
Cleveland State University Cleveland State University

EngagedScholarship@CSU EngagedScholarship@CSU

Electrical Engineering and Computer Science
Faculty Publications

Electrical and Computer Engineering
Department

2-2008

A Reservation-Based Extended Transaction Protocol A Reservation-Based Extended Transaction Protocol

Wenbing Zhao
Cleveland State University, w.zhao1@csuohio.edu

Louise E. Moser
University of California-Santa Barbara, moser@ece.ucsb.edu

P. Michale Melliar-Smith
University of California - Santa Barbara, pmms@ece.ucsb.edu

Follow this and additional works at: https://engagedscholarship.csuohio.edu/enece_facpub

 Part of the Computer and Systems Architecture Commons, and the Electrical and Computer

Engineering Commons

How does access to this work benefit you? Let us know! How does access to this work benefit you? Let us know!

Original Citation Original Citation
Wenbing, Z. Y., Moser, L. E., & Melliar-Smith, P. M. (n.d.). A Reservation-Based Extended Transaction
Protocol. IEEE Transactions on Parallel and Distributed Systems, 19, 2, 188-203.

Repository Citation
Zhao, Wenbing; Moser, Louise E.; and Melliar-Smith, P. Michale, "A Reservation-Based Extended Transaction
Protocol" (2008). Electrical Engineering and Computer Science Faculty Publications. 106.
https://engagedscholarship.csuohio.edu/enece_facpub/106

This Article is brought to you for free and open access by the Electrical and Computer Engineering Department at
EngagedScholarship@CSU. It has been accepted for inclusion in Electrical Engineering and Computer Science
Faculty Publications by an authorized administrator of EngagedScholarship@CSU. For more information, please
contact library.es@csuohio.edu.

https://engagedscholarship.csuohio.edu/
https://engagedscholarship.csuohio.edu/enece_facpub
https://engagedscholarship.csuohio.edu/enece_facpub
https://engagedscholarship.csuohio.edu/enece
https://engagedscholarship.csuohio.edu/enece
https://engagedscholarship.csuohio.edu/enece_facpub?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/enece_facpub/106?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu

A Reservation-Based Extended
Transaction Protocol

Wenbing Zhao, Member, IEEE, Louise E. Moser, Member, IEEE, and
P.M. Melliar-Smith, Member, IEEE

Abstract—With the advent of the new generation of Internet-based technology, in particular, Web Services, the automation of
business activities that are distributed across multiple enterprises becomes possible. Business activities are different from traditional
transactions in that they are typically asynchronous, loosely coupled, and long running. Therefore, extended transaction protocols are
needed to coordinate business activities that span multiple enterprises. Existing extended transaction protocols typically rely on
compensating transactions to handle exceptional conditions. In this paper, we identify a number of issues with compensation-based
extended transaction protocols and describe a reservation-based extended transaction protocol that addresses those issues.
Moreover, we define a set of properties, analogous to the ACID properties of traditional transactions that are more appropriate for
business activities that span multiple enterprises. In addition, we compare our reservation protocol with other extended transaction
protocols for coordinating business activities and present performance analyses and results.

Index Terms—Business activity, continuous availability, extended transaction model, isolation, relaxed atomicity, reservation protocol,
transaction processing, Web services.

Ç

1 INTRODUCTION

THE automation of business activities that are distributed commit protocol works well for the coordination of
across multiple enterprises becomes possible with the transactions within a single enterprise, the use of the two-

advent of the new generation of Internet-based technology, phase commit protocol in distributed transactions that span
in particular, Web Services. Business activities typically multiple enterprises unavoidably involves one enterprise
involve related tasks that are loosely coupled and carried locking a data record of another enterprise. If the transac

out over a long period of time. The automation of business tion coordinator fails, the locking period might be too long
activities, with direct computer-to-computer interactions for the enterprise to tolerate. Even if the transaction
and without human involvement, can provide substantial coordinator does not fail, resources might be locked longer
speed improvements and cost reductions for distributed than the enterprise is willing to accept. Therefore, in
enterprise computing. However, such enterprise applica- practice, distributed transactions based on the two-phase
tions must operate with a high degree of availability and commit protocol are seldom used for business activities that
performance. The resolution of inconsistencies among the span multiple enterprises. Instead, such business activities
databases of multiple enterprises is difficult, expensive, are based on extended transactions [30], where each task of

the business activity is executed as a sequence of one ortime consuming, and error prone, much more so than the
more local transactions, and when a business activity is resolution of inconsistencies within the databases of a single
rolled back, compensating transactions [7] are applied to enterprise. Problems in the operation of the application
offset the effects of the committed local transactions. services can adversely affect the relationships between an

Compensating transactions can be difficult to design and enterprise and its customers, suppliers, and partners.
Many enterprise applications are programmed using the program and even more difficult to test in a distributed

transaction processing programming paradigm and are Web Service environment, resulting in a rather high level of
executed in the context of commercial transaction proces- errors. Even if the compensating transactions are designed
sing systems. Such systems typically employ transactional and programmed correctly, it is difficult to ensure that
locking and the two-phase commit protocol for distributed when they are needed, the compensating transactions are
transactions, which involves a transaction coordinator and applied correctly (for example, the number of retries must
one or more participants [12]. Although the two-phase	 be limited for practical purposes). The typical result of an

error in the design, programming, or deployment of a
compensating transaction is inconsistency in the databases,

. W. Zhao is with the Department of Electrical and Computer Engineering, either within a single database or, more probably, between
Cleveland State University, 2121 Euclid Ave., Cleveland, OH 44115. the databases of different enterprises. It is difficult and
E-mail: wenbing@ieee.org.

expensive to resolve such inconsistencies, particularly when . L.E. Moser and P.M. Melliar-Smith are with the Department of Electrical
and Computer Engineering, University of California, Santa Barbara, Santa the databases are spread across multiple enterprises, as is

the intention of Web Services. We demonstrate that the use
compensating transactions results in a much higher

probability of database inconsistency than does the reserva
tion protocol. Indeed, for entirely reasonable parameters,

probability of inconsistency approaches unity when
using compensating transactions.

of

the

Barbara, CA 93106. E-mail: {moser, pmms}@ece.ucsb.edu.

mailto:wenbing@ieee.org

Fig. 1. Example business activity. (a) In the distributed transactions with compensating transactions approach, each task of the business activity is
executed as a traditional ACID transaction within a single enterprise, with compensating transactions applied when a fault occurs. (b) In the
reservation protocol approach, each task is executed as two subtasks, a reservation subtask and a confirmation/cancellation subtask; one of several
possible interleavings of the tasks is shown in the figure.

The existing Web Services standards offer two
alternatives:

. classical distributed transactions based on the two-
phase commit protocol [4] and

. extended transactions with compensating transac
tions [5].

Apparently, the advocates of those strategies are unaware
of the high probability of database inconsistency and the
poor performance of those strategies.

In this paper, we describe a reservation-based extended
transaction protocol that is compatible with and easily
implemented using Web Services, that is easy to program
and use, and that does not depend on compensating
transactions. In our reservation protocol, except for read-
only tasks, each task within a business activity is executed as
two subtasks. The first subtask involves an explicit reserva
tion of resources according to the business logic. The second
subtask involves the confirmation or a cancellation of the
reservation. Each subtask is executed as a separate traditional
short-running ACID transaction. For example, the task of
making a purchase of a certain amount of goods in a
procurement business activity is executed as two subtasks.
The first subtask reserves an amount of the goods to be
purchased, and the second subtask converts the reservation
into a purchase or a cancellation of the reservation. The
reservation at the end of the first subtask becomes visible to
other business activities, because fewer resources are avail
able for them to reserve. However, this visibility does not
compromise the isolation property, because the reservation
can be confirmed or cancelled, and the other business
activities cannot make any assumptions about resources that
have not been reserved for them. For the duration of the
reservation, the supplier grants an exclusive right to the client
for the amount of goods reserved. During the second subtask,
the reservation is confirmed only if the business activity can
be completed successfully.

Fig. 1 shows an example business activity, highly
simplified, of purchasing a product (resource) that requires
shipping. In the compensating transactions approach
shown in Fig. 1a, the buyer (that is, initiator) proceeds with
the purchase only if both the product and the shipping are
available. The buyer first places an order for the product
and then arranges for shipping. However, if the shipper
cannot deliver the product in time (for example, no trucks
are available), the buyer must reverse the previous
purchase, and then, a compensating transaction is applied.
In the reservation protocol approach shown in Fig. 1b, each
task is executed as two subtasks, a reservation subtask and
a confirmation/cancellation subtask, without the need for
compensating transactions. If the shipper cannot deliver the
product in time, the buyer simply cancels the reservation of
the product.

Despite the apparent similarity of our reservation
protocol to the traditional two-phase commit protocol,
there are significant differences, which we discuss later in
this paper. In fact, our reservation protocol resembles more
closely the escrow transactional method [23]. The similarity
and the differences between our reservation protocol and
the escrow transactional method are elaborated in depth.
We also compare our reservation protocol with other
extended transaction strategies. In addition, we present
performance analyses and results, which indicate that the
protocol performs similar to or better than other extended
transaction strategies.

