactions with Compensating 
Transactions Architecture. For the Reservation Protocol 
Architecture, we assume that there are n ¼ 40 transactions 
per business activity, that is, 20 tasks, each of which 
involves two subtasks (reservation and confirmation/ 
cancellation), each of which is a transaction. 

In all of the graphs, the x-axis represents the number m 
(from 1 to 109) of business activities within an hour, day, 
week, month, year, or whatever time period is of interest. 
Each curve on the graph represents the probability (from 

310- to 10-6) that an individual transaction fails. Here, we 
assume that the probability g that a compensating transac­
tion or a reservation cancellation (or expiration) transaction 
fails is the same as the probability f that a regular 
transaction fails. 

Fig. 3a shows the probability that all of the m business 
activities complete successfully when there is no attempt to 
recover from faults. Note that because there is no attempt to 



Fig. 3. The probability that all of the m business activities complete successfully for the different architectures. In the Abort of Transactions with 
Compensating Transactions Architecture, compensating transactions have the same fault rate as regular transactions. In the Reservation Protocol 
Architecture, reservation expiration transactions have the same fault rate as regular transactions. (a) No Fault Recovery Architecture. (b) Single 
Distributed Transaction Architecture. (c) Compensating Transactions Architecture. (d) Reservation Protocol Architecture. 

Fig. 4. The probability that the databases are left in a potentially inconsistent state after m business activities for the Compensating Transactions 
Architecture and the Reservation Protocol Architecture. (a) Compensating Transaction Architecture. (b) Reservation Protocol Architecture. 

recover from faults, the probability of success deteriorates 
rapidly as more business activities are attempted. 

Fig. 3b shows the probability that all of the m business 
activities complete successfully with the Single Distributed 
Transaction Architecture. Note that for larger numbers of 
business activities, even a single retry of a business activity 
yields much better probabilities of success. However, the 
Single Distributed Transaction Architecture is seldom 
employed because of the risk that the failure of the 
transaction coordinator in a computer of one enterprise 
might block transactions in the computers of other 
enterprises and might render inaccessible the data of those 
other enterprises. In current practice, typically, the Abort of 

Transactions with Compensating Transactions Architecture 
is used instead. 

Fig. 3c shows the probability that all of the m business 
activities complete successfully with the Abort of Transac­

tions with Compensating Transactions Architecture. The 
availability is good but not quite as good as that for the 
Single Distributed Transaction Architecture. However, this 
graph shows the most optimistic scenario, with compensat­

ing transactions assumed to have the same fault rate as 
regular transactions and with the retry of compensating 
transactions. Experience has shown that in practice, 
compensating transactions are difficult to program and 
that the fault rate for compensating transactions is much 
higher than the fault rate for regular transactions, because 



compensation is an unanticipated activity that is difficult to 
plan for and difficult to test. Some enterprises do not 
attempt to retry transactions, but rather proceed directly to 
manual rectification if a compensating transaction fails. 

Fig. 3d shows the availability achieved by the Reserva­
tion Protocol Architecture, where the number of transac­
tions per business activity is increased from n ¼ 20 to 
n ¼ 40, because there are two subtasks (transactions) of 
each of the 20 tasks of the business activity. The comparison 
of the figures shows that the Reservation Protocol Archi­
tecture achieves better availability than the other architec­
tures, although the improvement might not be sufficient to 
be decisive. 

The probability of completing business activities is not 
the only important metric. The probability that the 
databases are left in a potentially inconsistent state is even 
more critical than the probability that business activities do 
not complete. Figs. 4a and 4b show the probabilities of 
potential inconsistency for the Abort of Transactions with 
Compensating Transactions Architecture (with n ¼ 20) and 
the Reservation Protocol Architecture (with n ¼ 40). Here, 
compensating transactions and reservation cancellation (or 
expiration) transactions are assumed to incur the same fault 
rate as regular transactions. The Reservation Protocol 
Architecture has superior performance because there are 
fewer additional transactions for each fault recovery. It is 
our assessment that the differences in the probabilities that 
the databases are left in a potentially inconsistent state 
presents a decisive advantage for the Reservation Protocol 
Architecture. 

