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DISCRETE-TIME RECURRENT NEURAL 

NETWORKS AND ITS APPLICATION TO 
COMPRESSION OF INFRA-RED SPECTRUM

Leong-Kwan Li, S. Shao

Abstract: We study the discrete-time recurrent neural network that derived from 
the Leaky-integrator model and its application to compression of infra-red spec
trum. Our results show that the discrete-time Leaky-integrator recurrent neural 
network (RNN) model can be used to approximate the continuous-time model and 
inherit its dynamical characters if a proper step size is chosen. Moreover, the 
discrete-time Leaky-integrator RNN model is absolutely stable. By developing the 
double discrete integral method and employing the state space search algorithm 
for the discrete-time recurrent neural network model, we demonstrate with qual
ity spectra regenerated from the compressed data how to compress the infra-red 
spectrum effectively. The information we stored is the parameters of the system 
and its initial states. The method offers an ideal setting to carry out the recurrent 
neural network approach to chaotic cases of data compression.

1. Introduction
Neural networks are trainable analytic tools that attempt to mimic information 
processing patterns in the brain. They can be used effectively to automate both 
routine and ad hoc tasks. Since the human brain is a recurrent neural network 
(RNN) - a network of neurons with feedback connections, RNNs are biologically 
more plausible and computationally more powerful than other adaptive models, 
such as Hidden Markov Models (no continuous internal states), feedforward net
works and Support Vector Machines (no internal states at all). One of the reasons



is that when the neural signals are exchanged between different cell assemblies, due 
to the recurrent connections between the neurons, there are typical brain functions 
involved. A possible way to model this behavior is by describing each cell assembly 
by a Leaky-integrator unit that integrates input over time while the internal acti
vation is continuously decreased by a dampening leaky term ([4]). With different 
leakage constants, single neurons can also be described by Leaky-integrator units. 
Therefore, the Leaky-integrator model - a continue-time RNN model of the neu
ron can be used to approximate a biological neuron quite well (more details can be 
found in [4]). Moreover, because of the richer dynamical structures of RNNs it can 
learn extremely complex temporal patterns to yield good results. Therefore, the 
Leaky-integrator dynamics are common in computational neuroscience and have 
been studied by many researchers in the field in the past few decades ([6], [7], [12]).

In this paper, instead of manipulating the RNN’s input-output relationship 
which is represented in the input and output spike trains, we use the internal 
states of the neurons (that is, the membrane potential, in neuroscience terms) in 
our derived RNN and not their firing rate or any other form of “output”, as they 
do not fire spikes at all. The reasons of this choice are that as our work attempts 
to reproduce discretised continuous-time signals, the internal state of the neuron is 
more appropriate for approximating the signals, rather than some function of the 
network’s spiking.

Although there are more common and handy data compression techniques, 
such as the Fast Fourier Transforms and the wavelet transforms, available in the 
recent years, neural networks are considered to be very suitable for nonlinear sig
nal processing problems because of their inherently nonlinear nature (see [9], [18]). 
Zaknich and Attikiouzel ([18]) pointed out in 1995 that most signal processing 
problems are related to a time or spatial data series. Li studied in [7] the data 
compression problems by recurrent neural dynamics. He shows that there exists 
a discrete-time neural network for any given finite signals ([6]). The difficulty of 
dealing with the large scale feedforward networks, numerous neurons and the pa
rameters could be skillfully overcome by using the RNN of the dynamical system 
approach according to Li. Therefore, the RNNs of the dynamical systems can be 
applied to solve the problems of data compression ([7]). Li, Chau and Leung fur
ther applied the RNN of the dynamical system approach to the task of compression 
of ultraviolet-visible spectrum in ([8]). In this paper, we study the discrete-time 
recurrent neural network model and its application to compression of infra-red (IR) 
spectrum. Our results shows that the discrete-time Leaky-integrator RNN model 
can be used to approximate the continuous-time model and inherit its dynamical 
characters if a proper step size is chosen, and the discrete-time Leaky-integrator 
RNN model is absolutely stable. By developing the double discrete integral method 
which removes the noise around the trend of the data and provides a smoother vi
sual image of the trend, and employing the state space search learning algorithm 
(SSSA), we demonstrate in the empirical examples, with quality spectra regener
ated from the compressed data, that the storage space of the spectral information 
could be reduced significantly by using the proposed RNN of dynamical system 
approach. Meanwhile, a double discrete integral method is developed as a digital 
filtering technique to smoothen the given signal. The method is simple, flexible 
and very easy to be implemented. Awaiting this, we are inclined to consider the



proposed method as the preferred method on account of its simplicity and storage 
space saving.