2 MODEL

A transaction is a set of operations on the application state
that satisfies the following ACID properties [12]:

.	 Atomicity. Either all of the operations of the transac
tion succeed, in which case the transaction commits,
or none of the operations is carried out, in which
case the transaction aborts.

. Consistency. If the application state is consistent at
the beginning of the transaction, the application state
remains consistent after the transaction commits.

. Isolation. The transaction does not read or overwrite
intermediate results produced by another transac
tion, that is, the transactions appear to execute
serially.

. Durability. The updates to the application state
become permanent (or persist) once the transaction
is committed, even if a fault occurs.

A local transaction is a transaction with the above ACID
properties that is executed at a single site.

A task is a short-duration unit of work that is executed as
a sequence of one or more local transactions. A task can be
modeled as an operation on one or more resources and
typically modifies some of the attributes of those resources.
For example, the task of purchasing/selling certain kinds of
goods (application-defined resources) such as automobiles
can be modeled as an operation in which the owner
attribute of the resource is changed from the supplier to the
buyer. An operation can be read-only, in which case the
task is a read-only task. Examples of read-only tasks are tasks
that obtain information such as a UPS or FEDEX shipping
charge or a federal or state tax rate.

A business activity is a unit of work that consists of one or
more tasks and that spans one or more enterprises, with
messages sent between those enterprises. The tasks in a
business activity are partially ordered. Tasks that are not
causally related can be executed concurrently, and causally
related tasks are executed according to the partial order. As
in Fig. 1a, we use T1, T2, etc., to denote different tasks of a
business activity. The corresponding compensation tasks
are represented as CT1, CT2, etc. As in Fig. 1b, we use TiR
to denote the reservation subtask for the ith task of the
business activity, and TiC , the corresponding confirmation/
cancellation subtask. A business activity has a number of
participants; the participant that initiates the activity is
called the initiator. The initiator is often the client of the
other participants in the activity.

We assume that the participants in a business activity are
subject to crash faults but not arbitrary (Byzantine) faults.
We present more details on faults within the participants in
a business activity and discuss how those faults are handled
later as part of the description of the reservation protocol
instantiation. Moreover, we assume that the communication
between different participants in a business activity is
reliable. An implementation of a specification such as the
Web Services Reliable Messaging (WS-RM) specification
[16] can be used to achieve reliable communication.

In a business activity, the ACID properties of a
traditional transaction are not appropriate for the following
reasons. First, it is not necessary that all of the participants
see the same result, an observation that has been well
recognized in practice. For example, if reservations are
requested from several alternative participants, typically,
one participant will see a confirmation, and the other
participants will see a cancellation. The Web Services
Business Activity (WS-BA) specification [5] defines two
outcome types, atomic outcome and mixed outcome, to support
different kinds of business activities, including those where
only some of the participants agree on the same outcome.
Thus, the failure of one task does not need to result in the
rollback of the entire business activity. Moreover, the effect
of executing a business activity might not be completely
reversible, because of the business logic.

Analogous to a transaction that satisfies the ACID proper
ties, a business activity satisfies a corresponding set of
properties that we name the D4 properties and define below:

. Distributed atomicity. Each business activity defines a
set of permissible outcomes and must reach one of
those outcomes when it completes. These outcomes
are classified as 1) defined-commit outcomes, for which
the goal of the business activity is fulfilled either
completely or partially, and 2) defined-abort outcomes,
for which the goal of the business activity is not
fulfilled.

. Defined consistency. At the end of each transaction
within a business activity, the transaction must leave
its data in a state that is not only locally consistent but
also consistent with the data of other enterprises that
are accessed by other business activities, which we
refer to as inter-enterprise consistency. Both local
consistency and inter-enterprise consistency are de
termined by the application logic, that is, business
rules.

. Disjoint resource isolation. Disjoint sets of resources
are assigned to concurrent business activities. A
business activity can see whether its own requests
for resources are granted or refused, but it cannot see
the details of the requests of transactions within
other concurrent business activities. Moreover, the
ability of the transaction of a business activity to
complete the processing of that business activity,
within the resources that have been reserved for it,
cannot be impeded by the transactions of other
concurrent business activities.

. Durability. The results of a completed transaction
within a business activity are persistent and cannot be
undone accidentally by faults or other transactions.

3 THE RESERVATION PROTOCOL
In this section, first, we provide an abstract description of the
reservation protocol. Next, we elaborate an instantiation of
the reservation protocol, after presenting specific assump
tions on which it is based. Finally, we establish informally the
D4 properties for the reservation protocol instantiation.

3.1	 Abstract Description of the Reservation
Protocol

Consider a business activity involving n tasks T1; T2; . . . ; Tn
and m participants P1; P2; . . . ; Pm. Each task Ti involves ki
participants, 1 - ki - m. A participant may be involved in
more than one task. The reservation protocol is executed in
two phases, as described below.

During the first phase, for each task Ti, each of its
ki participants is contacted to execute the reservation subtask
TiR. Let TiRj denote the reservation subtask executed by
participant Pj. At the end of the first phase, the initiator
decides the outcome of the business activity based on the
results of the first phase and the business logic. A necessary
but not sufficient condition for the completion of the business
activity is that at least one participant has granted the
reservation for each task, that is, for all TiR, there exists Pj
such that TiRj is executed successfully with the reservation
granted. If the decision is to proceed with the business
activity, the initiator selects a set of subtasks, one for each task,
to confirm the reservations granted.

During the second phase, for each subtask TiRj in the set,
participant Pj is contacted to confirm the reservation

(denoted as confirmation subtask TiCj), and the rest of the
participants are contacted to cancel the reservation. If the
decision is not to proceed with the business activity, all of the
participants that have granted a reservation are contacted to
cancel the reservations during the second phase.

Note that confirming a reservation is different from
committing a transaction, and canceling a reservation is
different from aborting a transaction. Read-only tasks do
not require separate reservation and confirmation/cancella
tion subtasks.

3.2	 Specific Assumptions for the Reservation
Protocol Instantiation

We assume a flat business activity model; a hierarchical
business activity model can be constructed based on the flat
model. We assume that each task involves a single type of
resource and that for each type of resource, one or more
competing alternative participants are available to provide
resources from which the initiator can choose. We assume
that each subtask (that is, TiRj or TiCj) is performed as a
local transaction, that the result of the transaction, whether
it is committed or aborted, is communicated to the invoker,
and that the committed local transactions are durable.

As mentioned earlier, we assume that process crash
faults are possible and that communication faults are not. A
process crash fault might happen during either phase of the
reservation protocol, and it might occur at a participant or
at the initiator. If a participant fails after it has granted a
reservation, we regard the failure as a second-phase failure
(as far as the business activity is concerned). If a participant
fails after it has processed the cancellation/confirmation
request, it has no effect on the business activity. We assume
that all faults are repaired in a timely manner to allow the
fulfillment of business obligations.

The reservation protocol is driven by the initiator of a
business activity. Most of the “transactional” logic that
controls the progress and outcome of the business activity is
in the initiator process. After each reservation or cancella
tion/confirmation subtask (that is, TiR or TiC), the initiator
records the subtask and its result in a persistent log. When
the business activity is completed, the logged records for
that activity can be removed from the log (as far as the
reservation protocol is concerned, though it would be good
practice to preserve such records for other purposes). If the
initiator recovers after it has failed in the middle of
executing a protocol instance, it examines the logged
records for all unfinished business activities and continues
the protocol instances until they are completed.

We assume that the initiator is also protected by other
appropriate high-availability mechanisms (see, for example,
[3], [20], [32]) in order for it to recover quickly from faults,
particularly during the second phase of the reservation
protocol, so that it does not miss a deadline for a reservation
that it placed during the first phase. If the initiator cannot
satisfy this requirement, the D4 properties might not be
satisfied.

We assume that all confirmation/cancellation messages
are timestamped and are stored in a message log (either
locally at or remotely from the initiator). In particular, on
recovery from a fault, a participant can obtain such a
message from the log. A participant determines the charge
for the reservation based on the timestamp of the confirma
tion/cancellation message. A participant must honor a
granted reservation, based on the timestamp of the
message, even if the deadline (for a timed reservation) has
passed at the time of recovery.

3.3	 Instantiation of the Reservation Protocol
For each task, during the first phase of the reservation
protocol, the reservation request is sent to the participants
that provide the same service. The protocol proceeds
forward only if at least one participant grants the reserva
tion request for each task. Otherwise, the first phase is
terminated and the initiator sends a cancellation request to
each participant for which it granted a reservation. The
business activity is then defined abort.

The reservation of a resource is categorized as one of the
following two types:

. Untimed reservation. The resource is reserved indefi
nitely for as long as it takes.

. Timed reservation. The resource is reserved for a
certain period of time. If the reservation deadline
expires, the reservation is cancelled automatically by
the resource holder.