6 CONCURRENCY AND LATENCY ANALYSES 

The most prominent advantage of the reservation protocol is 
that it provides the potential for increased concurrency. When 
a request is made to reserve a specific quantity of a resource, 
only that much of the resource is reserved, and the remainder 
of the resource continues to be available to other business 
activities. With distributed transactions based on transac­
tional locking, the request for that specific quantity of the 
resource causes the locking of the database record for the 
available resource, and other business activities that need the 
same resourcemustwait until the businessactivity that locked 
the database record completes, as Fig. 5 shows. For example, 
requesting two seats on an airline flight causes all of the seats 
on that flight to be locked for the duration of the transaction, 
and other customers seeking seats must wait. Consequently, 
the reservation protocol permits a higher degree of concur­
rency than the distributed transaction protocol for business 
activities that involve the same resource. 

The most important performance metric from the point 
of view of a client is the response time (latency) required to 
satisfy the client’s request. A general analysis of the latency 
of a business activity is limited by the lack of information 
about actual execution times of the tasks within the business 
activity, the probabilities of alternative paths of tasks 
through the business activity, and the concurrency of tasks 
within the business activity. Even with this limitation, we 
can obtain interesting and significant results for the time to 
completion of a business activity. 

Fig. 5. Distributed transactions, based on transactional locking, lock 
database records and, thus, might delay other business activities that 
the reservation protocol does not delay. 

The latency of a business activity is affected by two kinds 
of events: 

. faults and recovery from faults and 

. locking and blocking caused by locking. 
The effects of faults on the latency of a business activity 

are either relatively easy to estimate if the recovery from a 
fault is successful or imponderable if inconsistencies occur. 
Furthermore, faults are sufficiently infrequent, and interac­
tions between faults are rare and, thus, they do not have a 
significant effect on the latency. Consequently, we do not 
undertake an analysis of the effects of faults on the latency 
of a business activity here. 

The effects of locking on the latency of a business activity 
are more significant. In the analysis below, we assume that 
a business activity is a sequence of tasks. We examine the 
effects of locking on the probability density function (pdf) of 
the latency of a business activity, based on a discrete delta 
function for the pdf for each task of the business activity, 
that is, effectively, we assume that each task has unit 
duration including both processing and communication 
times. Alternatively, we could employ a negative exponen­
tial pdf or a Gaussian pdf for each task of the business 
activity, with an increase in mathematical formulas, a 
decrease in clarity of exposition, and little improvement in 
the faithfulness to a particular business activity. To perform 
a precise analysis for a specific business activity, one would 
use a measured pdf for the duration of each task of that 
business activity, information that is not available to us. 

We assume further that for classical transactional lock­
ing, in each task of the business activity, zero or more locks 
are claimed and are held until the end of the business 
activity. The probability that claiming a lock causes a lock 
conflict is a parameter of the analysis. If a lock is held longer 
because a business activity is blocked, waiting for another 
lock, the probability that another business activity attempts 
to claim that lock increases proportionately. Again, to 
perform a precise analysis for a particular business activity, 



Fig. 6. The pdfs for the duration of a business activity, assuming that there are no delays due to lock contention, for the period for which a lock is held, 
for the delay resulting from lock contention, and for the duration of the business activity including delays resulting from lock contention. (a) Duration 
of Business Activity. (b) Duration for which a lock is held. (c) Duration of delay due to lock conflict. (d) Duration of Business Activity including delays. 

one would use specific measurements for that business 
activity. 

Fig. 6 shows the analysis required for determining the 
effect of lock contention on the duration of a business 
activity. Fig. 6a shows the pdf for the duration of a business 
activity assuming no delays due to lock contention. In this 
example, we assume that the duration of a business activity 
with no delays due to lock contention is 10 time units. 

Fig. 6b shows the pdf for the period for which a lock is 
held, uniform between the minimal holding time and the 
entire duration of the business activity. Locks are claimed at 
random during the business activity and are held until the 
business activity completes. 