The organization of the paper is as follows. In Section 2, we first highlight the 
Leaky-integrator model and its discrete-time RNN model, then we present some 
theoretical results of the characters of the solutions of the Leaky-integrator RNN 
model and the stability properties of the discrete-time system. The compression 
techniques and methodology are presented in Section 3. Empirical results and the 
relative merits of the method are discussed in the concluding Section 4.

2. Characters of the Leaky-integrator Recurrent 
Neural Network

In this section, we introduce some characters of the solutions of the Leaky-integrator 
RNN model and the stability properties of the discrete-time system.

Consider the continuous-time Leaky-integrator RNN model of the system of 
nonlinear equations described by

where xi represents the internal state of the ith neuron. W = [wij]nxn is the synap
tic connection weight matrix. A = diag[a1,a2, ...,an] and B = diag[b1,b2, ∙∙∙,bn] are 
diagonal matrices with positive diagonal entries, where ai of matrix A represents 
the inverse of the neuron’s leakage time constant of ith neuron τi (that is, l∕τi), 
and B represents the neuron’s resistance. J = [J1, J2), ∙∙∙, Jn]T∖ is the input bias or 
threshold vector of the system, σ is a neuronal activation function that is bounded, 
differentiable and monotonic increasing on [-1, 1]. We assume that σ(z) = tanh(z), 
which is the symmetric sigmoid logistic function, and σ = diag[σ1, σ2, ...,σn] with 
σi is defined by

It is a fully connected network recurrently. That is the synaptic connection matrix 
W = [wij] is a nonzero matrix. It is possible to have some 0 valued weights in 
the matrix W during the optimization procedure for some intermediated iterations. 
However, the resulting optimal W ≠ 0. A fully connected Leaky-integrator RNN 
model for n = 4 is depicted in Fig. 1.

System (1) has been studied and used in many applied areas of sciences (see 
[12], [13], [6]) for the past. However, the solution behavior the system (1) and the 
stability property of its discrete-time model are less understood from the dynamical 
system point of view. Studying the solution behavior of system (1) will help us to 
understand the characters of the network behavior in general, which will provide 
more hints in network design and learning.



Fig. 1 A Leaky-integrator RNN model when n = 4

Before proceeding to discuss the main results, we re-write system (1) as the 
following matrix form

we first show that the RNN model (3) has bounded solution trajectory for any 
initial point in Rn.

By Peano’s local existence theorem ([1]) for solutions of ordinary differential 
equations, given any x0 ∈ Rn, there exists a positive number t*(x0) such that the 
system (3) has a solution x(t) ∈ Rn for t ∈ [0,t*(x0)), which is the maximal right 
existence interval of the solution χ(t) satisfying x(0). Now we show our theorem 
below.

Theorem 1. Given an initial state x(0) = x0. there exists a positive number 
t*(x0) such that the solution x(t) ∈ Rn of the Leaky integrator model (3)

is unique and bounded for all t ∈ [0,t*(x0))∙ In addition, this local existence of 
the solution x(t) exists globally. That is, t*(x0) = +∞ for any x0 ∈ Rn. In other 
words, the solution of system (3) is globally bounded.

Proof. There are many ways that can be employed to prove the desired results. 
Here we align with the approach in [11].

Let us consider the linear systems of differential equations

where A = diag[a1, a2, ...,an] and B = diag[b1, b2,..., bn] are diagonal matrices 
with positive diagonal entries defined as in (3). υp = (p,p, ...,p)T and υp =



(q,q, ...,q)T are the n dimensional constant vectors to be determined later, and 
J = [J1, J2, ∙··, Jn]T is the system input. We set y(0) = z(0) = x(0) = x0.