The timed reservation has been a common practice in
many businesses, for example, for airline seat and car rental
reservations. In some cases, a surcharge is imposed by the
resource holder if the reservation is not cancelled or
confirmed by the deadline, for example, most hotels charge
for a one-night stay if a reservation is not cancelled in time.
We consider this surcharge to be part of the reservation
cost. The timed reservation can lead to race conditions, for
example, the resource owner might have timed out and
cancelled the reservation by the time the user’s confirma
tion message arrived. It is important for the user to confirm
the reservation as early as possible to avoid this situation.

During the reservation period, the reserved resources are
held exclusively for the client that made the reservation
until the client confirms or cancels the reservation or the
deadline has passed. In exchange for this service, the owner
of the resources can charge the client a reservation fee. The
reservation fee is either quoted by the resource owner or
negotiated between the client and the resource owner prior
to the reservation phase.

By explicitly reserving the resources involved in a task,
the application has the flexibility of going forward or
backward after the first subtask, without concern for the
effects of the transaction, because a reservation allows either
outcome. Even if other transactions see the intermediate
result of the reservation (such as a reduction in the amount
of available resources), those transactions cannot make any
assumptions about the future of the resources that have not
been reserved for them.

At the end of the first phase, the initiator determines
which reservations to confirm and which to cancel, based
on the application logic. For the subtasks to be executed
during the second phase, the initiator sorts them based on
their priorities and executes them in the following order:

1. confirmation of timed reservations,
2. confirmation of untimed reservations,
3. cancellation of timed reservations, and
4. cancellation of untimed reservations.

The subtasks in each of these four categories are sorted
based on their priorities, and the subtasks are executed in
the second phase according to that order.

The cancellation subtasks release any resources that have
been reserved and, thus, make them available to the
initiators of other reservations within the same or different
business activities.

3.4	 Maintenance of the D4 Properties by the
Reservation Protocol Instantiation

In the following, we establish informally that the reserva
tion protocol instantiation described above maintains the
D4 properties, during both fault-free and fault conditions.

3.4.1 Distributed Atomicity
Under fault-free conditions, the reservation protocol instan
tiation maintains the distributed atomicity property, because
each business activity defines its own set of permissible
outcomes. Moreover, each reservation subtask and each
confirmation/cancellation subtask is itself a transaction that
satisfies the traditional ACID atomicity property.

Now, suppose that the initiator fails during the reserva
tion phase. If the initiator can recover quickly enough to
make reservations for all of the resources needed to
complete the business activity, the outcome is defined
commit. If the initiator cannot recover quickly enough to
confirm some of the reservations before they expire, the
initiator cancels all of its other reservations, and the
outcome is defined abort.

If a participant fails and the initiator cannot reserve a
resource from that participant, the initiator tries to find the
resources from the alternative participants. If the initiator
can find the resources from the alternative participants and
successfully reserve them, a defined-commit outcome
results unless the application logic mandates a defined-
abort outcome.

If the initiator fails during the second phase and it can
recover quickly enough to confirm or cancel all of the
reservations, the failure has no effect on the outcome of the
business activity and, thus, distributed atomicity is satis
fied. Recall that we assumed that the initiator can recover
promptly. If this assumption is violated and timed reserva
tions are used in the business activity, the initiator is forced
into a defined-abort outcome.

Now, suppose that a participant fails during the second
phase and that as a result, the initiator cannot get
immediate feedback from its confirmation or cancellation
request for the reservation it placed with that participant.
According to our assumptions, the participant must retrieve
the confirmation/cancellation request from a message log
and determine the reservation charge based on the time
stamp included in the message. In particular, if a confirma
tion request is found with a timestamp before the deadline
for a timed reservation, the request must be honored.
Therefore, the failure of a participant during the second
phase does not affect the outcome of the business activity.
Consequently, the defined atomicity will be maintained.

3.4.2 Defined Consistency
The reservation protocol instantiation also maintains the
defined consistency property of the business activity. The
data are left in a consistent state, both locally within a single
enterprise and distributed across multiple enterprises, be
cause of the coordination of the reservation subtask and the
confirmation/cancellation subtask and because the tradi
tional ACIDconsistencyproperty holds for each such subtask.

3.4.3 Disjoint Resource Isolation
Because the resources are held exclusively for the client that
made the reservation, the reservation protocol instantiation
ensures that disjoint sets of resources are assigned to
concurrent business activities, regardless of faults. The

protocol allows a business activity to see whether its own
requests for resources are granted or denied within the
reservation subtask, but it cannot see the details of requests
or reservations by other concurrent business activities. This
visibility does not compromise the disjoint resource isola
tion property, because the other business activities cannot
make any assumptions about the future of the resources
that have not been reserved for them.

Furthermore, the ability to complete the processing of a
business activity, within the resources that have been
reserved for it, cannot be impeded by the transactions of
other concurrent business activities. When the cancellation
subtask releases resources that have been reserved, those
resources are made available to the initiators of other
reservations within the same or different business activities.
Thus, the resource protocol instantiation satisfies the
disjoint resource isolation property.

3.4.4 Durability
Each transaction within a business activity satisfies the
ACID durability property. In particular, the reservation
subtask and the confirmation/cancellation subtask are
transactions that satisfy the ACID durability property. This
fact, together with the logging at the initiator after each
subtask, ensures that the reservation protocol instantiation
satisfies the durability property.

4 COMPARISON WITH OTHER TRANSACTIONAL
MODELS

In this section, we provide an in-depth comparison of our
reservation protocol with other transactional models. We
start by comparing our reservation protocol with the escrow
transactional method, because of the strong similarities
between the two. We then compare our reservation protocol
with other extended transaction models. We conclude this
section by briefly comparing our reservation protocol with
distributed transactions based on the two-phase commit
protocol to avoid any confusion between the two.

4.1	 Reservation Protocol versus Escrow
Transactional Method

The escrow transactional method [23] allows concurrent
updates from different transactions on some types of fields
(typically aggregate fields) of the database records, and the
reservation protocol also does so. The update operations are
incremental or decremental in nature. The method involves
some field quantities (referred to as resources in the
reservation protocol), an application-supplied test of the
quantity on hand (related to resource owners in the
reservation protocol), and a final update of the field
quantities (referred to as confirmation or cancellation in
the reservation protocol). However, there are both funda
mental and engineering differences between the escrow
transactional method and the reservation protocol.

The escrow transactional method is intended for both
long-running local transactions and distributed transac
tions. For distributed transactions, it uses the two-phase
commit protocol, with the associated risk of long delays in
the event of coordinator failure. In contrast, the reservation
protocol involves the use of a reservation phase and a
confirmation/cancellation phase to coordinate the tasks of a
business activity across multiple enterprises.

In the escrow transactional method, once the database
system has decided that the quantity-on-hand test is
successful and has informed the application, it holds the
escrow amount indefinitely until the application eventually
performs the update operation and commits the transaction.
The test-and-escrow operation is equivalent to the untimed
reservation in the reservation protocol. However, real-
world business rules typically do not allow the holding of
resources indefinitely, especially if they are held for other
enterprises. For practical applications, timed reservations
must be supported. The reservation protocol specifies how
the tasks are coordinated, and the redundancy level of the
resources specifies how to achieve the D4 properties of the
business activities.

Because of the context in which it was introduced, the
escrow transactional method does not (and does need to)
consider the recoverability of the applications that drive a
long-running transaction (the application can simply abort all
outstanding transactions on recovery). For the reservation
protocol, this is not the case. The application that drives the
reservation protocol must be made highly available, and all
successful reservations must belogged, whichimplies that the
failure of a local transaction can be accommodated by retrying
that transaction or by selecting an alternative participant. For
the escrow transactional method, the failure of a participant
causes the entire distributed transaction to abort and be
retried. Consequently, the risk of inconsistency for the escrow
transactional method is similar to the risk of inconsistency for
compensating transactions, shown in Fig. 4a.

The reservation protocol and the escrow transactional
method also differ in their implementations. The escrow
transactional method is implemented inside the database
system as an additional mechanism to enable concurrent
updates to some fields of the database records. The
database system must maintain escrow records in an
escrow journal. For this model to work, the application
must indicate the test criteria and the desired update
operations through SQL-like statements. For each escrow
type field, the database system must maintain an extra data
structure to store information needed for the recovery of the
database system, such as a timestamp and the range of the
quantity on hand (the lower limit is the original quantity
minus the escrow amount, and the higher limit is the
original quantity minus the committed amount). If the
escrow test succeeds, the database system flushes the
escrow record from the escrow journal.

The reservation strategy eliminates the need for the
database system to be an expert on which fields are escrow
types and to perform the associated escrow journaling
tasks. In the reservation protocol, the application devel
opers are responsible for determining which fields are
escrow type fields and for introducing any additional fields
that are necessary to perform the reservation and confirma
tion/cancellation subtasks. This approach is sensible,
because the application developers know the data seman
tics best, not the database system, which is intended to carry
out generic database services. The reservation protocol
approach makes it unnecessary to introduce a proprietary
extension to standard SQL, which the escrow transactional
method requires.

4.2	 Reservation Protocol versus Other Extended
Transaction Models

Due to the limitations of traditional ACID transactions,
other extended transaction models have been developed.