Fig. 6c shows the pdf for the delay resulting from lock 
contention, assuming that claiming a lock results in lock 
contention. Each possible time for which the lock can be held, 
in Fig. 6b, contributes toward the delay shown in Fig. 6c. That 
contribution is uniform between the minimal delay and the 
time for which the lock is held. Note that as a lock is held 
longer, there is an increase not only in the potential delay but 
also in the probability of attempting to claim the lock, 
increasing the probability of incurring a delay. 

The pdf for the delay due to lock contention, shown in 
Fig. 6c, is convolved with the pdf for the duration of the 
business activity without lock contention, shown in Fig. 6a, 
to produce the pdf for the business activity with lock 
contention, shown in Fig. 6d. Additional convolutions are 
required to represent the less likely possibility that the 
business activity is delayed by two or more locks. 

However, the pdf for the period for which a lock is held 
and the pdf for the delay resulting from lock contention 
should be derived from the pdf for the duration of the 
business activity with lock contention, rather than from the 
pdf for the duration of the business activity without lock 
contention, which is the analysis we perform below. 

Thus, we let pðtÞ represent the pdf for the duration t of a 
business activity, p0ðtÞ represent the pdf for the duration t of 
a business activity without lock contention, and q represent 
the probability of contention for a lock. Then, the pdf hðtÞ 
for the period t for which a lock is held is given by 

t X 
hðtÞ ¼  pðsÞ; 

s¼1 

and the pdf d1ðtÞ for the delay t resulting from contention 
for a single lock is given by 

t 1 X X 
d1ðtÞ ¼ q hðsÞ for t > 0 and d1ð0Þ ¼ 1 - d1ðsÞ: 

s¼1 s¼1 

Similarly, the pdf d2ðtÞ for the delay t resulting from 
contention for a second lock is given by 

1 1 X X 
d2ðtÞ ¼ d1ðtÞ d1ðsÞ for t > 0 and d2ð0Þ ¼ 1 - d2ðsÞ; 

s¼1 s¼1 

with corresponding formulas for d3ðtÞ, d3ð0Þ, etc. 
Now, the pdf p1ðtÞ for the duration t of a business 

activity with contention for at most one lock is derived as 
the convolution 

t X 
p1ðtÞ ¼  p0ðsÞd1ðt- sÞ; 

s¼1 

and the pdf p2ðtÞ for the duration t of a business activity 
with contention for at most two locks is derived as the 
convolution 

t X 
p2ðtÞ ¼  p1ðsÞd2ðt- sÞ; 

s¼1 

with corresponding formulas for p3ðtÞ, etc. 
Finally, the pdf pðtÞ for the duration t of a business 

activity with contention for an arbitrary number of locks is 
given by 

pðtÞ ¼ p1ðtÞ: 

Fig. 7 illustrates the pdfs pðtÞ for the duration t of a 
business activity for different values q of lock contention. 
Note that when the probability of lock contention is low, the 
pdfs for the duration of a business activity using classical 
transactional locking are substantially as expected, and the 
effects of delays due to contention for a single lock and for 



Fig. 7. The pdfs for the duration of a business activity with delays due to 
lock contention for both classical transactional locking and the 
reservation protocol. 

two locks are clearly visible. As the probability of conten­
tion for a lock increases, the business activities are delayed, 
locks are held longer, delays due to lock contention are 
longer, and the probability that a business activity claims a 
lock that is already held by another business activity 
increases. The resulting pdfs have long tails, and thus, 
there is a high probability of lengthy delays for the business 
activity. 

It is also worth noting that for transactional locking, there 
are probabilities for lock contention for which the system is 
not stable, representing unbounded delays and essentially 
no progress for the business activity. Such lock contention 
and instability leads to system collapse under a heavy load, 
which can occur at the most inappropriate times during the 
most important tasks. This observation underscores the 
importance of determining and enforcing an admission 
control limit for the business activities. 