Claim: yi(t) ≤ xi(t) ≤ zi(t) for all i = 1, ...,n. and for all real t.
The proof of the claim is as follow: Let r = xj — yj, then r(0) = 0. Now

where we choose p such that

Thus, r(t) = e-ait ∫t0 geaisds > 0. Therefore, yi(t) ≤ xi(t) for all t ∈ [0, t*x0)) 
with some positive number t*(x0). Similarly we can show that zi(t) ≥ xi(t). It 
follows that there exists a bounded solution x(t) of system (3) for any given initial 
state x0. Moreover,

for i = 1,2..., n.
Hence, as time t tends to infinity, each component of the solution x(t) of system 

(3) is asymptotically contained in an interval [(bip+Ji/ai , (bip+Ji/ai]. It follows that 
system (3) is globally bounded.

For the uniqueness of the solution x(t) of system (3), let f ∈ Cn[Rn] defined by

and σ is in Cn for n ≥ 2. Suppose σ' is bounded by a positive constant k. Then, 
by the mean-value theorem, σ(a) — σ(b) = σ'(ϕ)(a — 6) for some φ ∈ (a, b), that is, 
∣σ(a) — σ(b)∣ < p∖a — b∖. Hence,

It implies that f is Lipschitz over Rn with Lipschitz constant ∣∣ A ∣∣ +k ∣∣ B ∣∣ ∣∣ W ∣∣ . 
Thus, the uniqueness of the solution is also guaranteed by the theory of ordinary



differential equations. Therefore, for a fixed W, there exists a unique solution for 
system (3) for arbitrary initial state x0 We finish the proof.

Note that if the input J(t) is a bounded function of time t, the global bounded
ness of the system is not affected. Yet, the equilibrium state x* = A-1[Bσ(Wx* + 
J)] depends on the input J.

Mind that for a dynamical system, though all the real parts of the eigenvalues 
of the Jacobian are negative for every x ∈ Rn, this dynamical system needs not to 
be globally asymptotically stable. Furthermore, it is important to find a condition 
for which the system is strictly globally asymptotically stable, so that the output 
state x(t) will reach the same steady state as t → ∞ for arbitrary given initial 
state.

Li and Shao ([11]) show that if ω ∈ Rn is the solution set of (1), then for any 
solution trajectory of the RNN model (1) starting from Ω, the solution trajectory 
cannot escape from Ω. Moreover, for any solution trajectory of the RNN model (1) 
starting from the outside of Ω, it will converge to Ω.

Define set S* = {y* ∈ Rn│y* = A-1Bσ(Wy* + J)} of equilibrium points of (3). 
For simplicity, we set matrix A = diag[a1, a2, ...,an] of system (1) to be the n × n 
identity matrix, then the system (3) becomes

We then introduce the stability property of system (6) in Theorem 2 below and 
its proof using the Lyapunov function can be found in ([11])).

Theorem 2. If W is invertible, (WB) is negative semi-definite, and S* is a 
singleton, then given initial state x0, system (3) is globally exponentially stable. 
That is, there exist two positive constants p > 1 and q > 0 such that for any 
x0∈ Rn and t ∈ [0, ∞)

where x(t) is the solution of (6) and x* is an equilibrium point of (6) in S* with 
A = I. That is,

The results of Theorem 1-2 provide some important characters of the solutions 
of system (3). It is known that the continuous-time model (3) and its numerical 
discretization of system (9) need not share the same dynamical behavior. However, 
the discrete-time system (9) of system (3) will inherit the same dynamics of system 
(3) when the step size is “small” (see [17]). Since the dynamical system like the IR 
spectral signal is digitalized, for practical purpose, we approximate system (3) by 
Euler’s method to obtain the dynamics of a discrete-time RNN

where h is the step size of Euler’s discretization, A and B are defined as in (3). 
The two systems (9) and (3) share the same dynamical behavior when h → 0. In



fact, the result in ([11]) shows that if 0 < hi,ai < 2 for i = 1,2, ...,n, and if the 
connection weight matrix W = [wij] satisfies the inequalities

for each i = 1,2, ...,n, then the discrete-time RNN model (9) is absolutely stable. 
We notice that inequality (10) implies that the solution space of the connection 
weight matrix W forms n open convex hyper cones in n-dimensional space. More
over, δi = 1\hibi(l - ∣1 - hiai∣) → ∞ as hi → 0. Since the discrete-time model (9) 
and the continuous-time model (1) share the same dynamical behavior as hi → 0, 
we can conclude that as hi → 0 both (9) and (1) are absolutely stable. It is known 
that for an absolutely stable neural network model, the system state will converge 
to one of the asymptotically stable equilibrium points regardless of the initial state 
([11]). This result is very important in using system (9) for the data compression.