Following the classification of Weikum [30], there are two
major types of extended transaction models: 1) the transac
tional workflow model [1], [17], [31], which regards a business
activity as a number of tasks executed as independent
transactions, and 2) the semantic transaction model, which
aims to preserve the ACID properties as much as possible
while improving the performance of transactions by
exploiting application semantics (for example, to allow
relaxation of the atomicity and isolation properties).

The semantic transaction model can be further differ
entiated into two kinds of models: 1) the transaction
interleaving model and 2) the open nested transaction model.
The transaction interleaving model exploits the compat
ibility of different transactions to allow the concurrent
execution of some transactions while ensuring the serial
izability of those transactions. In contrast, the open nested
transaction model focuses on the compatibility of opera
tions on abstract data types. Open nested transactions are
naturally hierarchical. If an operation on a certain data type
is open, a new sphere of control can be spawned. Such an
operation is often executed as a subtransaction, and its
result can be viewed by other subtransactions before the
top-level transaction is committed. Operations within the
subtransaction can be further mapped to lower-level
subtransactions. The multilevel transaction model of Wei
kum [29] is a special case of the open nested transaction
model in that its transaction tree is strictly layered. In
contrast, the traditional multilevel transaction model of
Lynch [19] can be regarded as closed nested transactions in
which the sphere of control of a closed operation is its
parent operation. A comprehensive discussion of nested
transactions can be found in [22].

The well-known extended transaction protocol sagas [7]
can be categorized as an open nested transaction strategy
where the operations on the data types involved in a
transaction are compatible with other transactions. How
ever, sagas are also widely used in workflows as a means of
coordinating different transactions within a business
activity, in which case the operations on some data types
might not be fully compatible with those of other transac
tions. Similarly, the reservation protocol can be regarded as
a special open nested transaction strategy (specifically, a
two-level open nested transaction strategy), and it can also
be used in the context of workflows. However, there exist
subtle differences between the reservation protocol and
typical open nested transaction strategies. The reservation
protocol always requires two phases of executions, whereas
other open nested transaction protocols involve only a
single phase if the transaction is successful. In a sense, the
reservation protocol involves some loss of efficiency to gain
the ease of cancellation of the reservation operations
executed in the first phase.

All of the above extended transaction models rely on the
use of compensating transactions to cancel (partially) the
effects of some earlier committed transactions to ensure
(partial) atomicity. For the semantic transaction model, this
approach works well if the operations (or transactions) can be
compensated. Unfortunately, that is not always the case.
Some operations either cannot be compensated or are too
expensive to compensate. In workflows, because the opera
tions from different transactions on some data types cannot
be guaranteed to be fully compatible, there is the additional
risk of cascading compensations. These problems are well
recognized in the literature [11], [28]. However, no effective
solutions have been proposed to address them. For the

semantic transaction model, unless appropriate concurrency
control is identified and enforced consistently to preserve the
atomicity of a transaction, such operations must be deferred
to commit time, which essentially forces the model to behave
like the traditional transaction model [28]. In workflows, once
such an operation is executed, the workflow must commit,
which might lead to nonatomicity [11].

4.3	 Reservation Protocol versus Transactional
Locking and Two-Phase Commit

Distributed transactions based on transactional locking and
two-phase commit involve both the locking of database
records within a single enterprise and the two-phase
commit protocol. At an abstract level, resource reservation
and locking of a resource are similar in that, in both, the
resource is put on hold temporarily. Furthermore, like the
two-phase commit protocol, our reservation protocol
involves two phases. Despite the apparent similarity of
our reservation protocol to transactional locking and two-
phase commit, there are a number of differences, which we
discuss below.

In our protocol, the reservation of a resource is executed
as a traditional ACID transaction. The application has full
control over the reservation and how long the resource is
reserved, whereas, in the two-phase commit protocol, the
locking of a resource is internal to the database system and
is transparent to the application, which has no control over
how long the resource is locked. Note that this property is
not unique to the reservation protocol—many other ex
tended transaction protocols possess it as well.

Another difference between our reservation protocol and
locking is the effect on other transactions that need to access
the resource. If a resource is reserved and another
transaction wants to access it, the transaction can acquire
a lock on the resource, and the application can be informed
immediately of the state of the resource (that is, some of the
resource has been reserved, but a sufficient quantity of the
resource remains to satisfy the reservation). Thus, the
application can take an appropriate action without delay.
However, if the resource is locked by the database system
and another transaction wants to access it, the new
transaction must wait until the lock is released. The waiting
time might be long, in which case the application cannot
take immediate action. Once again, this characteristic is not
unique to the reservation protocol. The escrow transactional
method also has this characteristic.

In the two-phase commit protocol, a fault at a participant
might cause the rollback of the transaction, in which case
that participant decides unilaterally to abort the transaction.
In contrast, in our reservation protocol, only the initiator is
authorized to commit or roll back the business activity. A
fault at other participants might affect the initiator’s
decision and, thus, the outcome of the business activity;
however, it does not necessarily result in the rollback of the
entire business activity. Again, this characteristic is not
unique to our reservation protocol. There exist other
extended transaction protocols such as the business agree
ment protocols described in the WS-BA specification [5] that
have this characteristic. However, they are based primarily
on compensating transactions.

5 AVAILABILITY AND CONSISTENCY ANALYSES

For the purposes of the availability and consistency analyses,
we model a business activity as a sequence of one or more
tasks, each of which is a traditional ACID transaction. The

concurrency of tasks within the business activity has no effect
on our availability and consistency analyses.

We consider only faults that are detected immediately so
that a transaction can be aborted and retried immediately.
Detection might involve the operating system, the database,
the transaction or communication middleware, and custom-
coded application data validity checks. We do not consider
faults that allow a transaction to appear to complete even
though they yield incorrect results that were not detected.

Following the detection of a fault in a transaction, the
transaction or the entire business activity is aborted and
retried. We assume that the standard transaction commit
and abort mechanisms operate correctly. We consider only
a single retry of the business activity and a single retry of
compensating transactions when they are used.

5.1	 Architectures
For comparison and evaluation, we consider four archi

tectures:

.	 No Fault Recovery Architecture. There are no attempts
at recovery from faults.

.	 Single Distributed Transaction Architecture. A business
activity is modeled as a single distributed transac
tion using the two-phase commit protocol. If any
part of the business activity fails, the entire dis
tributed transaction is aborted and the business
activity is then retried once only.

.	 Abort of Transactions with Compensating Transactions
Architecture. A business activity is still modeled as a
single distributed transaction. If any subtransaction
fails, every completed subtransaction is aborted by a
compensating transaction, and the entire business
activity is retried once only.

.	 Reservation Protocol Architecture. A business activity
is modeled as a sequence of individual transactions
that comprise pairs of reservation and confirmation/
cancellation transactions. If a transaction within the
business activity fails, the transaction is aborted and
is retried individually, rather than the entire busi
ness activity being retried. We allow only one
transaction within the business activity to be retried.
This restriction is imposed to yield a fair comparison
with the other architectures in which the single
distributed transaction is retried once only.

We consider the effect that each of these architectures has
on the availability of the business application and the
consistency of the databases, particularly when it involves
multiple enterprises. In particular:

.	 We investigate the probability that all or a large
number of business activities will complete success
fully. Many businesses must process thousands or
millions of activities every day. Each activity that
does not complete successfully can involve difficult
and expensive manual intervention.

.	 We investigate the probability that the databases of the
business activity might be left in an inconsistent state,
an inconsistency that might spread across multiple
enterprises. Even a potential inconsistency can require
difficult and expensive manual intervention.

There is no intention that the calculations presented here
provide accurate probabilities for any particular business
application. They are intended only to investigate the effects

Fig. 2. The Markov models for the four architectures. (a) No Fault Recovery Architecture. (b) Single Distributed Transaction Architecture.
(c) Compensating Transaction Architecture. (d) Reservation Protocol Architecture.

on availability and consistency for the particular architec
ture chosen.

5.2 Markov Models and Parameters
We estimate the probability that all of the transactions in
a business activity complete successfully and the prob
ability that the databases might have been left in an
inconsistent state. We use a discrete-time Markov model
for each architecture. The parameters of the Markov
models are given as follows:

. n: the number of transactions in a business activity.

. m: the number of business activities over the period
of interest (per hour, per day, etc.).

. f : the probability that a single transaction does not
complete successfully, 0 < f < 1.

. g: the probability that a compensating transaction
does not complete successfully, 0 < g < 1.

Thus, we assume that each transaction has the same
probability f of failure and that each corresponding compen

sating transaction has the same probability g of failure.
In the illustrations of the Markov models, for conve

nience of presentation, we show only n ¼ 6 transactions.
The illustrations of the Markov models can be easily
extended to more transactions. Real business activities
typically involve more than six transactions, as do the
business activities shown in our results below.

5.2.1 No Fault Recovery Architecture
Fig. 2a shows the Markov model for calculating the
probability that a business activity with n transactions

completes successfully with no attempts at recovery from
faults. This architecture is included as a baseline.