Also shown in Fig. 7 are the pdfs for the duration of a 
business activity for the reservation protocol. It is evident 
that even high probabilities of lock contention do not result 
in substantial delays for the business activity, because locks 
are held only briefly during the reservation subtask and are 
not held for the full duration of the business activity. In 
summary, the reservation protocol is more resilient to high 
loads and high probabilities of lock contention than is 
classical transactional locking. 

The pdfs shown in Fig. 7 are intended to illustrate only 
the impact of locking on the latency of business activities in 
general and should not be applied to any particular 
business activity. For precise latency results, one must 
measure and analyze each business activity individually. 

The locking of an available resource by a business 
activity that needs only some of the resources is undesir­
able, and thus, some businesses employ reservations within 
transactions. This mixed strategy is not easy to implement 
because in addition to implementing a reservation protocol 
similar to that described here, the mechanisms of transac­
tional locking must be disabled for business activities that 
involve such reservations to allow other business activities 
to access the database records (resources) and to prevent the 
records from being restored to the previous state if a 
transaction is aborted. 

If, instead of distributed transactions with transactional 
locking, only local transactions and compensating transac­
tions are used, the reservation of only some of the resources 

is simpler. The concurrency achieved is substantially 
equivalent to that of the reservation protocol strategy. 

7 RELATED WORK 

Extended transaction models [23], [30] are important today 
and will become more important in the future for business­
to-business (B2B) systems. Such systems enable the auto­
mation of business processes across different enterprises. 
We have already provided detailed comparisons of our 
reservation protocol with other extended transaction stra­
tegies (including the escrow transactional method) in 
Section 4, and we do not repeat those comparisons here. 

There are several standards for business process manage­
ment, such as the Business Process Execution Language for 
Web Services (BPEL4WS), [2] and for business activity 
coordination, such as the WS-BA Framework [5]. The WS­
BA specification has incorporated the sagas-based extended 
transaction protocol [7]. However, as we have already 
pointed out, compensation-based extended transaction pro­
tocols have their limitations and problems. We have pre­
sented an alternative reservation-based protocol to overcome 
those limitations and problems. In addition to the standards, 
there exists commercial middleware for workflow manage­
ment, such as the WebSphere MQ Workflow Middleware [15] 
and the BizTalk Server [21]. 

Closely related to our reservation protocol is the OASIS 
Business Transaction Protocol (BTP) [24], in particular, the 
BTP cohesion protocol. The BTP cohesion protocol is a two-
phase protocol in which the business transaction partici­
pants have explicit control over the two phases. In the first 
phase, all of the participants are required to prepare, that is, 
they must ensure that a task can be committed or rolled 
back if a fault occurs. In the second phase, the coordinator 
issues confirmation or cancellation requests to the partici­
pants. One might argue that our reservation subtask is a 
special form of the prepare phase and, thus, that our 
protocol is a special implementation of the BTP cohesion 
protocol. However, the BTP specification mentions a 
reservation-like action as only one of several possible ways 
to provide provisional or tentative state changes. The BTP 
specification does not pursue the concept of reservation to 
the same extent that we do and does not elaborate the 
benefits of the reservation approach. 

Another closely related work is the atomic reservation 
protocol for reserving resources in a free market, described 
by Ginis and Chandy [10]. In their protocol, a consumer 
makes timed-reservation requests to the service providers 
in the form of purchasing options for the use of resources 
that the service providers hold. In the second phase, 
confirmation/cancellation requests are sent to the service 
providers. Compensating transactions are used to negate 
the effects of a partially fulfilled plan and to cope with 
faults and the expiration of options acquired during the first 
phase. The start of the first phase and the completion of the 
second phase are assumed to be short in duration. Their 
protocol is not necessarily appropriate for loosely-coupled 
long-running business activities for which our reservation 
protocol is specifically designed. 