We will show how system (9) can be used as a suitable dynamical system to 
compress given signals in the next section.

3. Compression Techniques and Methodology
There are many different techniques available to compress a given signal ([2]) in
cluding the most well-known methods such as the Fast Fourier Transforms and the 
wavelet transforms. Both the Fast Fourier Transform and the wavelet transform 
methods are very popular and handy in signal/data compression. However, the 
intrinsic properties of the original signal have not been handled effectively. When 
a signal has some intrinsic properties, it follows some dynamical behavior locally. 
Hence, the dynamical system approach can aptly be employed for the signal com
pression.

To show why the RNN of the dynamical system approach can be used for signal 
compressions, let us consider a finite sequence generated by

Sequence {z(t)}1≤t≤m is chaotic and its dynamics is well-understood. Given a sig
nal z(t), we can restore all the information of z(t) by (12) by storing the parameters 
μ, the initial state z(l) and m. Thus, the finite sequence is compressed into three 
parameters μ, z(l) and m only. It is unlikely that an arbitrary dynamical system is 
capable to approximate a given sequence or function over a finite interval. There
fore, we need a universal approximation theory. It was proved by Li ([6]) that, for 
an arbitrary finite sequence (signals) {z(t) ∈ Rnl}1<t<m, there exists a discrete
time RNN system (9) with network size N > n1 for some positive integer n1 such 
that the first n1 output of χ(t) generates z(t) accurately for 1 ≤ t < m. This uni
versal approximation property of RNNs is the foundation to compress arbitrarily 
sequence or a function.



Before we proceed to discuss the methodology, the following definition will be 
established.

Definition. Dynamical system (9) is said to be exactly capable if there exist some 
neural parameters IF, J and h such that the error between the system output x(t) 
and the approximating sequence z(t) is zero. If the least square error between 
the system output and the approximating sequence is less than a pre-condition 
tolerance, then the network is said to be capable.

For simplicity, we assume that matrices A and B of (9) are the identity matrices 
in which

Now the task of compression of a given signal with the RNN system (13) approach 
can be carried out by the following steps (l)-(6):

(1) Segmentation. Given a signal z(t) of length m (or of m data), z(t) is partitioned 
into n equal segments with the same length p, that is, m = np. Thus, we obtain a 
finite sequence {zk(t)}1≤k≤n of segments with length p for each segment.

(2) Mean correction. For each segment zk(t),k = 1,2, ...,n, we define

Then the new sequence {zk(f)} has the property of mean(zk(f)) = 0 for each 
k = 1,2, ...,n. This mean correction process to zk is important because we can 
later set J = 0 in the normalization process (see (4)). For simplicity, we replace 
zk(f),s by zk(t)'s in the remaining discussion.

(3) Discrete integration. Since inherent in the collection of data taken over time 
is some form of random variation, there exist methods for reducing or canceling 
the effect due to random variation. An often-used technique in data compression 
is “smoothing”. This technique, when properly applied, reveals more clearly the 
underlying trend, seasonal and cyclic components. Better trend recognition can 
lead to more accurate signals. In this paper, instead of opting for a popular mov
ing average smoothing technique, we develop a double discrete integral method to 
smoothen the given noisy signal {zk(t)}. The procedures of the discrete double 
integral method are presented as follows:

For each k = 1, 2, ...,n, consider {zk(1), zk(2),..., zk(p)} we perform the following 
mean zero discrete integration with scaling procedure:



Now {xk(t)} is a finite sequence of length p + 2 with mean{xk(t) = 0} and xk(l) = 
xk (p + 2). The idea is that we can treat sequence zk (t) as the discrete derivative 
of another sequence yk(t) defined by iteratively in (i), or in other words, yk is 
the discrete integral of zk. To assure the new sequence has zero mean, we set 
ϕk(t) = yk(t) - mean(yk(t)). Then, the processes are repeated in (ii), now xk(t) is 
of length p + 2. Although performing the double discrete integral method causes an 
increase in the storage space and the cost of computation when the original sequence 
is to be regenerated, yet it brings much more benefit in reducing the influence of 
noise upon data compression. We replace xk(t) by zk(t) and let q = p + 2 for 
simplicity in the remaining discussion. Notice that zk(t) has leveling property 
zk(0) — zk(q) for all k.