The probability that all of the m business activities
complete successfully is given by

nmð1- fÞ :

5.2.2	 Single Distributed Transaction Architecture
Fig. 2b shows the Markov model for a business activity that
is processed as a single distributed transaction using the
two-phase commit protocol. If a subtransaction fails, the
entire business activity is aborted and retried once only. We
assume that the abort is correct and, thus, that there is no
risk that the databases are left in an inconsistent state.

The probability of success on the first attempt of the
nbusiness activity is ð1- fÞ , and the probability of aborting

nthe first attempt of the business activity is 1- ð1- fÞ . The
probability of success of the retry of the business activity is

nð1- fÞ . The overall probability of success of the business
activity is given by

n n n n nð1- fÞ þ ð1- ð1- fÞ Þ * ð1- fÞ ¼ ð1- fÞ ð2- ð1- fÞ Þ:

Thus, the probability that all of the m business activities
complete successfully is given by ()m

n nð1- fÞ ð2- ð1- fÞ Þ :

5.2.3	 Abort of Transactions with Compensating
Transactions Architecture

Fig. 2c shows the Markov model for this architecture, where
a business activity is still processed as a single transaction,
but if a subtransaction fails, each completed subtransaction
is aborted by a compensating transaction. The entire
business activity is retried once only, and each compensat
ing transaction is retried once only. If a compensating
transaction cannot be completed successfully, even after a
retry, the potential exists that databases are left in an
inconsistent state and that manual intervention is required.

This model is also appropriate for the distributed escrow
transactional method, although the value of g will be less
because for the distributed escrow transactional method,
the compensations are simple rather than arbitrarily
complex as they might be for the general compensating
transactions architecture.

The probability of success on the first attempt of the
business activity is given by

nð1- fÞ :

If a fault occurs in the second subtransaction and the first
transaction is compensated, the probability that the first
attempt of the compensation fails and the retry of that
attempt fails is g2, and the probability that either the first
attempt of the compensation or the retry of that attempt
succeeds is 1- g2. If a fault occurs in the third subtransac
tion, the first and second subtransactions are compensated.
The probability that the compensations of both the first and

2second subtransactions succeed is ð1- g2Þ , and the prob
ability that one or the other of those compensations does not

2succeed is 1- ð1- g2Þ .

Thus, the probability that a fault occurs during the first
attempt of the business activity so that the first attempt is
aborted and the successful transactions of the first attempt
are compensated successfully to allow the retry of the
business activity is given by

2 2f þ ð1- fÞfð1- g 2Þ þ ð1- fÞ fð1- g 2Þ þ . . .þ
n-1 n-1ð1- fÞ fð1- g 2Þ()n n1- ð1- fÞ ð1- g2Þ¼ f	 ;
1- ð1- fÞð1- g2Þ

using the formula for the sum of a finite geometric series.
The probability of success on either the first or the

second attempt of the business activity is given by (())n n
n n 1- ð1- fÞ ð1- g2Þð1- fÞ þ ð1- fÞ f

1- ð1- fÞð1- g2Þ (())n n
n 1- ð1- fÞ ð1- g2Þ¼ ð1- fÞ 1þ f	 :

1- ð1- fÞð1- g2Þ

Consequently, the probability that all of the m business
activities complete successfully is given by ((()))mn n

n 1- ð1- fÞ ð1- g2Þð1- fÞ 1þ f	 :
1- ð1- fÞð1- g2Þ

If a compensating transaction fails and the retry of the
compensating transaction also fails, the databases are left in
a potentially inconsistent state, and manual intervention is
required.

The potential inconsistency might arise due to a fault in
the first attempt of the business activity and the failure to
compensate the first attempt with probability

2 22Þð1- fÞfð1- ð1- g 2ÞÞ þ ð1- fÞ fð1- ð1- g Þ þ . . .þ
n-1 n-12Þð1- fÞ fð1- ð1- g Þ ()

2 n-1¼ f 1þ ð1- fÞ þ ð1- fÞ þ . . .þ ð1- fÞ(
2 22Þ- f 1þ ð1- fÞð1- g 2Þ þ ð1- fÞ ð1- g þ . . .þ)

n-1 n-12Þð1- fÞ ð1- g ()n n n1- ð1- fÞ 1- ð1- fÞ ð1- g2Þ¼ f -	 ;
1- ð1- fÞ 1- ð1- fÞð1- g2Þ

using the sum of a finite geometric series twice.
The potential inconsistency might also arise due to a

fault in the first attempt that is successfully compensated,
followed by a retry of the entire business activity, during
which a further fault occurs for which compensation is not
successful. The probability that a fault occurs in the first
attempt and is successfully compensated is given by ()n n1- ð1- fÞ ð1- g2Þ

f	 :
1- ð1- fÞð1- g2Þ

The probability that a fault occurs in the second attempt
and cannot be compensated is the same as the probability
that a fault occurs in the first attempt and cannot be
compensated. Thus, the probability of a potential incon
sistency in either attempt is given by

()n n n1 - ð1 - fÞ 1 - ð1 - fÞ ð1 - g2Þ
f -

1 - ð1 - fÞ 1 - ð1 - fÞð1 - g2Þ ()n n1 - ð1 - fÞ ð1 - g2Þþ f
1 - ð1 - fÞð1 - g2Þ ()n n n1 - ð1 - fÞ 1 - ð1 - fÞ ð1 - g2Þx f -
1 - ð1 - fÞ 1 - ð1 - fÞð1 - g2Þ ()n n1 - ð1 - fÞ ð1 - g2Þ¼ f 1 þ f

1 - ð1 - fÞð1 - g2Þ ()n n n1 - ð1 - fÞ 1 - ð1 - fÞ ð1 - g2Þx - :
1 - ð1 - fÞ 1 - ð1 - fÞð1 - g2Þ

Consequently, the probability that within m business
activities, the databases are left in a potentially inconsistent
state is given by (()n n1 - ð1 - fÞ ð1 - g2Þ

1 - 1 - f 1 þ f
1 - ð1 - fÞð1 - g2Þ ())n n n m1 - ð1 - fÞ 1 - ð1 - fÞ ð1 - g2Þx - :

1 - ð1 - fÞ 1 - ð1 - fÞð1 - g2Þ

5.2.4 Reservation Protocol Architecture
Fig. 2d shows the Markov model for this architecture,
where each transaction of the business activity is retried
individually, rather than the entire business activity being
retried. We assume that only one transaction in a business
activity can be retried to yield a fair comparison with the
distributed transaction architecture, where the entire
distributed transaction is retried once only. If that retry
also fails, the business activity fails, and all of its
reservations are cancelled. Those cancellations can be either
explicit cancellations or expirations of reservations. In both
cases, the cancellation requires the execution of a transac

tion that might not complete, and the model includes the
probability of such a fault. One retry is allowed for each
explicit cancellation or expiration of a reservation.

The probability that the business activity completes
nsuccessfully with no transactions failing is ð1 - fÞ . The

probability that exactly one of n transactions failed and then
succeeded when retried while the other n - 1 transactions

nsucceeded is nfð1 - fÞ . Thus, the probability that a
business activity completes successfully is given by

n n nð1 - fÞ þ nfð1 - fÞ ¼ ð1 - fÞ ð1 þ nfÞ:

Consequently, the probability that all of the m business
activities complete successfully is given by

n mðð1 - fÞ ð1 þ nfÞÞ :

The probability that two transactions or one transaction
and its retry have failed is given by

n-1f2 þ 2f2ð1 - fÞ þ 3f2ð1 - fÞ2 þ . . . þ nf2ð1 - fÞ :

In this case, all successfully completed reservations must be
cancelled. Two attempts are allowed for each cancellation
transaction. The probability that one of the reservations is
not cancelled (because the local transaction for a reservation
cancellation failed even when retried) is given by

2 22Þ2f2ð1 - fÞð1 - ð1 - g 2ÞÞ þ 3f2ð1 - fÞ ð1 - ð1 - g Þ þ . . . þ
n-1 n-12Þnf2ð1 - fÞ ð1 - ð1 - g ÞÞ ()

2 n-1¼ f2 1 þ 2ð1 - fÞ þ 3ð1 - fÞ þ . . . þ nð1 - fÞ(
2 - f2 1 þ 2ð1 - fÞð1 - g 2Þ þ 3ð1 - fÞ2ð1 - g 2Þ þ . . . þ)

n-1 n-1nð1 - fÞ ð1 - g 2Þ !
n nþ11 - ðn þ 1Þð1 - fÞ þ nð1 - fÞ¼ f2

2ð1 - ð1 - fÞÞ !
n n nþ1 nþ11-ðnþ1Þð1-fÞ ð1-g2Þ þnð1-fÞ ð1-g2Þ- f2 ;

2ð1 - ð1 - fÞð1 - g2ÞÞ

where we have applied the following formula twice:

1 - ðn þ 1Þxn þ nxn-1 ¼1 þ 2x þ 3x 2 þ . . . þ nx
nþ1

:
2ð1 - xÞ

Consequently, the probability that for m business
activities, the reservation cancellations succeed is given by !

n nþ11 - ðn þ 1Þð1 - fÞ þ nð1 - fÞ
1 - f2

2ð1 - ð1 - fÞÞ !!m n n nþ1 nþ11-ðnþ1Þð1-fÞ ð1-g2Þ þnð1-fÞ ð1-g2Þþf2
2ð1-ð1-fÞð1-g2ÞÞ

and, thus, the probability that within m business activities,
the databases are left in a potentially inconsistent state is
given by !

n nþ11 - ðn þ 1Þð1 - fÞ þ nð1 - fÞ
1 - 1 - f2

ð1 - ð1 - fÞÞ2 !!m n n nþ1 nþ12Þþ f2 :
1-ðnþ1Þð1-fÞ ð1-g2Þ þnð1-fÞ ð1-g

2ð1 - ð1 - fÞð1 - g2ÞÞ

5.3 Comparison of Availability and Consistency
For this comparison, we assume that there are n ¼ 20
transactions per business activity for the No Fault Recovery
Architecture, the Single Distributed Transaction Architec
ture, and the Abort of Transactions with Compensating
Transactions Architecture. For the Reservation Protocol
Architecture, we assume that there are n ¼ 40 transactions
per business activity, that is, 20 tasks, each of which
involves two subtasks (reservation and confirmation/
cancellation), each of which is a transaction.