The tentative holding protocol (THP) [25], [26] is used to 
exchange information between enterprises before a transac­
tion begins. THP allows tentative nonblocking holds 



(reservations to be requested) for a business resource. It 
minimizes the possibility of rolling back committed 
transactions by providing more accurate information 
regarding the availability of the resource to the client. 
Unlike our reservation protocol, THP allows multiple 
clients to hold the same resource temporarily. When one 
of the clients places an order, the remaining clients receive 
notifications of the unavailability of the resource. However, 
nothing prevents a client from placing an order for a 
resource immediately, at which point another client might 
have already taken the resource. In such a case, the business 
activity must be rolled back, and the client must apply a 
compensating transaction to cancel the previously com­
mitted transaction. In our reservation protocol, the reserva­
tion subtask is part of the business activity, the reservation 
is granted exclusively to a single client, and blocking 
reservations avoid the need for compensating transactions. 

B2B systems often demand higher availability and 
performance than can be provided by any particular 
extended transaction protocol, and additional mechanisms 
might have to be built into the middleware and the 
applications. Wachter and Reuter have proposed the 
ConTract model [27] for defining and controlling complex 
long-lived activities at a level above ACID transactions. 
Unlike conventional programming languages, the ConTract 
model is a programming model that includes persistency, 
consistency, recovery, synchronization, cooperation, and 
the use of assertions as invariants on entry to/exit from 
activities. 

Greenfield et al. have been engaged in a project on 
maintaining consistency in loosely-coupled distributed 
environments. In [13], they discuss characteristics of B2B 
applications, existing mechanisms and their inadequacies, 
and consistency requirements for B2B applications. In [14], 
they provide a set of requirements for a cancellation 
mechanism for an e-procurement case study. In [6], they 
propose a research agenda for the development of an 
infrastructure that includes a language to express consis­
tency conditions, tools to check whether the system 
maintains consistency, and guidance for using the infra­
structure properly. 

Other researchers have investigated the performance of 
enterprise computing systems. Gillmann et al. [8], [9] provide 
a transient analysis of a system’s performance for different 
degrees of replication of different types of servers (workflow 
engines, application servers, and communication servers) 
using continuous-time Markov models. Our analysis differs 
from their analysis in that we compare the effects of using 
different kinds of architectures on the performance of a 
distributed application, rather than the effects of different 
degrees of replication of the servers. In [18], Klingemann et al. 
provide a steady-state analysis based on continuous-time 
Markov models for workflow management to assess the 
efficiency of different outsourcing strategies in a virtual 
enterprise setting. Our analysis is quite different from their 
analysis in its objective. Moreover, the use of continuous-time 
Markov models is appropriate in a context where measure­
ments of continuous-time pdfs for the durations of the tasks of 
business activities are available. We lack that information and 

consequently have used a discrete-time analysis for the 
latency of the business activities. 

8 CONCLUSIONS AND FUTURE WORK 

Business activities need extended transaction protocols to 
coordinate tasks in order to achieve coherent results. In the 
current state of the art, compensating transactions are used 
as a means of handling faults and exceptions when they 
occur. In this paper, we have described a novel reservation-

based extended transaction protocol that can be used to 
coordinate the tasks of long-running business activities. 
Instead of resorting to compensating transactions, our 
reservation protocol employs an explicit reservation sub-

task for each task that is not read-only to allow for the 
possibility of later changes. Thus, each task is executed as 
two subtasks. The first subtask involves an exclusive 
blocking reservation of the resource. The second subtask 
involves the confirmation or cancellation of the reservation. 
As our analyses show, the reservation protocol exhibits 
performance similar to or better than that of other 
strategies. Future work includes the design and implemen­

tation of a software infrastructure at the middleware layer 
that integrates our reservation protocol with commercial 
off-the-shelf workflow engines such as [15] and [21] in order 
to enhance the performance of business activities in a 
loosely-coupled distributed environment. 

REFERENCES 
[1]	 G. Alonso, D. Agrawal, A. El Abbadi, M. Kamath, R. Gunthor, and 

C. Mohan, “Advanced Transaction Models in Workflow Con­
texts,” Proc. 12th Int’l Conf. Data Eng. (ICDE ’96), pp. 574-581, Feb.­
Mar. 1996. 