As R. W. Hamming observed: Digital filtering includes the process of smooth
ing, predicting, differentiating, integrating, separation of signals, and removal of 
noise from a signal ([15]). In effect, the double discrete integrating removes the 
noise around the trend and provides a smoother visual image of the trend. This 
method is simple, flexible and very easy to be implemented. Moreover, our claim 
of a better smoothing method is based on the following theoretical support and 
analysis.

Consider a continuous-time, s-periodic signal f(t), then the N-harmonic Fourier 
series approximation can be written as

where the Fourier cosine coefficients a1, a2..., aN are non-negative. In fact, given 
∈ > 0, there exists a positive integer N and a Fourier cosine coefficients a1, a2...,aN 
such that

We call the N-harmonic Fourier series convergent to f(t). To obtain a smooth 
curve we take integration both sides of (16) twice to obtain



By chosen a0 = 0 and let ak = -ak, we have

By the Second Fundamental Theorem for integration, g(t) is twice differentiable. 
Equally important, g(t) is square integrable. Thus, the action of double integrat
ing can be used to transform the “higher frequency” from the given signal to make 
the function smoother or even to emphasize certain informational components con
tained in the original signal. Setting a0 = 0 in (18), we further guarantee the 
range of the signal can be re-scaling within [-1,1]. Observing (19) again, we notice 
that factor 1/k2 of ak cos(kt) converge to zero very fast as k larger, which causes the 
effect of eliminating the higher frequency terms in (19). It provides another expla
nation for why the double discrete integral method removes the noise around the 
trend. Our experiments show that the double discrete integral method is enough 
for smoothness and handling trends in general, the triple or higher order integral 
method may not be necessary and is costly.

(4) Normalization. To normalize zk(t) within the range -1 to 1 (that is, within the 
range of σ) instead of 0 to 1, we re-scale the given signal zk(t) (see (iii) and (iv) in 
(15)). The parameters θ can be assigned to be zero vector to save memory space. 
Again, this setting has very little effect on the efficiency of data compression ([6]).

(5) Approximation. After normalizing, re-scaling and discrete integration, each 
zk(t) is a one dimensional sequence of length q, where q = p + 2 and m — np. 
Let n be the number of neurons x1(t), x2(t),...,xn(t) to be used in RNN system 
(13). The first neuron x1(t) with t = 1,2,...,q is utilized to approximate the 
first subsequence that we assign the initial state equal to the first term of the 
subsequence, x1(l) = z(1). Continuing the similar procedures, we have x2(l) = 
z(q + 1), x3(1) = z(2q + 1), and xn(l) = z((n — 1) q + 1), respectively. Hence, 
{x1(2),...,x1(q)},{x2(q + 2), ...,x2(2q)},... and {xn((n - l)q + 2),..., xn(nq)} can 
be generated via (13) with given values of the RNN parameters h and W. By 
varying these RNN quantities systematically, we obtain the regenerated spectrum 
X(t) = (x1(t),..., x1(q),..., xn((n — l)q + 1),..., xn(nq)) to have the smallest dis
crepancies with respect to the original spectrum. In this case, the error may build 
up as the number of iterations increases. We may reduce the accumulated error 
by further dividing each subsequence of z(t) into shorter subsequences, that is, 
multiple segmentations. Suppose k multiple segmentations are used and the same 
parameters W and h, the number of variables used is (n + 1)2 + (k — l)n.

(6) Optimization. As the network size n is fixed, we need to optimize the parameters 
W and h so that we can minimize the least square error. That is, the discrepancy 
between z(t) and X(t) = [2q(t), x2(t), ...,xn(t)] is within the tolerance. We define



the root mean square difference by

Equation (20) is used as an indicator of the discrepancy. Our goal is to adjust the 
RNN parameters so as to minimize E of (20). Unlike the previous work of ([8]), we 
obtain the parameters by the SSSA (recall: SSSA represents the state space search 
learning algorithm) for RNNs ([11]). That is, for each k,

where

Note that the learning algorithm SSSA is not based on the gradient method, 
and there is no computation of the partial derivatives along the target trajectory 
in the procedure. By searching in the neighborhood of the target trajectory in 
the state space for each iteration, the algorithm performs nonlinear optimization 
learning process and provides the best feasible solution for the nonlinear optimiza
tion problem. The convergence analysis shows that the network convergence to 
the desired solution is guaranteed, and the stability properties have been studied 
theoretically ([11]).