In all of the graphs, the x-axis represents the number m
(from 1 to 109) of business activities within an hour, day,
week, month, year, or whatever time period is of interest.
Each curve on the graph represents the probability (from

310- to 10-6) that an individual transaction fails. Here, we
assume that the probability g that a compensating transac
tion or a reservation cancellation (or expiration) transaction
fails is the same as the probability f that a regular
transaction fails.

Fig. 3a shows the probability that all of the m business
activities complete successfully when there is no attempt to
recover from faults. Note that because there is no attempt to

Fig. 3. The probability that all of the m business activities complete successfully for the different architectures. In the Abort of Transactions with
Compensating Transactions Architecture, compensating transactions have the same fault rate as regular transactions. In the Reservation Protocol
Architecture, reservation expiration transactions have the same fault rate as regular transactions. (a) No Fault Recovery Architecture. (b) Single
Distributed Transaction Architecture. (c) Compensating Transactions Architecture. (d) Reservation Protocol Architecture.

Fig. 4. The probability that the databases are left in a potentially inconsistent state after m business activities for the Compensating Transactions
Architecture and the Reservation Protocol Architecture. (a) Compensating Transaction Architecture. (b) Reservation Protocol Architecture.

recover from faults, the probability of success deteriorates
rapidly as more business activities are attempted.

Fig. 3b shows the probability that all of the m business
activities complete successfully with the Single Distributed
Transaction Architecture. Note that for larger numbers of
business activities, even a single retry of a business activity
yields much better probabilities of success. However, the
Single Distributed Transaction Architecture is seldom
employed because of the risk that the failure of the
transaction coordinator in a computer of one enterprise
might block transactions in the computers of other
enterprises and might render inaccessible the data of those
other enterprises. In current practice, typically, the Abort of

Transactions with Compensating Transactions Architecture
is used instead.

Fig. 3c shows the probability that all of the m business
activities complete successfully with the Abort of Transac

tions with Compensating Transactions Architecture. The
availability is good but not quite as good as that for the
Single Distributed Transaction Architecture. However, this
graph shows the most optimistic scenario, with compensat

ing transactions assumed to have the same fault rate as
regular transactions and with the retry of compensating
transactions. Experience has shown that in practice,
compensating transactions are difficult to program and
that the fault rate for compensating transactions is much
higher than the fault rate for regular transactions, because

compensation is an unanticipated activity that is difficult to
plan for and difficult to test. Some enterprises do not
attempt to retry transactions, but rather proceed directly to
manual rectification if a compensating transaction fails.

Fig. 3d shows the availability achieved by the Reserva
tion Protocol Architecture, where the number of transac
tions per business activity is increased from n ¼ 20 to
n ¼ 40, because there are two subtasks (transactions) of
each of the 20 tasks of the business activity. The comparison
of the figures shows that the Reservation Protocol Archi
tecture achieves better availability than the other architec
tures, although the improvement might not be sufficient to
be decisive.

The probability of completing business activities is not
the only important metric. The probability that the
databases are left in a potentially inconsistent state is even
more critical than the probability that business activities do
not complete. Figs. 4a and 4b show the probabilities of
potential inconsistency for the Abort of Transactions with
Compensating Transactions Architecture (with n ¼ 20) and
the Reservation Protocol Architecture (with n ¼ 40). Here,
compensating transactions and reservation cancellation (or
expiration) transactions are assumed to incur the same fault
rate as regular transactions. The Reservation Protocol
Architecture has superior performance because there are
fewer additional transactions for each fault recovery. It is
our assessment that the differences in the probabilities that
the databases are left in a potentially inconsistent state
presents a decisive advantage for the Reservation Protocol
Architecture.

6 CONCURRENCY AND LATENCY ANALYSES

The most prominent advantage of the reservation protocol is
that it provides the potential for increased concurrency. When
a request is made to reserve a specific quantity of a resource,
only that much of the resource is reserved, and the remainder
of the resource continues to be available to other business
activities. With distributed transactions based on transac
tional locking, the request for that specific quantity of the
resource causes the locking of the database record for the
available resource, and other business activities that need the
same resourcemustwait until the businessactivity that locked
the database record completes, as Fig. 5 shows. For example,
requesting two seats on an airline flight causes all of the seats
on that flight to be locked for the duration of the transaction,
and other customers seeking seats must wait. Consequently,
the reservation protocol permits a higher degree of concur
rency than the distributed transaction protocol for business
activities that involve the same resource.

The most important performance metric from the point
of view of a client is the response time (latency) required to
satisfy the client’s request. A general analysis of the latency
of a business activity is limited by the lack of information
about actual execution times of the tasks within the business
activity, the probabilities of alternative paths of tasks
through the business activity, and the concurrency of tasks
within the business activity. Even with this limitation, we
can obtain interesting and significant results for the time to
completion of a business activity.

Fig. 5. Distributed transactions, based on transactional locking, lock
database records and, thus, might delay other business activities that
the reservation protocol does not delay.

The latency of a business activity is affected by two kinds
of events:

. faults and recovery from faults and

. locking and blocking caused by locking.
The effects of faults on the latency of a business activity

are either relatively easy to estimate if the recovery from a
fault is successful or imponderable if inconsistencies occur.
Furthermore, faults are sufficiently infrequent, and interac
tions between faults are rare and, thus, they do not have a
significant effect on the latency. Consequently, we do not
undertake an analysis of the effects of faults on the latency
of a business activity here.

The effects of locking on the latency of a business activity
are more significant. In the analysis below, we assume that
a business activity is a sequence of tasks. We examine the
effects of locking on the probability density function (pdf) of
the latency of a business activity, based on a discrete delta
function for the pdf for each task of the business activity,
that is, effectively, we assume that each task has unit
duration including both processing and communication
times. Alternatively, we could employ a negative exponen
tial pdf or a Gaussian pdf for each task of the business
activity, with an increase in mathematical formulas, a
decrease in clarity of exposition, and little improvement in
the faithfulness to a particular business activity. To perform
a precise analysis for a specific business activity, one would
use a measured pdf for the duration of each task of that
business activity, information that is not available to us.

We assume further that for classical transactional lock
ing, in each task of the business activity, zero or more locks
are claimed and are held until the end of the business
activity. The probability that claiming a lock causes a lock
conflict is a parameter of the analysis. If a lock is held longer
because a business activity is blocked, waiting for another
lock, the probability that another business activity attempts
to claim that lock increases proportionately. Again, to
perform a precise analysis for a particular business activity,

Fig. 6. The pdfs for the duration of a business activity, assuming that there are no delays due to lock contention, for the period for which a lock is held,
for the delay resulting from lock contention, and for the duration of the business activity including delays resulting from lock contention. (a) Duration
of Business Activity. (b) Duration for which a lock is held. (c) Duration of delay due to lock conflict. (d) Duration of Business Activity including delays.

one would use specific measurements for that business
activity.

Fig. 6 shows the analysis required for determining the
effect of lock contention on the duration of a business
activity. Fig. 6a shows the pdf for the duration of a business
activity assuming no delays due to lock contention. In this
example, we assume that the duration of a business activity
with no delays due to lock contention is 10 time units.

Fig. 6b shows the pdf for the period for which a lock is
held, uniform between the minimal holding time and the
entire duration of the business activity. Locks are claimed at
random during the business activity and are held until the
business activity completes.

Fig. 6c shows the pdf for the delay resulting from lock
contention, assuming that claiming a lock results in lock
contention. Each possible time for which the lock can be held,
in Fig. 6b, contributes toward the delay shown in Fig. 6c. That
contribution is uniform between the minimal delay and the
time for which the lock is held. Note that as a lock is held
longer, there is an increase not only in the potential delay but
also in the probability of attempting to claim the lock,
increasing the probability of incurring a delay.