[2]	 T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, 
F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and 
S. Weerawarana, Business Process Execution Language for Web 
Services Version 1.1, http://www-128.ibm.com/developerworks/ 
library/specification/ws-bpel/, 2007. 

[3]	 R. Barga, D. Lomet, G. Shegalov, and G. Weikum, “Recovery 
Guarantees for Internet Applications,” ACM Trans. Internet 
Technology, vol. 4, no. 3, pp. 289-328, 2004. 

[4]	 L.F. Cabrera, G. Copeland, M. Feingold, T. Freund, J. Johnson, 
C. Kaler, J. Klein, D. Langworthy, A. Nadalin, D. Orchard, 
I. Robinson, T. Storey, and S. Thatte, Web Services Atomic Trans., 
http://www.ibm.com/developerworks/library/ws-transpec/, 
2007. 

[5]	 L.F. Cabrera, G. Copeland, T. Freund, J. Klein, D. Langworthy, 
F. Leymann, I. Robinson, T. Storey, and T. Thatte, Web 
Services Business Activity Framework, http://www.ibm.com/ 
developerworks/library/ws-busact/, 2007. 

[6]	 A. Fekete, P. Greenfield, D. Kuo, and J. Jang, “Transactions in 
Loosely Coupled Distributed Systems,” Proc. 14th Australasian 
Database Conf. (ADC ’03), pp. 7-12, Feb. 2003. 

[7]	 H. Garcia-Molina and K. Salem, “Sagas,” Proc. ACM SIGMOD ’87, 
pp. 249-259, 1987. 

[8]	 M. Gillmann, J. Weissenfels, G. Weikum, and A. Kraiss, 
“Performance and Availability Assessment for the Configuration 
of Distributed Workflow Management Systems,” Proc. Seventh 
Int’l Conf. Extending Database Technology (EDBT ’00), pp. 183-201, 
Mar. 2000. 

[9]	 M. Gillmann, G. Weikum, and W. Wonner, “Workflow 
Management with Service Quality Guarantees,” Proc. ACM 
SIGMOD ’02, pp. 228-239, June 2002. 

[10]	 R. Ginis and K.M. Chandy, “Micro-Option: A Method for Optimal 
Selection and Atomic Reservation of Distributed Resources in a 
Free Market Environment,” Proc. Second ACM Conf. Electronic 
Commerce (EC ’00), pp. 207-214, 2000. 

http:http://www.ibm.com
http://www.ibm.com/developerworks/library/ws-transpec
http://www-128.ibm.com/developerworks


[11]	 C. Hagen and G. Alonso, “Exception Handling in Workflow 
Management Systems,” IEEE Trans. Software Eng., vol. 26, no. 10, 
pp. 943-958, 2000. 

[12]	 J. Gray and A. Reuter, Transaction Processing: Concepts and 
Techniques. Morgan Kaufmann, 1993. 

[13]	 P. Greenfield, A. Fekete, J. Jang, and D. Kuo, “What Are the 
Consistency Requirements for B2B Systems,” Proc. High Perfor­
mance Transaction Systems Workshop (HPTS ’03), Oct. 2003. 

[14]	 P. Greenfield, A. Fekete, J. Jang, and D. Kuo, “Compensation Is 
Not Enough,” Proc. Seventh IEEE Int’l Enterprise Distributed Object 
Computing Conf. (EDOC ’03), pp. 232-239, Sept. 2003. 

[15]	 IBM, WebSphere MQ Workflow Middleware, http://www.ibm.com/ 
software/integration/wmqwf/, 2007. 

[16]	 IBM, BEA, Microsoft, and Tibco, Web Services Reliable Messa­
ging (WS-RM), http://www-128.ibm.com/developerworks/ 
webservices/library/ws-rm/, 2007. 

[17]	 M. Kamath and K. Ramamritham, “Failure Handling and 
Coordinated Execution of Concurrent Workflows,” Proc. 14th Int’l 
Conf. Data Eng. (ICDE ’98), pp. 334-341, Feb. 1998. 