As the optimized RNN quantities together with X(l) achieved as the com
pressed data set, it will be used to regenerate the original signal. For a network 
of n neurons, the parameters we used include W and h together with the initial 
state X(l), the total variables to be stored n2 + n + 1. That is, the total number 
of data retained is n2 + n + 1. Hence, if the network is capable for the task, the 
compression ratio is m∕[n2 + n + 1]. Notice that the vector J is a zero vector as 
we have normalized the sequence, the stored parameters needed to be reduced to 
n2 + n + 1 + K, where K is the length of double integration.

The proposed approach is to demonstrate the power using recurrent neural 
dynamics for compression. As compression techniques use computation time in 
exchange for storage space, we may use various learning strategies to compute 
the parameters that lead to an acceptable error level. Some error analysis of this 
compression method can be found in ([7]).

4. Empirical Results
In this section we use 21 infra-red spectra as samples to illustrate our approach. 
The given signals are assumed to be finite and continuous. We use 21 noise free 
data sequences of infra-red spectrum which is 1,800 points each. The size of the 
recurrent neural networks used is 9. Applying the method that we proposed in



Section 3, we found that all the empirical results are extremely promising. We 
summarize the least square errors of each sample in Tab. I. To avoid overstuffing 
the paper we show only one of the reconstructed signals, Benzacid, in Fig. 2 to 
illustrate our results. The top diagram of Fig. 2 is the original signal, the bottom 
diagram of Fig. 2 is the reconstructed signal using the RNN of the dynamical 
system approach. All the samples converge very fast (less than 5 seconds using 
MATLAB run in Window XP, Pentium 4, CPU 1.60 GHz).

Sample error
1 benzacid 0.014392
2 brbenzen 0.024306
3 brlbutan 0.037459
4 butane 0.516144
5 cl1butan 0.013203
6 cl2butan 0.002340
7 cl2pheno 0.306229
8 cl3pheno 0.032144
9 cl14benz 0.048176
10 cln24pben 0.639169
11 cln24benz 0.109439
12 cyclo5cl 0.032655
13 cyclo6br 0.072161
14 ibenzene 0.04.9160
15 ilbutane 0.514836
16 n4benzcl 0.112637
17 no2pheno 0.088191
18 no3pheno 0.069696
19 no4pheno 0.293058
20 no4tulen 0.029738
21 toluene 0.117859

Tab. I Compression Errors of the 21 Samples.

In fact, if the 7 or 8 neurons are used, the network gives an acceptable approx
imation, and less than a hundred parameters are stored as we use no hidden unit. 
The trade off is that the error decreases as the network size increases.

In these experiments, we took the first 1800 points and use no averaging tech
nique. The error between the approximation and the original curve is depending 
on the different sample. The parameters we stored is 92 + 9 + 1 = 91 plus the 4 
neglected points.



Fig. 2 Benzacid (Top: Original signal. Bottom: Reconstructed signal).

From these experiments, we demonstrates some very promising results by using 
the RNN of the dynamical system approach for signal compression.

5. Concluding Remarks and Future Research 
Directions

We study the discrete-time RNN model and its application to compression of infra
red spectrum. The characters of the solutions of system (3) have been analyzed. 
Our results show that the discrete-time leaky integrator RNN model can be used 
to approximate the continuous-time model and inherit its dynamical characters 
if a proper step size is chosen. Having developed a novel discrete double inte
gral smoothing technique together with the SSSA, our examples demonstrate some 
extremely promising results of compressing infra-red spectrum with the RNN of 
dynamical system approach. We are convinced that the simplicity of discrete dou
ble integral method together with the SSSA, especially with the algorithm given 
in this paper, would then favor our approach over other methods in dealing with 
the intrinsic properties of the original signals.

Moreover, from the data compression point of view, it is important for us to find 
a systematic way to determine a smallest network size and proper segmentation 
such that the error of the approximated sequence is within our tolerance, and 
the least parameters are used. On the other hand, after segmentation, the one 
dimensional trajectory zk(f) becomes a shorter trajectory in It". It is an interesting 
question for us to find an optimal network such that the intrinsic behavior is best 
represented, which may provide us some useful information or physical meaning 
for a given sequence of signals.
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