The pdf for the delay due to lock contention, shown in
Fig. 6c, is convolved with the pdf for the duration of the
business activity without lock contention, shown in Fig. 6a,
to produce the pdf for the business activity with lock
contention, shown in Fig. 6d. Additional convolutions are
required to represent the less likely possibility that the
business activity is delayed by two or more locks.

However, the pdf for the period for which a lock is held
and the pdf for the delay resulting from lock contention
should be derived from the pdf for the duration of the
business activity with lock contention, rather than from the
pdf for the duration of the business activity without lock
contention, which is the analysis we perform below.

Thus, we let pðtÞ represent the pdf for the duration t of a
business activity, p0ðtÞ represent the pdf for the duration t of
a business activity without lock contention, and q represent
the probability of contention for a lock. Then, the pdf hðtÞ
for the period t for which a lock is held is given by

t X
hðtÞ ¼ pðsÞ;

s¼1

and the pdf d1ðtÞ for the delay t resulting from contention
for a single lock is given by

t 1 X X
d1ðtÞ ¼ q hðsÞ for t > 0 and d1ð0Þ ¼ 1 - d1ðsÞ:

s¼1 s¼1

Similarly, the pdf d2ðtÞ for the delay t resulting from
contention for a second lock is given by

1 1 X X
d2ðtÞ ¼ d1ðtÞ d1ðsÞ for t > 0 and d2ð0Þ ¼ 1 - d2ðsÞ;

s¼1 s¼1

with corresponding formulas for d3ðtÞ, d3ð0Þ, etc.
Now, the pdf p1ðtÞ for the duration t of a business

activity with contention for at most one lock is derived as
the convolution

t X
p1ðtÞ ¼ p0ðsÞd1ðt- sÞ;

s¼1

and the pdf p2ðtÞ for the duration t of a business activity
with contention for at most two locks is derived as the
convolution

t X
p2ðtÞ ¼ p1ðsÞd2ðt- sÞ;

s¼1

with corresponding formulas for p3ðtÞ, etc.
Finally, the pdf pðtÞ for the duration t of a business

activity with contention for an arbitrary number of locks is
given by

pðtÞ ¼ p1ðtÞ:

Fig. 7 illustrates the pdfs pðtÞ for the duration t of a
business activity for different values q of lock contention.
Note that when the probability of lock contention is low, the
pdfs for the duration of a business activity using classical
transactional locking are substantially as expected, and the
effects of delays due to contention for a single lock and for

Fig. 7. The pdfs for the duration of a business activity with delays due to
lock contention for both classical transactional locking and the
reservation protocol.

two locks are clearly visible. As the probability of conten
tion for a lock increases, the business activities are delayed,
locks are held longer, delays due to lock contention are
longer, and the probability that a business activity claims a
lock that is already held by another business activity
increases. The resulting pdfs have long tails, and thus,
there is a high probability of lengthy delays for the business
activity.

It is also worth noting that for transactional locking, there
are probabilities for lock contention for which the system is
not stable, representing unbounded delays and essentially
no progress for the business activity. Such lock contention
and instability leads to system collapse under a heavy load,
which can occur at the most inappropriate times during the
most important tasks. This observation underscores the
importance of determining and enforcing an admission
control limit for the business activities.

Also shown in Fig. 7 are the pdfs for the duration of a
business activity for the reservation protocol. It is evident
that even high probabilities of lock contention do not result
in substantial delays for the business activity, because locks
are held only briefly during the reservation subtask and are
not held for the full duration of the business activity. In
summary, the reservation protocol is more resilient to high
loads and high probabilities of lock contention than is
classical transactional locking.

The pdfs shown in Fig. 7 are intended to illustrate only
the impact of locking on the latency of business activities in
general and should not be applied to any particular
business activity. For precise latency results, one must
measure and analyze each business activity individually.

The locking of an available resource by a business
activity that needs only some of the resources is undesir
able, and thus, some businesses employ reservations within
transactions. This mixed strategy is not easy to implement
because in addition to implementing a reservation protocol
similar to that described here, the mechanisms of transac
tional locking must be disabled for business activities that
involve such reservations to allow other business activities
to access the database records (resources) and to prevent the
records from being restored to the previous state if a
transaction is aborted.

If, instead of distributed transactions with transactional
locking, only local transactions and compensating transac
tions are used, the reservation of only some of the resources

is simpler. The concurrency achieved is substantially
equivalent to that of the reservation protocol strategy.

7 RELATED WORK

Extended transaction models [23], [30] are important today
and will become more important in the future for business
to-business (B2B) systems. Such systems enable the auto
mation of business processes across different enterprises.
We have already provided detailed comparisons of our
reservation protocol with other extended transaction stra
tegies (including the escrow transactional method) in
Section 4, and we do not repeat those comparisons here.

There are several standards for business process manage
ment, such as the Business Process Execution Language for
Web Services (BPEL4WS), [2] and for business activity
coordination, such as the WS-BA Framework [5]. The WS
BA specification has incorporated the sagas-based extended
transaction protocol [7]. However, as we have already
pointed out, compensation-based extended transaction pro
tocols have their limitations and problems. We have pre
sented an alternative reservation-based protocol to overcome
those limitations and problems. In addition to the standards,
there exists commercial middleware for workflow manage
ment, such as the WebSphere MQ Workflow Middleware [15]
and the BizTalk Server [21].

Closely related to our reservation protocol is the OASIS
Business Transaction Protocol (BTP) [24], in particular, the
BTP cohesion protocol. The BTP cohesion protocol is a two-
phase protocol in which the business transaction partici
pants have explicit control over the two phases. In the first
phase, all of the participants are required to prepare, that is,
they must ensure that a task can be committed or rolled
back if a fault occurs. In the second phase, the coordinator
issues confirmation or cancellation requests to the partici
pants. One might argue that our reservation subtask is a
special form of the prepare phase and, thus, that our
protocol is a special implementation of the BTP cohesion
protocol. However, the BTP specification mentions a
reservation-like action as only one of several possible ways
to provide provisional or tentative state changes. The BTP
specification does not pursue the concept of reservation to
the same extent that we do and does not elaborate the
benefits of the reservation approach.

Another closely related work is the atomic reservation
protocol for reserving resources in a free market, described
by Ginis and Chandy [10]. In their protocol, a consumer
makes timed-reservation requests to the service providers
in the form of purchasing options for the use of resources
that the service providers hold. In the second phase,
confirmation/cancellation requests are sent to the service
providers. Compensating transactions are used to negate
the effects of a partially fulfilled plan and to cope with
faults and the expiration of options acquired during the first
phase. The start of the first phase and the completion of the
second phase are assumed to be short in duration. Their
protocol is not necessarily appropriate for loosely-coupled
long-running business activities for which our reservation
protocol is specifically designed.

The tentative holding protocol (THP) [25], [26] is used to
exchange information between enterprises before a transac
tion begins. THP allows tentative nonblocking holds

(reservations to be requested) for a business resource. It
minimizes the possibility of rolling back committed
transactions by providing more accurate information
regarding the availability of the resource to the client.
Unlike our reservation protocol, THP allows multiple
clients to hold the same resource temporarily. When one
of the clients places an order, the remaining clients receive
notifications of the unavailability of the resource. However,
nothing prevents a client from placing an order for a
resource immediately, at which point another client might
have already taken the resource. In such a case, the business
activity must be rolled back, and the client must apply a
compensating transaction to cancel the previously com
mitted transaction. In our reservation protocol, the reserva
tion subtask is part of the business activity, the reservation
is granted exclusively to a single client, and blocking
reservations avoid the need for compensating transactions.

B2B systems often demand higher availability and
performance than can be provided by any particular
extended transaction protocol, and additional mechanisms
might have to be built into the middleware and the
applications. Wachter and Reuter have proposed the
ConTract model [27] for defining and controlling complex
long-lived activities at a level above ACID transactions.
Unlike conventional programming languages, the ConTract
model is a programming model that includes persistency,
consistency, recovery, synchronization, cooperation, and
the use of assertions as invariants on entry to/exit from
activities.

Greenfield et al. have been engaged in a project on
maintaining consistency in loosely-coupled distributed
environments. In [13], they discuss characteristics of B2B
applications, existing mechanisms and their inadequacies,
and consistency requirements for B2B applications. In [14],
they provide a set of requirements for a cancellation
mechanism for an e-procurement case study. In [6], they
propose a research agenda for the development of an
infrastructure that includes a language to express consis
tency conditions, tools to check whether the system
maintains consistency, and guidance for using the infra
structure properly.

Other researchers have investigated the performance of
enterprise computing systems. Gillmann et al. [8], [9] provide
a transient analysis of a system’s performance for different
degrees of replication of different types of servers (workflow
engines, application servers, and communication servers)
using continuous-time Markov models. Our analysis differs
from their analysis in that we compare the effects of using
different kinds of architectures on the performance of a
distributed application, rather than the effects of different
degrees of replication of the servers. In [18], Klingemann et al.
provide a steady-state analysis based on continuous-time
Markov models for workflow management to assess the
efficiency of different outsourcing strategies in a virtual
enterprise setting. Our analysis is quite different from their
analysis in its objective. Moreover, the use of continuous-time
Markov models is appropriate in a context where measure
ments of continuous-time pdfs for the durations of the tasks of
business activities are available. We lack that information and

consequently have used a discrete-time analysis for the
latency of the business activities.