[18]	 J. Klingemann, J. Waesch, and K. Aberer, “Deriving Service Models 
in Cross-Organizational Workflows,” Proc. Ninth Int’l Workshop 
Research Issues on Data Engineering (RIDE ’99)—Information 
Technology for Virtual Enterprises, pp. 100-107, Mar. 1999. 

[19]	 N. Lynch, “Multilevel Atomicity—A New Correctness Criterion 
for Database Concurrency Control,” ACM Trans. Database Systems, 
vol. 8, no. 4, pp. 484-502, 1983. 

[20]	 C.P. Martin and K. Ramaritham, “Guaranteeing Recoverability in 
Electronic Commerce,” Proc. Third Int’l Workshop Advanced Issues of 
E-Commerce and Web-Based Information Systems, pp. 144-155, June 
2001. 

[21]	 Microsoft, BizTalk Server, http://www.microsoft.com/biztalk/, 
2007. 

[22]	 J.E.B. Moss, Nested Transactions: An Approach to Reliable Distributed 
Computing. MIT Press, 1985. 

[23]	 P.E. O’Neil, “The Escrow Transactional Method,” ACM Trans. 
Database Systems, vol. 11, no. 4, pp. 405-430, 1986. 

[24]	 Organization for the Advancement of Structured Information 
Standards (OASIS), Business Transaction Protocol, Version 1.0, 
http://www.oasis-open.org/committees/businesstransactions/, 
2007. 

[25]	 J. Roberts, T. Collier, P. Malu, and K. Srinivasan, Tentative Hold 
Protocol Part 2: Technical Specification, http://www.w3.org/TR/ 
tenthold-2, 2007. 

[26]	 J. Roberts and K. Srinivasan, Tentative Hold Protocol Part 1: White 
Paper, http://www.w3.org/TR/tenthold-1, 2007. 

[27]	 H. Wachter and A. Reuter, “The ConTract Model,” Database 
Transaction Models for Advanced Applications, A.K. Elmagarmid, 
ed., Morgan Kaufmann, pp. 219-263, 1992. 

[28]	 G. Weikum and H. Schek, “Concepts and Applications of 
Multilevel Transactions and Open Nested Transactions,” Database 
Transaction Models for Advanced Applications, A. Elmagarmid, ed., 
Morgan Kaufmann, pp. 515-553, 1992. 

[29]	 G. Weikum, “Principles and Realization Strategies of Multilevel 
Transaction Management,” ACM Trans. Database Systems, vol. 16, 
no. 1, pp. 132-180, 1991. 

[30]	 G. Weikum, “Extending Transaction Management to Capture 
More Consistency with Better Performance,” Proc. Ninth French 
Database Conf., pp. 251-276, Sept. 1993. 

[31]	 D. Worah and A. Sheth, “Transactions in Transactional Work-
flows,” Advanced Transaction Models and Architectures, S. Jajodia 
and L. Kershberg, eds., pp. 3-34, 1997. 

[32]	 W. Zhao, L.E. Moser, and P.M. Melliar-Smith, “Unification of 
Transactions and Replication in Three-Tier Architectures Based on 
CORBA,” IEEE Trans. Dependable and Secure Computing, vol. 2, 
no. 1, pp. 20-33, 2005. 

[33]	 W. Zhao, L.E. Moser, and P.M. Melliar-Smith, “A Reservation-
Based Coordination Protocol for Web Services,” Proc. IEEE Int’l 
Conf. Web Services (ICWS ’05), pp. 49-56, July 2005. 

libuser
Typewritten Text
Post-print standardized by MSL Academic Endeavors, the imprint of the Michael Schwartz Library at Cleveland State University, 2014

http://www.w3.org/TR/tenthold-1
http://www.w3.org/TR
http://www.oasis-open.org/committees/businesstransactions
http://www.microsoft.com/biztalk
http://www-128.ibm.com/developerworks
http:http://www.ibm.com

	A Reservation-Based Extended Transaction Protocol
	Original Citation
	Repository Citation


	untitled