8 CONCLUSIONS AND FUTURE WORK

Business activities need extended transaction protocols to
coordinate tasks in order to achieve coherent results. In the
current state of the art, compensating transactions are used
as a means of handling faults and exceptions when they
occur. In this paper, we have described a novel reservation-

based extended transaction protocol that can be used to
coordinate the tasks of long-running business activities.
Instead of resorting to compensating transactions, our
reservation protocol employs an explicit reservation sub-

task for each task that is not read-only to allow for the
possibility of later changes. Thus, each task is executed as
two subtasks. The first subtask involves an exclusive
blocking reservation of the resource. The second subtask
involves the confirmation or cancellation of the reservation.
As our analyses show, the reservation protocol exhibits
performance similar to or better than that of other
strategies. Future work includes the design and implemen

tation of a software infrastructure at the middleware layer
that integrates our reservation protocol with commercial
off-the-shelf workflow engines such as [15] and [21] in order
to enhance the performance of business activities in a
loosely-coupled distributed environment.

REFERENCES
[1]	 G. Alonso, D. Agrawal, A. El Abbadi, M. Kamath, R. Gunthor, and

C. Mohan, “Advanced Transaction Models in Workflow Con
texts,” Proc. 12th Int’l Conf. Data Eng. (ICDE ’96), pp. 574-581, Feb.
Mar. 1996.

[2]	 T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,
F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and
S. Weerawarana, Business Process Execution Language for Web
Services Version 1.1, http://www-128.ibm.com/developerworks/
library/specification/ws-bpel/, 2007.

[3]	 R. Barga, D. Lomet, G. Shegalov, and G. Weikum, “Recovery
Guarantees for Internet Applications,” ACM Trans. Internet
Technology, vol. 4, no. 3, pp. 289-328, 2004.

[4]	 L.F. Cabrera, G. Copeland, M. Feingold, T. Freund, J. Johnson,
C. Kaler, J. Klein, D. Langworthy, A. Nadalin, D. Orchard,
I. Robinson, T. Storey, and S. Thatte, Web Services Atomic Trans.,
http://www.ibm.com/developerworks/library/ws-transpec/,
2007.

[5]	 L.F. Cabrera, G. Copeland, T. Freund, J. Klein, D. Langworthy,
F. Leymann, I. Robinson, T. Storey, and T. Thatte, Web
Services Business Activity Framework, http://www.ibm.com/
developerworks/library/ws-busact/, 2007.

[6]	 A. Fekete, P. Greenfield, D. Kuo, and J. Jang, “Transactions in
Loosely Coupled Distributed Systems,” Proc. 14th Australasian
Database Conf. (ADC ’03), pp. 7-12, Feb. 2003.

[7]	 H. Garcia-Molina and K. Salem, “Sagas,” Proc. ACM SIGMOD ’87,
pp. 249-259, 1987.

[8]	 M. Gillmann, J. Weissenfels, G. Weikum, and A. Kraiss,
“Performance and Availability Assessment for the Configuration
of Distributed Workflow Management Systems,” Proc. Seventh
Int’l Conf. Extending Database Technology (EDBT ’00), pp. 183-201,
Mar. 2000.

[9]	 M. Gillmann, G. Weikum, and W. Wonner, “Workflow
Management with Service Quality Guarantees,” Proc. ACM
SIGMOD ’02, pp. 228-239, June 2002.

[10]	 R. Ginis and K.M. Chandy, “Micro-Option: A Method for Optimal
Selection and Atomic Reservation of Distributed Resources in a
Free Market Environment,” Proc. Second ACM Conf. Electronic
Commerce (EC ’00), pp. 207-214, 2000.

http:http://www.ibm.com
http://www.ibm.com/developerworks/library/ws-transpec
http://www-128.ibm.com/developerworks

[11]	 C. Hagen and G. Alonso, “Exception Handling in Workflow
Management Systems,” IEEE Trans. Software Eng., vol. 26, no. 10,
pp. 943-958, 2000.

[12]	 J. Gray and A. Reuter, Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, 1993.

[13]	 P. Greenfield, A. Fekete, J. Jang, and D. Kuo, “What Are the
Consistency Requirements for B2B Systems,” Proc. High Perfor
mance Transaction Systems Workshop (HPTS ’03), Oct. 2003.

[14]	 P. Greenfield, A. Fekete, J. Jang, and D. Kuo, “Compensation Is
Not Enough,” Proc. Seventh IEEE Int’l Enterprise Distributed Object
Computing Conf. (EDOC ’03), pp. 232-239, Sept. 2003.

[15]	 IBM, WebSphere MQ Workflow Middleware, http://www.ibm.com/
software/integration/wmqwf/, 2007.

[16]	 IBM, BEA, Microsoft, and Tibco, Web Services Reliable Messa
ging (WS-RM), http://www-128.ibm.com/developerworks/
webservices/library/ws-rm/, 2007.

[17]	 M. Kamath and K. Ramamritham, “Failure Handling and
Coordinated Execution of Concurrent Workflows,” Proc. 14th Int’l
Conf. Data Eng. (ICDE ’98), pp. 334-341, Feb. 1998.

[18]	 J. Klingemann, J. Waesch, and K. Aberer, “Deriving Service Models
in Cross-Organizational Workflows,” Proc. Ninth Int’l Workshop
Research Issues on Data Engineering (RIDE ’99)—Information
Technology for Virtual Enterprises, pp. 100-107, Mar. 1999.

[19]	 N. Lynch, “Multilevel Atomicity—A New Correctness Criterion
for Database Concurrency Control,” ACM Trans. Database Systems,
vol. 8, no. 4, pp. 484-502, 1983.

[20]	 C.P. Martin and K. Ramaritham, “Guaranteeing Recoverability in
Electronic Commerce,” Proc. Third Int’l Workshop Advanced Issues of
E-Commerce and Web-Based Information Systems, pp. 144-155, June
2001.

[21]	 Microsoft, BizTalk Server, http://www.microsoft.com/biztalk/,
2007.

[22]	 J.E.B. Moss, Nested Transactions: An Approach to Reliable Distributed
Computing. MIT Press, 1985.

[23]	 P.E. O’Neil, “The Escrow Transactional Method,” ACM Trans.
Database Systems, vol. 11, no. 4, pp. 405-430, 1986.

[24]	 Organization for the Advancement of Structured Information
Standards (OASIS), Business Transaction Protocol, Version 1.0,
http://www.oasis-open.org/committees/businesstransactions/,
2007.

[25]	 J. Roberts, T. Collier, P. Malu, and K. Srinivasan, Tentative Hold
Protocol Part 2: Technical Specification, http://www.w3.org/TR/
tenthold-2, 2007.

[26]	 J. Roberts and K. Srinivasan, Tentative Hold Protocol Part 1: White
Paper, http://www.w3.org/TR/tenthold-1, 2007.

[27]	 H. Wachter and A. Reuter, “The ConTract Model,” Database
Transaction Models for Advanced Applications, A.K. Elmagarmid,
ed., Morgan Kaufmann, pp. 219-263, 1992.

[28]	 G. Weikum and H. Schek, “Concepts and Applications of
Multilevel Transactions and Open Nested Transactions,” Database
Transaction Models for Advanced Applications, A. Elmagarmid, ed.,
Morgan Kaufmann, pp. 515-553, 1992.

[29]	 G. Weikum, “Principles and Realization Strategies of Multilevel
Transaction Management,” ACM Trans. Database Systems, vol. 16,
no. 1, pp. 132-180, 1991.

[30]	 G. Weikum, “Extending Transaction Management to Capture
More Consistency with Better Performance,” Proc. Ninth French
Database Conf., pp. 251-276, Sept. 1993.

[31]	 D. Worah and A. Sheth, “Transactions in Transactional Work-
flows,” Advanced Transaction Models and Architectures, S. Jajodia
and L. Kershberg, eds., pp. 3-34, 1997.

[32]	 W. Zhao, L.E. Moser, and P.M. Melliar-Smith, “Unification of
Transactions and Replication in Three-Tier Architectures Based on
CORBA,” IEEE Trans. Dependable and Secure Computing, vol. 2,
no. 1, pp. 20-33, 2005.

[33]	 W. Zhao, L.E. Moser, and P.M. Melliar-Smith, “A Reservation-
Based Coordination Protocol for Web Services,” Proc. IEEE Int’l
Conf. Web Services (ICWS ’05), pp. 49-56, July 2005.

libuser
Typewritten Text
Post-print standardized by MSL Academic Endeavors, the imprint of the Michael Schwartz Library at Cleveland State University, 2014

http://www.w3.org/TR/tenthold-1
http://www.w3.org/TR
http://www.oasis-open.org/committees/businesstransactions
http://www.microsoft.com/biztalk
http://www-128.ibm.com/developerworks
http:http://www.ibm.com

	A Reservation-Based Extended Transaction Protocol
	Original Citation
	Repository Citation

	untitled

